
10 Appendix

For functions f, g : X → R, we define

‖f − g‖∞ = sup
x∈X
|f(x)− g(x)| (3)

10.1 Proof of Theorem 5.1

Proof. Let W ∈ Rd×m, ‖W −W (0)‖2,∞ ≤ R
m2/3 , that is arbitrarily correlated with the initialization

a(0),W (0), b(0). It suffices to bound ‖fW − gW ‖∞, where ‖ · ‖∞ is defined in 3. From now on
we work with this W and we write f, g for fW , gW . Also, let ∆Wr = Wr − W

(0)
r , I(0)

x,r =

1{〈W (0)
r , x〉+ b

(0)
r ≥ 0} and Ix,r = 1{〈W (0)

r + ∆Wr, x〉+ b
(0)
r ≥ 0}. So, we write

f(x) =

m∑
r=1

a(0)
r

(
〈W (0)

r + ∆Wr, x〉+ b(0)
r

)
Ix,r

g(x) =

m∑
r=1

a(0)
r 〈∆Wr, x〉I(0)

x,r

We prove an elementary anti-concentration property of the Gaussian distribution.

Claim 10.1. Let u ∼ N (0, Id) and β ∼ N (0, 1), which are independent. For all x ∈ X and t ≥ 0,

Pr[|〈u, x〉+ β| ≤ t] = O(t).

Proof. We fix x and t and we have that 〈u, x〉+ β ∼ N (0, 2). Moreover,

Pr
z∼N (0,2)

[
|z| ≤ t

]
=

∫ t

−t

1√
2π
e−z

2/4dz ≤
√

2

π
t

For all x ∈ X , r ∈ [m] and t ∈ R+, we define

Λr(x, t) := 1
{
|〈W (0)

r , x〉+ b(0)
r | ≤ t

}
.

and observe that from Claim 10.1, after scaling by
√
m, we have that Pr[Λr(x, t) = 1] ≤ O(t

√
m).

We will prove that for every fixed x ∈ X , with high probability, |f(x)− g(x)| is small.

Lemma 10.2. For all x ∈ X , with probability at least 1− exp(−Ω(m1/3)),

|f(x)− g(x)| ≤ O(R2/m1/6) (4)

Proof. Let Ar := 1{Ix,r 6= I(0)
x,r}. We bound the size of

∑m
r=1Ar with the following claim.

Claim 10.3. For all x ∈ X ,with probability at least 1− exp
(
−Ω

(
m5/6

))
,

m∑
r=1

Ar ≤ O(R ·m5/6)

Proof. We fix an x ∈ X . Since ‖x‖2 = 1 and ‖∆W‖2,∞ ≤ R/m2/3, we have that

Ar ≤ 1
{
|〈W (0)

r , x〉+ b(0)
r | ≤ ‖∆Wr‖2

}
≤ Λr(x,R/m

2/3).
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But, as we mentioned previously, gaussian anti-concentration implies that

Pr
[
Λr(x,R/m

2/3) = 1
]
≤ O(R/m1/6)

Since for our fixed x, these are [m] independent Bernoulli random variables, standard concentration
implies that with probability at least 1− exp(−Ω(m5/6)),

m∑
r=1

Λr(x,R/m
2/3) ≤ O(Rm5/6).

The fact that
∑m
r=1Ar ≤

∑m
r=1 Λr(x,R/m

2/3) finishes the proof of the claim.

We decompose f , using the following three functions

Definition 10.4. We define f1, f2, f3 as follows:

f1(x) :=

m∑
r=1

a(0)
r 〈∆Wr, x〉Ix,r

f2(x) :=

m∑
r=1

a(0)
r (〈W (0)

r , x〉+ b(0)
r )I(0)

x,r

f3(x) :=

m∑
r=1

a(0)
r (〈W (0)

r , x〉+ b(0)
r )(Ix,r − I(0)

x,r)

It is easy to see that f(x) = f1(x)+f2(x)+f3(x). We proceed by showing that |f1(x)−g(x)|, |f2(x)|
and |f3(x)| are all small.

