
A Derivation of the Evidence Lower Bound and SLAC Objectives

z1 · · · zτ zτ+1 · · · zT

a1 aτ aτ+1 aT

x1 xτ xτ+1

Oτ+1 OT

Figure 6: Graphical model of POMDP with opti-
mality variables for t ≥ τ + 1.

In this appendix, we discuss how the SLAC objectives
can be derived from applying a variational inference
scheme to the control as inference framework for
reinforcement learning [42]. In this framework, the
problem of finding the optimal policy is cast as an
inference problem, conditioned on the evidence that
the agent is behaving optimally. While Levine [42]
derives this in the fully observed case, we present
a derivation in the POMDP setting. For reference,
we reproduce the probabilistic graphical model in
Figure 6.

We aim to maximize the marginal likelihood p(x1:τ+1,Oτ+1:T |a1:τ), where τ is the number of steps
that the agent has already taken. This likelihood reflects that the agent cannot modify the past τ
actions and they might have not been optimal, but it can choose the future actions up to the end of the
episode, such that the chosen future actions are optimal. Notice that unlike the standard control as
inference framework, in this work we not only maximize the likelihood of the optimality variables
but also the likelihood of the observations, which provides additional supervision for the latent
representation. This does not come up in the MDP setting since the state representation is fixed and
learning a dynamics model of the state would not change the model-free equations derived from the
maximum entropy RL objective.

For reference, we restate the factorization of our variational distribution:

q(z1:T ,aτ+1:T |x1:τ+1,a1:τ) =

τ∏
t=0

q(zt+1|xt+1, zt,at)

T−1∏
t=τ+1

p(zt+1|zt,at)
T∏

t=τ+1

π(at|x1:t,a1:t−1).

(11)
As discussed by Levine [42], the agent does not have control over the stochastic dynamics, so we use
the dynamics p(zt+1|zt,at) for t ≥ τ + 1 in the variational distribution in order to prevent the agent
from choosing optimistic actions.

The joint likelihood is

p(x1:τ+1,Oτ+1:T , z1:T ,aτ+1:T |a1:τ) =

τ+1∏
t=1

p(xt|zt)
T−1∏
t=0

p(zt+1|zt,at)
T∏

t=τ+1

p(Ot|zt,at)
T∏

t=τ+1

p(at).

(12)

We use the posterior from Equation (11), the likelihood from Equation (12), and Jensen’s inequality
to obtain the ELBO of the marginal likelihood,

log p(x1:τ+1,Oτ+1:T |a1:τ)

= log

∫
z1:T

∫
aτ+1:T

p(x1:τ+1,Oτ+1:T , z1:T ,aτ+1:T |a1:τ) dz1:T daτ+1:T (13)

≥ E
(z1:T ,aτ+1:T)∼q

[
log p(x1:τ+1,Oτ+1:T , z1:T ,aτ+1:T |a1:τ)− log q(z1:T ,aτ+1:T |x1:τ+1,a1:τ)

]
(14)

= E
(z1:T ,aτ+1:T)∼q

[
τ∑
t=0

(
log p(xt+1|zt+1)−DKL(q(zt+1|xt+1, zt,at) ‖ p(zt+1|zt,at))

)
︸ ︷︷ ︸

model objective terms

+

T∑
t=τ+1

(
r(zt,at) + log p(at)− log π(at|x1:t,a1:t−1)

)
︸ ︷︷ ︸

policy objective terms

]
,

(15)

We are interested in the likelihood of optimal trajectories, so we use Ot = 1 for t ≥ τ + 1, and its
distribution is given by p(Ot = 1|zt,at) = exp(r(zt,at)) in the control as inference framework.

13

Notice that the dynamics terms log p(zt+1|zt,at) for t ≥ τ + 1 from the posterior and the prior
cancel each other out in the ELBO.

The first part of the ELBO corresponds to the model objective. When using the parametric function
approximators, the negative of it corresponds directly to the model loss in Equation (7).