Claim 10.5. With probability at least 1− exp(−Ω(m5/6)),

|f1(x)− g(x)| ≤ O(R2/m1/6)

Proof. From the definition of Ar we have that |Ix,r − I(0)
x,r| ≤ Ar.

|f1(x)− g(x)| =

∣∣∣∣∣
m∑
r=1

ar〈∆Wr, x〉(Ix,r − I(0)
x,r)

∣∣∣∣∣
≤

m∑
r=1

|ar| · |〈∆Wr, x〉| ·Ar

≤ R

m

m∑
r=1

Ar

The last step follows from ‖∆W‖2,∞ ≤ R
m2/3 , ar ∼ {± 1

m1/3 }. From Claim 10.3, with probability
at least 1− exp(−Ω(m5/6)),

|f1(x)− g(x)| ≤ O(R2/m1/6)

Claim 10.6. With probability at least 1− exp(−Ω(m1/3)),

|f2(x)| ≤ O(1/m1/6)

Proof. From the definition of f2,

f2(x) =

m∑
r=1

a(0)
r σ(〈W (0)

r , x〉+ b(0)
r ).
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By definition of the ReLU function σ(·),
m∑
r=1

σ2(〈W (0)
r , x〉+ b(0)

r ) ≤
m∑
r=1

(〈W (0)
r , x〉+ b(0)

r )2

Also, note that for r ∈ [m], 〈W (0)
r , x〉 + b

(0)
r ∼ N (0, 2/m) and independent. From concentration

of the sum of independent Chi-Square random variables, we have that with probability at least
1− exp(−Ω(m)),

m∑
r=1

σ2(〈W (0)
r , x〉+ b(0)

r ) ≤
m∑
r=1

(〈W (0)
r , x〉+ b(0)

r )2 (5)

= O(1) (6)

Now, because of independence, using Hoeffding’s concentration inequality, for some large constant
c > 0,

Pr

[∣∣∣∣∣
m∑
r=1

a(0)
r σ(〈W (0)

r , x〉+ b(0)
r )

∣∣∣∣∣ ≥ c

m1/6

∣∣∣∣∣W (0), b(0)

]

≤ exp

−Ω

 m−1/3

1
m2/3

∑m
r=1 σ

2
(
〈W (0)

r , x〉+ b
(0)
r

)


and using the previous bound we get that overall, with probability at least 1− exp(−Ω(m1/3)),

|f2(x)| ≤ O(1/m1/6)

Claim 10.7. With probability at least 1− exp(−Ω(m5/6)),

|f3(x)| ≤ O(R2/m1/6)

Proof.

|f3(x)| =
∣∣∣ m∑
r=1

a(0)
r (〈W (0)

r , x〉+ b(0)
r )(Ix,r − I(0)

x,r)
∣∣∣

≤
m∑
r=1

|a(0)
r |
∣∣∣〈W (0)

r , x〉+ b(0)
r

∣∣∣ ∣∣∣Ix,r − I(0)
x,r

∣∣∣
≤ 1

m1/3

m∑
r=1

∣∣∣〈W (0)
r , x〉+ b(0)

r

∣∣∣ ∣∣∣Ix,r − I(0)
x,r

∣∣∣
We use that ∣∣∣Ix,r − I(0)

x,r

∣∣∣ ≤ Ar ≤ Λr(x,R/m
2/3).

Now, remember that Λr(x,R/m
2/3) 6= 0 ⇐⇒

∣∣∣〈W (0)
r , x〉+ b

(0)
r

∣∣∣ ≤ R/m2/3, so∣∣∣〈W (0)
r , x〉+ b(0)

r

∣∣∣ ∣∣∣Ix,r − I(0)
x,r

∣∣∣ ≤ ∣∣∣〈W (0)
r , x〉+ b(0)

r

∣∣∣Λr(x,R/m2/3) ≤ R

m2/3
Λr(x,R/m

2/3)

Thus,

|f3(x)| ≤ R

m

m∑
r=1

Λr(x,R/m
2/3).

But, as we previously showed, with probability at least 1− exp(−Ω(m5/6)),
m∑
r=1

Λr(x,R/m
2/3) ≤ O(Rm5/6).
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Thus, with probability at least 1− exp(−Ω(m5/6)),

|f3(x)| = O(R2/m1/6).

We are ready to finish the proof of the lemma 4. Aggregating these three claims with a union bound,
we have that for every x ∈ X , with probability at least 1− exp(−Ω(m5/6))− exp(−Ω(m1/3)) =
1− exp(−Ω(m1/3)), we have

|f(x)− g(x)| ≤ |f1(x)− g(x)|+ |f2(x)|+ |f3(x)| ≤ O(R2/m1/6) (7)

What is left to do is to "union bound" over allX . Of course, there is the problem thatX is uncountable.
So, we first do a union bound over a very fine-grained net of X and then argue about the change of f
and g when we slightly change the input x.

Let X1 be a maximal 1
m -net of X . It is well-known that |X1| ≤

(
1
m

)O(d)
. From lemma 4, by applying

a union bound over X1, we have that for m ≥ cd3, where c is a large constant, with probability at
least

1− exp(O(d logm)) · exp(−Ω(m1/3)) = 1− exp(−Ω(m1/3)),

we have

∀x ∈ X1, |f(x)− g(x)| ≤ O(R2/m1/6) (8)

The final step is the perturbation analysis. We show the following lemma, that applies for fixed inputs.

Lemma 10.8. For all x ∈ X1, with probability at least 1− exp(−Ω(m1/2)), for all v ∈ Rd, such
that x+ v ∈ X and ‖v‖2 ≤ 1

m , we have

|f(x+ v)− f(x)| ≤ O(1/m1/3 +R/m) (9)

and

|g(x+ v)− g(x)| ≤ O(R/m1/2). (10)

With this lemma at hand, we can do a union bound over X1 and conclude that with probability at
least 1 − exp(O(d logm)) exp

(
−Ω

(
m1/2

))
= 1 − exp

(
−Ω

(
m1/2

))
(since m ≥ cd3 and c is a

large constant), we have that for all x ∈ X1 and v ∈ Rd, such that x + v ∈ X and ‖v‖2 ≤ 1
m , the

perturbation guarantees 9 and 10 hold. Combining this with 8 and applying a union bound, we have
that with probability at least 1− exp(−Ω(m1/3))− exp

(
−Ω

(
m1/2

))
= 1− exp(−Ω(m1/3)),

‖f − g‖∞ ≤ O(R2/m1/6 + 1/m1/3 +R/m+R/m1/2) = O(R2/m1/6)

and this concludes the proof of theorem 5.1.

It remains to prove the Lemma 10.8.
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Let v be a small perturbation of x with the properties stated in the lemma, that can depend arbitrarily
on a(0),W (0), b(0).

|f(x+ v)− f(x)| =
∣∣∣ m∑
r=1

a(0)
r

(
σ
(
〈W (0)

r + ∆Wr, x+ v〉+ b(0)
r

)
− σ

(
〈W (0)

r + ∆Wr, x〉+ b(0)
r

))∣∣∣
≤

m∑
r=1

|a(0)
r |
∣∣∣〈W (0)

r + ∆Wr, v〉
∣∣∣

≤ 1

m

m∑
r=1

|a(0)
r |‖W (0)

r + ∆Wr‖2

=
1

m1+1/3

m∑
r=1

‖W (0)
r + ∆Wr‖2

≤ 1

m4/3

m∑
r=1

‖W (0)
r ‖2 +

1

m4/3

m∑
r=1

‖∆Wr‖2

≤ 1

m4/3

m∑
r=1

‖W (0)
r ‖2 +

R

m

We show the following claim, which concludes the proof of 9.

Claim 10.9. With probability at least 1− exp(−Ω(m)), ‖W (0)‖2,∞ ≤ O(1).

Proof. From concentration of sum of independent Chi-Square random variables, we have that for all
r, with probability at least 1 − exp(−Ω(m2/d)), ‖W (0)

r ‖22 ≤ O(1). Since m ≥ d, a union bound
over all r finishes the proof of the claim.

We now argue about g.

|g(x+ v)− g(x)|

=

∣∣∣∣∣
m∑
r=1

a(0)
r 〈∆Wr, x+ v〉1{〈W (0)

r , x+ v〉+ b(0)
r ≥ 0} −

m∑
r=1

a(0)
r 〈∆Wr, x〉1{〈W (0)

r , x〉+ b(0)
r ≥ 0}

∣∣∣∣∣
≤ 1

m

m∑
r=1

|a(0)
r |‖∆Wr‖2 +

m∑
r=1

|a(0)
r | |〈∆Wr, x〉|

∣∣1{〈W (0)
r , x+ v〉+ b(0)

r ≥ 0} − 1{〈W (0)
r , x〉+ b(0)

r ≥ 0}
∣∣

≤ R

m
+
R

m

m∑
r=1

∣∣∣1{〈W (0)
r , x+ v〉+ b(0)

r ≥ 0} − 1{〈W (0)
r , x〉+ b(0)

r ≥ 0}
∣∣∣.

About the last sum, from Claim 10.9, ‖W (0)‖2,∞ ≤ O(1) and in this case,

m∑
r=1

∣∣∣1{〈W (0)
r , x+ v〉+ b(0)

r ≥ 0} − 1{〈W (0)
r , x〉+ b(0)

r ≥ 0
} ∣∣∣ ≤ m∑

r=1

Λr (x,O(1/m))

From Claim 10.1, we have that Λr(x,O(1/m)) = 1 with probability at most O
(

1
m1/2

)
. Since x is

fixed, these are m independent Bernoulli random variables and from standard concentration, with
probability at least 1− exp(−Ω(

√
m)),

m∑
r=1

Λr(x,O(1/m)) ≤ O(
√
m).

This finishes the proof of 10.
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10.2 Proof of Theorem 5.2

Proof. We will give the values of T and η, later in the proof. For simplicity, we use the following
shorthand notations to denote various distances.