The second part of the ELBO corresponds to the maximum entropy RL objective. We assume a
uniform action prior, so the log p(at) term is a constant term that can be omitted when optimizing
this objective. We use message passing to optimize this objective, with messages defined as

Q(zt,at) = r(zt,at) + E
zt+1∼q(·|xt+1,zt,at)

[
V (zt+1)

]
(16)

V (zt) = log

∫
at

exp(Q(zt,at)) dat. (17)

Then, the maximum entropy RL objective can be expressed in terms of the messages as

E
(zτ+1:T ,aτ+1:T)∼q

[
T∑

t=τ+1

(
r(zt,at)− log π(at|x1:t,a1:t−1)

)]

= E
zτ+1∼q(·|xτ+1,zτ ,aτ)

[
E

aτ+1∼π(·|x1:τ+1,a1:τ)

[
Q(zτ+1,aτ+1)− log π(aτ+1|x1:τ+1,a1:τ)

]]
(18)

= E
aτ+1∼π(·|x1:τ+1,a1:τ)

[
E

zτ+1∼q(·|xτ+1,zτ ,aτ)

[
Q(zτ+1,aτ+1)

]
− log π(aτ+1|x1:τ+1,a1:τ)

]
(19)

= −DKL

(
π(aτ+1|x1:τ+1,a1:τ)

∥∥∥∥∥ exp
(
Ezτ+1∼q [Q(zτ+1,aτ+1)]

)
exp

(
Ezτ+1∼q [V (zτ+1)]

))
+ E

zτ+1∼q

[
V (zτ+1)

]
,

(20)

where the first equality is obtained from dynamic programming (see Levine [42] for details), the
second equality is obtain by swapping the order of the expectations, the third from the definition of
KL divergence, and Ezt∼q [V (zt)] is the normalization factor for Ezt∼q [Q(zt,at)] with respect to at.
Since the KL divergence term is minimized when its two arguments represent the same distribution,
the optimal policy is given by

π(at|x1:t,a1:t−1) = exp

(
E

zt∼q

[
Q(zt,at)− V (zt)

])
. (21)

That is, the optimal policy is optimal with respect to the expectation over the belief of the Q value of
the learned MDP. This is equivalent to the Q-MDP heuristic, which amounts to assuming that any
uncertainty in the belief is gone after the next action [43].

Noting that the KL divergence term is zero for the optimal action, the equality from Equation (18)
and Equation (20) can be used in Equation (16) to obtain

Q(zt,at) = r(zt,at) + E
zt+1∼q(·|xt+1,zt,at)

[
E

at+1∼π(·|x1:t+1,a1:t)

[
Q(zt+1,at+1)

− log π(at+1|x1:t+1,a1:t)
]]
. (22)

This equation corresponds to the Bellman backup with a soft maximization for the value function.

As mentioned in Section 5, our algorithm conditions the parametric policy in the history of observa-
tions and actions, which allows us to directly execute the policy without having to perform inference
on the latent state at run time. When using the parametric function approximators, the negative of
the maximum entropy RL objective, written as in Equation (18), corresponds to the policy loss in
Equation (10). Lastly, the Bellman backup of Equation (22) corresponds to the Bellman residual in
Equation (9) when approximated by a regression objective.

We showed that the SLAC objectives can be derived from applying variational inference in the
control as inference framework in the POMDP setting. This leads to the joint likelihood of the past

14

observations and future optimality variables, which we aim to optimize by maximizing the ELBO of
the log-likelihood. We decompose the ELBO into the model objective and the maximum entropy RL
objective. We express the latter in terms of messages of Q-functions, which in turn are learned by
minimizing the Bellman residual. These objectives lead to the model, policy, and critic losses.

B Latent Variable Factorization and Network Architectures

z21 · · · z2τ z2τ+1

z11 · · · z1τ z1τ+1

x1 xτ xτ+1

a1 aτ

Figure 7: Diagram of our full model. Solid arrows
show the generative model, dashed arrows show
the inference model. Rewards are not shown for
clarity.

In this section, we describe the architecture of our
sequential latent variable model. Motivated by the
recent success of autoregressive latent variables in
VAEs [49, 44], we factorize the latent variable zt
into two stochastic variables, z1

t and z2
t , as shown

in Figure 7. This factorization results in latent dis-
tributions that are more expressive, and it allows for
some parts of the prior and posterior distributions to
be shared. We found this design to provide a good
balance between ease of training and expressivity,
producing good reconstructions and generations and,
crucially, providing good representations for rein-
forcement learning. Note that the diagram in Figure 7
represents the Bayes net corresponding to our full model. However, since all of the latent variables
are stochastic, this visualization also presents the design of the computation graph. Inference over
the latent variables is performed using amortized variational inference, with all training done via
reparameterization. Hence, the computation graph can be deduced from the diagram by treating all
solid arrows as part of the generative model and all dashed arrows as part of approximate posterior.