Dmax := maxt∈[T ] ‖W (t) −W (0)‖2,∞

DW∗ := ‖W ∗ −W (0)‖2,∞

By condition, we know DW∗ = O
(

R
m2/3

)
.

Even though in Algorithm 1 the parameters W are updated using the gradients of the real net, in this
proof we consider the pseudo-net as the object being optimized. Thus we need to relate the real net
gradients to the pseudo-net gradients. For ease of presentation, we define the following convenient
notations for the two notions of gradients:

real net gradient∇(t) := ∇WL(f(W (t)), S(t))

pseudo-net gradient ∇̂(t) := ∇WL(g(W (t)), S(t))

We write both gradients as matrices in Rd×m In fact, by Lemma 10.10, we know that they are coupled
with high probability, as long as W (t) stays close to initialization (i.e., Dmax ≤ m−15/24).

‖∇̂(t) −∇(t)‖2,1 ≤ O
(
nm13/24

)
Remark. We assume for now Dmax ≤ m−15/24 is true and in the end we will set proper values for
T, η and m to make sure this is indeed the case.

Using the fact that the loss is 1-Lipschitz, we bound the gradient size:

‖∇(t)
r ‖2 ≤ |ar|

(
1

n

n∑
i=1

σ′
(
〈W (t)

r , xi〉+ b(0)
r

)
‖x̃i‖2

)
≤ 1

m1/3
(11)

Due to the linearity of g with respect to W , the loss L(g(W ), S) is convex in W . For two matrices
A,B with the same dimensions, we write their inner product as 〈A,B, :〉 = tr(ATB).

L(g(W (t)), S(t))− L(g(W ∗), S(t))

≤ 〈∇(t),W (t) −W ∗〉+ 〈∇̂(t) −∇(t),W (t) −W ∗〉
≤ 〈∇(t),W (t) −W ∗〉︸ ︷︷ ︸

:=α(t)

+ ‖∇̂(t) −∇(t)‖2,1‖W (t) −W ∗‖2,∞︸ ︷︷ ︸
:=β(t)

We deal with a(t) and b(t) terms separately. As for the former, we use the standard online gradient
descent proof technique:

‖W (t+1) −W ∗‖2F = ‖W (t) − η∇(t) −W ∗‖2F = ‖W (t) −W ∗‖2F − 2ηα(t) + η2‖∇(t)‖2F
So, by rearranging we get

α
(t) ≤ η

2
‖∇(t)‖2F +

‖W (t) −W ∗‖2F − ‖W (t+1) −W ∗‖2F
2η

and then sum over t,

T∑
t=1

α
(t) ≤ η

2

T∑
t=1

‖∇(t)‖2F +
‖W (0) −W ∗‖2F − ‖W (T+1) −W ∗‖2F

2η
≤ ηm1/3

2
T +

mD2
W∗

2η

where we used the fact ‖W ∗ −W (0)‖2F ≤ m · ‖W ∗ −W (0)‖2,∞ = mD2
W∗ as well as ‖∇(t)‖2F ≤∑m

r=1 ‖∇
(t)
r ‖22 ≤ m1/3.
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For the β(t)’s, we first invoke Lemma 10.10 and then apply triangle inequality:

β
(t) ≤ O

(
nm13/24

)
‖W (t) −W ∗‖2,∞ ≤ O

(
nm13/24

)
(Dmax +DW∗)

Furthermore we can bound the size of Dmax using the bound on gradients, i.e. ‖∇(t)
r ‖2 ≤ m−1/3

using inequality 11.

Dmax = max
t∈[T ]

‖W (0) −W (t)‖2,∞ ≤
T∑
t=1

η max
r∈[m]

‖∇(t)
r ‖2 ≤

ηT

m1/3

Putting it together with the conditionDW∗ = O
(

R
m2/3

)
that we already have, we obtain the following:

T∑
t=1

L(g(W (t)), S(t))−
T∑
t=1

L(g(W ∗), S(t))

≤
T∑
t=1

α
(t) +

T∑
t=1

β
(t)

≤ O(1)

(
m1/3ηT +

R2

m1/3η
+ ηTnm5/24 +

ηRTn

m1/8

)
We then have

1

T

T∑
t=1

L(g(W (t)), S(t))− 1

T

T∑
t=1

L(g(W ∗), S(t)) ≤ O(ε)

if we set the hyper-parameters T,m, η to be the following:

T = Θ(ε−2R2),

m ≥ Ω

(
max

{
n8,
(
Rn
ε

)24/11
,
(
R2

ε

)24
})

,

η = R
m1/3

√
T

= Θ(m−1/3ε)

Note the the requirement on m is to satisfy ηTnm1/4 + ηRTn
m1/12 ≤ O(ε), Dmax ≤ m−15/24 as well as

to meet the condition for invoking Theorem 5.1:

∀t ∈ [T ], sup
x∈X
|fW (t)(x)− gW (t)(x)| ≤ O(ε)

Thus, we get

1

T

T∑
t=1

L(fW (t) , S(t))− 1

T

T∑
t=1

L(fW∗ , S(t)) ≤ c · ε

where c > 0 is a large constant. Now, observe that L(fW (t) , S(t)) = LA(fW (t)) and L(fW∗ , S(t)) ≤
LA∗(fW∗). The proof we presented holds for all ε > 0, so by using ε

c in place of ε, we get the desired
result.