The generative model consists of the following probability distributions:
z1

1 ∼ p(z1
1)

z2
1 ∼ pψ(z2

1|z1
1)

z1
t+1 ∼ pψ(z1

t+1|z2
t ,at)

z2
t+1 ∼ pψ(z2

t+1|z1
t+1, z

2
t ,at)

xt ∼ pψ(xt|z1
t , z

2
t)

rt ∼ pψ(rt|z1
t , z

2
t ,at, z

1
t+1, z

2
t+1).

The initial distribution p(z1
1) is a multivariate standard normal distribution N (0, I). All of the other

distributions are conditional and parameterized by neural networks with parameters ψ. The networks
for pψ(z2

1|z1
1), pψ(z1

t+1|z2
t ,at), pψ(z2

t+1|z1
t+1, z

2
t ,at), and pψ(rt|zt,at, zt+1) consist of two fully

connected layers, each with 256 hidden units, and a Gaussian output layer. The Gaussian layer is
defined such that it outputs a multivariate normal distribution with diagonal variance, where the mean
is the output of a linear layer and the diagonal standard deviation is the output of a fully connected
layer with softplus non-linearity. The pre-transformed standard deviation right before the softplus
non-linearity is gradient clipped element-wise by value to within [−10, 10] during the backward
pass. The observation model pψ(xt|zt) consists of 5 transposed convolutional layers (256 4 × 4,
128 3 × 3, 64 3 × 3, 32 3 × 3, and 3 5 × 5 filters, respectively, stride 2 each, except for the first
layer). The output variance for each image pixel is fixed to a constant σ2, which is a hyperparameter
σ2 ∈ {0.04, 0.1, 0.4} on DeepMind Control Suite and σ2 = 0.1 on OpenAI Gym.

The variational distribution q, also referred to as the inference model or the posterior, is represented
by the following factorization:

z1
1 ∼ qψ(z1

1|x1)

z2
1 ∼ pψ(z2

1|z1
1)

z1
t+1 ∼ qψ(z1

t+1|xt+1, z
2
t ,at)

z2
t+1 ∼ pψ(z2

t+1|z1
t+1, z

2
t ,at).

The networks representing the distributions qψ(z1
1|x1) and qψ(z1

t+1|xt+1, z
2
t ,at) both consist of 5

convolutional layers (32 5× 5, 64 3× 3, 128 3× 3, 256 3× 3, and 256 4× 4 filters, respectively,
stride 2 each, except for the last layer), 2 fully connected layers (256 units each), and a Gaussian
output layer. The parameters of the convolution layers are shared among both distributions.

15

Note that the variational distribution over z2
1 and z2

t+1 is intentionally chosen to exactly match the
generative model p, such that this term does not appear in the KL-divergence within the ELBO, and a
separate variational distribution is only learned over z1

1 and z1
t+1. In particular, the KL-divergence

over zt+1 simplifies to the KL-divergence over z1
t+1:

DKL(q(zt+1|xt+1, zt,at) ‖ p(zt+1|zt,at)) (23)

= E
zt+1∼q(·|xt+1,zt,at)

[
log q(zt+1|xt+1, zt,at)− log p(zt+1|zt,at)

]
(24)

= E
z1
t+1∼q(·|xt+1,z2

t ,at)

[
E

z2
t+1∼p(·|z1

t+1,z
2
t ,at)

[
log q(z1

t+1|xt+1, z
2
t ,at)

+ log p(z2
t+1|z1

t+1, z
2
t ,at)− log p(z1

t+1|z2
t ,at)− log p(z2

t+1|z1
t+1, z

2
t ,at)

]]
(25)

= E
z1
t+1∼q(·|xt+1,z2

t ,at)

[
log q(z1

t+1|xt+1, z
2
t ,at)− log p(z1

t+1|z2
t ,at)

]
(26)

= DKL

(
log q(z1

t+1|xt+1, z
2
t ,at)

∥∥ log p(z1
t+1|z2

t ,at)
)
. (27)

This intentional design decision simplifies the training process.