10.3 Gradient coupling

Lemma 10.10. With probability at least 1 − exp(−Ω(m1/3)), for all iterations t that ‖W (t) −
W (0)‖2,∞ ≤ O

(
m−15/24

)
, we have

‖∇̂(t) −∇(t)‖2,1 ≤ O
(
nm13/24

)
Proof. We first prove the following claim.
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Claim 10.11. With probability probability at least 1− exp(−Ω(m1/3)) over the initialization, for
all subsets {x1, . . . , xn} ⊆ X with n points and any ‖∆Wr‖2 ≤ m−15/24,
m∑
r=1

1
{
∃i ∈ [n], sgn

(
〈W (0)

r + ∆Wr, xi〉+ b(0)
r

)
6= sgn

(
〈W (0)

r , xi〉+ b(0)
r ≥ 0

)}
≤ O

(
nm7/8

)
Proof. We first prove the above result for a fixed set of n points, and then apply a union bound over
all possible such sets. For a fixed set of n points {x1, . . . , xn} ⊆ X , we define

Br := 1
{
∃i ∈ [n], sgn

(
〈W (t)

r , xi〉+ b(0)
r

)
6= sgn

(
〈W (0)

r , xi〉+ b(0)
r ≥ 0

)}
and the goal is to bound the size of

∑m
r=1Br.

We know by Claim 10.1 that for each xi we have

Pr
[
|〈W 0

r , xi〉+ b(0)
r | ≤ m−15/24

]
≤ O

(
m−1/8

)
With a union bound over the indices i ∈ [n], we have

Pr
[
∃i ∈ [n], |〈W 0

r , xi〉+ b(0)
r | ≤ m−15/24

]
≤ O

(
nm−1/8

)
which implies

Pr [Br = 1] ≤ Pr
[
∃i ∈ [n], |〈W 0

r , xi〉+ b(0)
r | ≤ m−15/24

]
≤ O

(
nm−1/8

)
Because xi’s are fixed for now, Br’s are m independent Bernoulli random variables. Standard
concentration implies that with probability at least 1− exp(−Ω(nm7/8))

m∑
r=1

Br ≤ O
(
nm7/8

)
As a last step, we take a union bound over a 1

m -net over product space ⊗nX which amplifies the
failure probability negligibly by only exp(O(nd logm)) compared to exp(−Ω(m1/3)) (for large
enough m).

Now, we are ready to finish the proof of the coupling lemma. Remember that Dmax = ‖W (t) −
W (0)‖2,∞. By Claim 10.11, with probability at least 1− exp(−Ω(m1/3)), all t,

m∑
r=1

1
{
∇(t)
r = ∇̂(t)

r

}
≤ O

(
nm7/8

)

For the indices r’s that∇(t)
r 6= ∇̂(t)

r , we have

‖∇̂(t)
r −∇(t)

r ‖2 ≤ |ar|
1

n

n∑
i=1

∣∣∣1{〈W (t)
r , x̃i〉+ b(0)

r ≥ 0} − 1{〈W (0)
r , xi〉+ b(0)

r ≥ 0}
∣∣∣ ‖x̃i‖2

≤ 1

m1/3

1

n

n∑
i=1

∣∣∣1{〈W (t)
r , x̃i〉+ b(0)

r ≥ 0} − 1{〈W (0)
r , xi〉+ b(0)

r ≥ 0}
∣∣∣

≤ 1

m1/3

Thus, we conclude

‖∇̂(t) −∇(t)‖2,1 =

m∑
r=1

‖∇̂(t)
r −∇(t)

r ‖2 ≤
1

m1/3
·O
(
nm7/8

)
= O

(
nm13/24

)
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10.4 Proof of lemma 6.4

Let

pk(z) := z

k∑
i=0

(1− z2)i
i∏

j=1

2j − 1

2j
(12)

Lemma 10.12 (Corollary 5.4 in [13]). If z ∈ [−1, 1] with |z| ≥ η > 0 and k = 1
η2 ln (2/ε1), then

| sgn(z)− pk(z)| ≤ ε1/2. Moreover, pk has degree 2k + 1.