The latent variables have 32 and 256 dimensions, respectively, i.e. z1
t ∈ R32 and z2

t ∈ R256. For
the image observations, xt ∈ [0, 1]64×64×3. All the layers, except for the output layers, use leaky
ReLU non-linearities. Note that there are no deterministic recurrent connections in the network—all
networks are feedforward, and the temporal dependencies all flow through the stochastic units z1

t and
z2
t .

For the reinforcement learning process, we use a critic network Qθ consisting of 2 fully connected
layers (256 units each) and a linear output layer. The actor network πφ consists of 5 convolutional
layers, 2 fully connected layers (256 units each), a Gaussian layer, and a tanh bijector, which
constrains the actions to be in the bounded action space of [−1, 1]. The convolutional layers are
shared with the ones from the latent variable model, but the parameters of these layers are only
updated by the model objective and not by the actor objective.

C Training and Evaluation Details

Before the agent starts learning on the task, the model is first pretrained using a small amount of
random data. The DeepMind Control Suite experiments pretrains the model for 50000 iterations,
using random data from 10 episodes, and random actions that are sampled from a tanh-transformed
Gaussian distribution with zero mean and a scale of 2, i.e. a = tanh ã, where ã ∼ N (0, 22). The
OpenAI Gym experiments pretrains the model for 100000 iterations, using random data from 10000
agent steps, and uniformly distributed random actions. Note that this data is taken into account in our
plots.

The control portion of our algorithm uses the same hyperparameters as SAC [24], except for a smaller
replay buffer size of 100000 environment steps (instead of a million) due to the high memory usage
of image observations.

The network parameters are initialized using the default initialization distributions. In the case
of the DeepMind Control Suite experiments, the scale of the policy’s pre-transformed Gaussian
distribution is scaled by 2. This, as well as the initial tanh-transformed Gaussian policy, contributes to
trajectories with larger actions (i.e. closer to −1 and 1) at the beginning of training. This didn’t make
a difference for the DeepMind Control Suite tasks except for the walker task, where we observed that
this initialization resulted in less variance across trials and avoided trials that would otherwise get
stuck in local optima early in training.

All of the parameters are trained with the Adam optimizer [37], and we perform 1 gradient step per
environment step for DeepMind Control Suite and 3 gradient steps per environment step for OpenAI
Gym. The Q-function and policy parameters are trained with a learning rate of 0.0003 and a batch
size of 256. The model parameters are trained with a learning rate of 0.0001 and a batch size of 32.
We use fixed-length sequences of length 8, rather than all the past observations and actions within the
episode.

16

Benchmark Task Action
repeat

Original control
time step (s)

Effective control
time step (s)

DeepMind Control Suite

Cheetah, run 4 0.01 0.04
Walker, walk 2 0.025 0.05
Ball in cup, catch 4 0.02 0.08
Finger, spin 1 0.02 0.02
Cartpole, swingup 4 0.01 0.04
Reacher, easy 4 0.02 0.08

OpenAI Gym

HalfCheetah-v2 1 0.05 0.05
Walker2d-v2 4 0.008 0.032
Hopper-v2 2 0.008 0.016
Ant-v2 4 0.05 0.2

Table 1: Action repeats and the corresponding agent’s control time step used in our experiments.

We use action repeats for all the methods, except for D4PG for which we use the reported results from
prior work [52]. The number of environment steps reported in our plots correspond to the unmodified
steps of the benchmarks. Note that the methods that use action repeats only use a fraction of the
environment steps reported in our plots. For example, 1 million environment steps of the cheetah
task correspond to 250000 samples when using an action repeat of 4. The action repeats used in our
experiments are given in Table 1.

Unlike in prior work [24, 25], we use the same stochastic policy as both the behavioral and evaluation
policy since we found the deterministic greedy policy to be comparable or worse than the stochastic
policy.

Our plots show results over multiple trials (i.e. seeds), and each trial computes average returns from
10 evaluation episodes. We used 10 trials for the DeepMind Control Suite experiments and 5 trials
for the OpenAI Gym experiments. In the case of the DeepMind Control Suite experiments, we sweep
over σ2 ∈ {0.04, 0.1, 0.4} and plot the results corresponding to the hyperparameter σ2 that achieves
the best per-task average return across trials averaged over the first half a million environment steps.
In Figure 3, the best σ2 values are 0.1, 0.4, 0.04, and 0.1 for the cheetah run, walker walk, ball-in-cup
catch, and finger spin tasks, respectively.