We will now compress pk using Chebyshev polynomials. Recall that the Chebyshev polynomials of
the first kind are defined as T0(z) = 1, T1(z) = z and

Tk+1(z) = zTk(z)− Tk−1(z) (13)

The definition is also extended for negative k as T−k(z) = Tk(z).

We will use the closed-form formula of Tk(z):

Tk(z) =

bn/2c∑
i=0

(
n

2i

)
(z2 − 1)izk−2i (14)

We bound the magnitude of the coefficients of the Chebyshev polynomials via the following proposi-
tion.

Proposition 10.13. The magnitude of the coefficients of Tk(z) is at most 22k.

Proof. From the closed-form formula in 14, we have that

Tk(z) =

bk/2c∑
i=0

(
k

2i

) i∑
j=0

(
i

j

)
z2j(−1)i−jzk−2i =

bk/2c∑
i=0

i∑
j=0

(
k

2i

)(
i

j

)
(−1)i−jzk+2j−2i

The monomials that appear in the above polynomial are the zk−2u, for u = 0, . . . , bk/2c. The
magnitude of the coefficient of zk−2u is at most

∣∣∣∣∣∣
bk/2c∑
i=u

(
k

2i

)(
i

i− u

)
(−1)u

∣∣∣∣∣∣ ≤
bk/2c∑
i=u

(
k

2i

)(
i

u

)
≤

k∑
i=0

(
k

i

)(
k

bk/2c

)
≤ 22k

Now, let s be a positive integer, Y1, . . . , Ys iid ±1 random variables and Ds :=
∑s
i=1 Yi. Also, let

D ≥ 0. We define

ps,D(z) := EY1,...,Ys [TDs(z)1{|Ds| ≤ D}] (15)

A straightforward consequence of the proposition 10.13 is the following corollary.

Corollary 10.14. ps,D(z) has degree at most D and its coefficients have magnitude at most 22D.

We will use the following theorem from [23].

Theorem 10.15 (Theorem 3.3 from [23]). For all positive integers s,D and for all z ∈ [−1, 1],

|ps,D(z)− zs| ≤ 2e−D
2/(2s) (16)
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Now, we are ready to compress pk. Let p̃k(z) :=
∑k
i=0 z

(∏i
j=1

2j−1
2j

)
pi,D(1 − z2). Also, let

D =
√

2k ln(4k/ε1).

From the above theorem, we have that for all z ∈ [−1, 1],

|p̃k(z)− pk(z)| =

∣∣∣∣∣∣
k∑
i=0

z

 i∏
j=1

2j − 1

2j

(pi,D(1− z2)− (1− z2)i
)∣∣∣∣∣∣ ≤

k∑
i=0

∣∣pi,D(1− z2)− (1− z2)i
∣∣

(17)

≤
k∑
i=0

2e−D
2/(2i) ≤ ε1/2 (18)

Combining with lemma 10.12, we get that for k = 1
η2 ln(2/ε1), for all z ∈ [−1, 1], | sgn(z) −

p̃k(z)| ≤ ε1. Let pε(z) := p̃k(z). We already know that the degree of pε(z) is at most D =

1
η

√
2 ln(2/ε1) ln

(
4 ln(2/ε1)

η2ε1

)
≤ 3

η ln(2/(ηε1)).

It remains to bound the magnitude of its coefficients. Let pi,D(z) =
∑D
j=0 αjz

j . From Corol-
lary 10.14, we have that αmax := maxj |αj | ≤ 22D. Now,

pi,D(1− z2) =

D∑
j=0

αj(1− z2)j =

D∑
j=0

αj

j∑
u=0

(
j

u

)
(−1)uz2u

The magnitude of the coefficient of z2u is at most (D+ 1) ·αmax ·
(
D
u

)
≤ (D+ 1)23D ≤ 24D, since

D ≥ 1.4.

10.5 Proof of Lemma 6.5

We will first prove that we can approximate the individual components of f∗ via pseudo-networks
and then we aggregate these to form a large pseudo-network that approximates f∗.