D Ablation Experiments

We show results for the ablation experiments from Section 6.2 for additional environments. Figure 8
compares different design choices for the latent variable model. Figure 9 compares alternative choices
for the actor and critic inputs as either the observation-action history or the latent sample. Figure 10
compares the effect of pretraining the model before the agent starts learning on the task. Figure 11
compares the effect of the number of training updates per iteration. In addition, we investigate the
choice of the decoder output variance and using random cropping for data augmentation.

As in the main DeepMind Control Suite results, all the ablation experiments sweep over σ2 ∈
{0.04, 0.1, 0.4} and show results corresponding to the best per-task hyperparameter σ2, unless
otherwise specified. This ensures a fairer and more informative comparison across the ablated
methods.

Output variance of the pixel decoder. The output variance σ2 of the pixels in the image determines
the relative weighting between the reconstruction loss and the KL-divergence. The best weighting is
determined by the complexity of the dataset [3], which in our case is dependent on the task.

As shown in Figure 12, our model is sensitive to this hyperparameter, just as with any other VAE
model. Overall, a value of σ2 = 0.1 gives good results, except for the walker walk and ball-in-cup
catch tasks. The walker walk task benefits from a larger σ2 = 0.4 likely because the images are harder
to predict, a larger pixel area of the image changes over time, and the walker configuration varies
considerably within an episode and throughout learning (e.g. when the walker falls over and bounces
off the ground). On the other hand, the ball-in-cup catch task benefits from a smaller σ2 = 0.04
likely because fewer pixels change over time.

17

Random cropping. We next investigate the effect of using random cropping for data augmentation.
This augmentation consists of padding (replication) the 64 × 64 images by 4 pixels on each side,
resulting in 72× 72 images, and randomly sampling 64× 64 crops from them. For training, we use
these randomly translated images both as inputs to the model and the policy, whereas we use the
original images as targets for the reconstruction loss of the model. For evaluation, we always use the
original images as inputs to the policy.

As shown in Figure 13, this random cropping doesn’t improve the learning performance except for
the reacher easy task, in which this data augmentation results in faster learning and higher asymptotic
performance.

0.0 0.5 1.0 1.5 2.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Cheetah, run

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Walker, walk

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Ball in cup, catch

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Finger, spin

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

A
ve

ra
ge

R
et

u
rn

Cartpole, swingup

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Reacher, easy

VAE model

factored VAE model

filtering model

PlaNet model

fully deterministic model

partially stochastic model

fully stochastic model (ours)

Figure 8: Comparison of different design choices for the latent variable model. In all cases, we use the RL
framework of SLAC and only vary the choice of model for representation learning. These results show that
including temporal dependencies leads to the largest improvement in performance, followed by the autoregressive
latent variable factorization and using a fully stochastic model.

0.0 0.5 1.0 1.5 2.0

Environment Steps (Millions)

0

200

400

600

800

A
ve

ra
ge

R
et

u
rn

Cheetah, run

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Walker, walk

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Ball in cup, catch

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Finger, spin

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Cartpole, swingup

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Reacher, easy

history actor, history critic latent actor, history critic history actor, latent critic (ours) latent actor, latent critic

Figure 9: Comparison of alternative choices for the actor and critic inputs as either the observation-action
history or the latent sample. With the exception of the cartpole swingup and reacher easy tasks, the performance
is significantly worse when the critic input is the history instead of the latent sample, and indifferent to the choice
for the actor input.

18

0.0 0.5 1.0 1.5 2.0

Environment Steps (Millions)

0

200

400

600

800

A
ve

ra
ge

R
et

u
rn

Cheetah, run

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Walker, walk

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Ball in cup, catch

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Finger, spin

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

A
ve

ra
ge

R
et

u
rn

Cartpole, swingup

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Reacher, easy

no pretraining 10k steps 50k steps (ours) 100k steps

Figure 10: Comparison of the effect of pretraining the model before the agent starts learning on the task. These
results show that the agent benefits from the supervision signal of the model even before making any progress on
the task—little or no pretraining results in slower learning and, in some cases, worse asymptotic performance.

0.0 0.5 1.0 1.5 2.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Cheetah, run

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Walker, walk

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Ball in cup, catch

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Finger, spin

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Cartpole, swingup

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Reacher, easy

1 training step per iteration (ours) 2 training steps per iteration 3 training steps per iteration 4 training steps per iteration

Figure 11: Comparison of the effect of the number of training updates per iteration (i.e. training updates per
environment step). These results show that more training updates per iteration speeds up learning slightly, but
too many updates per iteration causes higher variance across trials and, in some cases, slightly worse asymptotic
performance.

19

0.0 0.5 1.0 1.5 2.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Cheetah, run

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Walker, walk

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Ball in cup, catch

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Finger, spin

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Cartpole, swingup

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Reacher, easy

σ2 = 0.004 σ2 = 0.01 σ2 = 0.04 σ2 = 0.1 σ2 = 0.4

Figure 12: Comparison of different choices for the output variance of the pixel decoder. Good performance is
achieved with σ2 = 0.1, except for the tasks walker walk (σ2 = 0.4) and ball-in-cup catch (σ2 = 0.04).

0.0 0.5 1.0 1.5 2.0

Environment Steps (Millions)

0

200

400

600

800

A
ve

ra
ge

R
et

u
rn

Cheetah, run

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Walker, walk

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Ball in cup, catch

0.0 0.1 0.2 0.3 0.4 0.5

Environment Steps (Millions)

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

u
rn

Finger, spin

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

200

400

600

800

A
ve

ra
ge

R
et

u
rn

Cartpole, swingup

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

0

200

400

600

800

1000

A
ve

ra
ge

R
et

u
rn

Reacher, easy

random crop, 4 pixels no random crop (ours)

Figure 13: Comparison of using random cropping for data augmentation of the input images. The random crop-
ping doesn’t improve the learning performance except for the reacher easy task, in which this data augmentation
results in faster learning and higher asymptotic performance.

E Predictions from the Latent Variable Model

We show example image samples from our learned sequential latent variable model in Figure 14 and
Figure 15. Samples from the posterior show the images xt as constructed by the decoder pψ(xt|zt),
using a sequence of latents zt that are encoded and sampled from the posteriors, qψ(z1|x1) and
qψ(zt+1|xt+1, zt,at). Samples from the prior, on the other hand, use a sequence of latents where
z1 is sampled from pψ(z1) and all remaining latents zt are from the propagation of the previous
latent state through the latent dynamics pψ(zt+1|zt,at). Note that these prior samples do not use any
image frames as inputs, and thus they do not correspond to any ground truth sequence. We also show
samples from the conditional prior, which is conditioned on the first image from the true sequence:
for this, the sampling procedure is the same as the prior, except that z1 is encoded and sampled from
the posterior qψ(z1|x1), rather than being sampled from pψ(z1). We notice that the generated images
samples can be sharper and more realistic by using a smaller variance for pψ(xt|zt) when training
the model, but at the expense of a representation that leads to lower returns. Finally, note that we do
not actually use the samples from the prior for training.

20

C
he

et
ah

,r
un

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

W
al

ke
r,

w
al

k

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

B
al

li
n

cu
p,

ca
tc

h

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

Fi
ng

er
,s

pi
n

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

Figure 14: Example image sequences for the four DeepMind Control Suite tasks (first rows), along with
corresponding posterior samples (reconstruction) from our model (second rows), and generated predictions from
the generative model (last two rows). The second to last row is conditioned on the first frame (i.e., the posterior
model is used for the first time step while the prior model is used for all subsequent steps), whereas the last row
is not conditioned on any ground truth images. Note that all of these sampled sequences are conditioned on
the same action sequence, and that our model produces highly realistic samples, even when predicting via the
generative model.

21

H
al

fC
he

et
ah

-v
2

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

W
al

ke
r2

d-
v2

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

H
op

pe
r-

v2

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

A
nt

-v
2

G
ro

un
d

Tr
ut

h
Po

st
er

io
r

Sa
m

pl
e

C
on

di
tio

na
l

Pr
io

rS
am

pl
e

Pr
io

r
Sa

m
pl

e

Figure 15: Example image sequences for the four OpenAI Gym tasks (first rows), along with corresponding
posterior samples (reconstruction) from our model (second rows), and generated predictions from the generative
model (last two rows). The second to last row is conditioned on the first frame (i.e., the posterior model is
used for the first time step while the prior model is used for all subsequent steps), whereas the last row is not
conditioned on any ground truth images. Note that all of these sampled sequences are conditioned on the same
action sequence, and that our model produces highly realistic samples, even when predicting via the generative
model.

22