Lemma 10.16. Let i ∈ [n], q : R → R univariate polynomial and ε3 ∈
(

0, 1
C(q)

)
. Let m̃ ≥

c1
d
ε23
C2(q, ε3), for a large constant c1. For all r ∈ [m̃], U (0)

r ∼ N (0, Id), β(0)
r ∼ N (0, 1), α(0)

r ∼
unif{± 1

m1/3 } and all these random variables and vectors are independent. With probability at least

1−exp
(
−Ω

(√
m̃
))

, there exists a matrix ∆W (i) ∈ Rd×m̃ with ‖∆W (i)‖2,∞ ≤ O
(
m1/3 C(q,ε3)

m̃

)
such that

∀x ∈ X ,∣∣∣∣∣
m̃∑
r=1

α(0)
r 〈∆W (i)

r , x〉1{〈U (0)
r , x〉+ β(0)

r ≥ 0} − yiq(〈xi, x〉)

∣∣∣∣∣ ≤ 3ε3

With this Lemma at hand, we can finish the proof of Lemma 6.5. We apply it for all i ∈ [n], with
q(z) being the polynomial that is given to us by Lemma 6.2. We now that the degree of q is at
most D and the size of its coefficients is at most c2 1

γ 26D where D = 24
γ ln(48n/ε) and c2 > 0

is a constant. Using this information about q, we can bound its complexities C(q) and C (q, ε3),
defined in 6.1, where ε3 will be set after we bound C(q) (since from Lemma 10.16 ε3 < 1/C(q)).
About C(q), we directly have C(q) ≤ c · c2

∑D
j=0(j + 1)1.75 1

γ 26D < c · c2 (D+1)2.75

γ 26D. We set

ε3 =
(
c · c2 (D+1)2.75

γ 26D
)−1

. About C (q, ε3), we have

20



C (q, ε3) ≤ c2
D∑
j=0

cj
(

1 +
√

ln(1/ε3)/j
)j 1

γ
24D

≤ O(1)
1

γ
24D(D + 1)cDe

√
D ln 1/ε3

= O(1)
1

γ
24D(D + 1)cDe

√
D ln

(
c·c2 (D+1)2.75

γ 24D
)

≤ 2O(D) (19)

We specify now how we are performing the n applications of the lemma, in terms of the choice of m̃
and the random variables. Let B̃ := dc1 d

ε23
C2(q, ε3)e. We use the fact that for large enough constant

c, m ≥ d
(
n
ε

)c/γ ≥ nB̃. For i = 1, · · · , n − 1 we apply the lemma 10.16 with m̃ = bmn c and for
i = n with m̃ = m − (n − 1)bmn c. Also, for the application of the lemma for the ith datapoint,
we use as U (0)

r the
√
mW

(0)
(i−1)bmn c+r

, as β(0)
r the

√
mb

(0)
(i−1)bmn c+r

and as α(0)
r the a(0)

(i−1)bmn c+r
.

We apply a union bound and we have that with probability at least 1 − n exp(−Ω(
√
m/n)) =

1− exp(−Ω(
√
m/n)), from the n applications of the lemma, we get these ∆W (i) and we construct

∆W =
[
∆W (1), · · · ,∆W (n)

]
∈ Rd×m and we have that

‖∆W‖2,∞ ≤ O
(
m1/3C (q, ε3)

bmn c

)
≤ O

(
n C (q, ε3)

m2/3

)
≤ (n/ε)

O(γ−1)

m2/3

and

∀x ∈ X ,

∣∣∣∣∣
m∑
r=1

a(0)
r 〈∆Wr, x〉1{〈W (0)

r , x〉+ b(0)
r ≥ 0} −

n∑
i=1

yiq(〈xi, x〉)

∣∣∣∣∣ ≤ nε3 ≤ ε/3
where the last inequality is a crude bound, but sufficient for our purposes.

We proceed with the proof of Lemma 10.16

Proof. We apply Lemma 6.6 using φ(z) = yiq(z) and ε1 = ε3. Observe that since |yi| ≤ O(1), the
complexities of φ and q are the same, up to constants. Thus, we have that there exists a function
h : R2 → [−C (q, ε3) ,C (q, ε3)] such that

∀x ∈ X ,
∣∣∣ E
u∼N (0,Id),β∼N (0,1)

[1{〈u, x〉+ β ≥ 0} h(〈xi, u〉, β)]− yiq(〈xi, x〉)
∣∣∣ ≤ ε3 (20)

Now, we fix an x ∈ X . From Hoeffding’s inequality, we get that with probability at least 1 −
exp

(
−Ω

(
m̃ε23

C2(q,ε3)

))
,

∣∣∣∣∣ 1

m̃

m̃∑
r=1

1{〈U (0)
r , x〉+ β(0)

r ≥ 0}h
(
〈xi, U (0)

r 〉, β(0)
r

)
− E
u∼N (0,Id),β∼N (0,1)

[1{〈u, x〉+ β ≥ 0} h(〈xi, u〉, β)]

∣∣∣∣∣ ≤ ε3
By setting ∆W

(i)
r = 1

α
(0)
r

2h(〈xi,U(0)
r 〉,β

(0)
r )

m̃ ed (where ed = (0, 0, . . . , 0, 1) ∈ Rd) we have that

‖∆W (i)‖2,∞ ≤ O
(
m1/3 C(q,ε3)

m̃

)
and since xd = 1/2 for all x ∈ X , we have that for every x ∈ X ,

with probability at least 1− exp
(
−Ω

(
m̃ε23

C2(q,ε3)

))
,∣∣∣∣∣

m̃∑
r=1

1{〈U (0)
r , x〉+ β(0)

r ≥ 0}α(0)
r 〈∆W (i)

r , x〉 − E
u∼N (0,Id),β∼N (0,1)

[1{〈u, x〉+ β ≥ 0} h(〈xi, u〉, β)]

∣∣∣∣∣ ≤ ε3
(21)
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The fact that 21 holds with overwhelming probability, enables us to take a union bound over a
fine-grained net of X . Let c > 0 be a sufficiently large constant (e.g. 10) and let X1 be a maximal

1
m̃c -net of X . It is well-known that |X1| ≤

(
1
m̃

)O(d)
. By applying a union bound over X1 for 21, we

have that for m̃ ≥ c1 d
ε23
C2(q, ε3)) (c1 is a large constant),

Pr

[
∀x ∈ X1,

∣∣∣∣∣
m̃∑
r=1

1{〈U (0)
r , x〉+ β(0)

r ≥ 0}α(0)
r 〈∆W (i)

r , x〉 (22)

− E
u∼N (0,Id),β∼N (0,1)

[1{〈u, x〉+ β ≥ 0} h(〈xi, u〉, β)]

∣∣∣∣∣ > ε3

]

≤ exp (O(d logm)) exp

(
−Ω

(
m̃ε23

C2(q, ε3)

))
(23)

= exp

(
−Ω

(
m̃ε23

C2(q, ε3)

))
(24)

The final step is to show that with overwhelming probability, for all x ∈ X1, if we perturb x by at
most 1

m̃c in `2, then the LHS of 21 changes very slightly. Because c can be chosen to be as large
constant as we want, this "stability" requirement is very mild and also straightforward to prove. We
proceed with a formal proof.

We will show the stability property for a fixed x ∈ X and then we will do a union bound. Let v ∈ Rd
such that x + v ∈ X and ‖v‖2 ≤ 1

m̃c . This v can be arbitrarily correlated with the randomness
{U (0)

r , β
(0)
r , α

(0)
r }m̃r=1. We will show the following claim

Claim 10.17. For all x ∈ X1, with probability at least 1− exp(−Ω(
√
m̃)),

D1 :=

∣∣∣∣∣
m̃∑
r=1

1{〈U (0)
r , x+ v〉+ β(0)

r ≥ 0}α(0)
r 〈∆W (i)

r , x+ v〉 −
m̃∑
r=1

1{〈U (0)
r , x〉+ β(0)

r ≥ 0}α(0)
r 〈∆W (i)

r , x〉

∣∣∣∣∣
≤ O

(
C (q, ε3)√

m̃

)
and

D2 :=
∣∣∣ E
u∼N (0,Id),β∼N (0,1)

[1{〈u, x+ v〉+ β ≥ 0} h(〈xi, u〉, β)]

− E
u∼N (0,Id),β∼N (0,1)

[1{〈u, x〉+ β ≥ 0} h(〈xi, u〉, β)]
∣∣∣

≤ O
(
C (q, ε3)√

m̃

)
With this claim at hand we can finish the proof of the Lemma 10.16. Indeed, combining 20, 22 and
the above claim, we have that with probability at least 1− exp

(
−Ω

(
m̃ε23

C2(q,ε3)

))
− exp(−Ω(

√
m̃)),

∀x ∈ X ,∣∣∣∣∣
m̃∑
r=1

α(0)
r 〈∆W (i)

r , x〉1{〈U (0)
r , x〉+ β(0)

r ≥ 0} − yiq(〈xi, x〉)

∣∣∣∣∣ ≤ O
(
C (q, ε3)√

m̃

)
+ 2ε3

since m̃ ≥ c1 d
ε23
C2(q, ε3) for a large constant c1, we are done.

It remains to prove the Claim 10.17.

Proof. We start with bounding D1. Observe that from the way we constructed ∆W (i), we have
that for j ≤ d − 1, ∆W

(i)
rj = 0. At the same time, vd = 0, so 〈∆W (i)

r , v〉 = 0. Using that

‖∆W (i)‖2,∞ ≤ O
(
m1/3 C(q,ε3)

m̃

)
and |α(0)

r | = 1
m1/3 , we get that
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D1 ≤ O
(
C (q, ε3)

m̃

) m̃∑
r=1

∣∣∣1{〈U (0)
r , x+ v〉+ β(0)

r ≥ 0} − 1{〈U (0)
r , x〉+ β(0)

r ≥ 0}
∣∣∣

≤ O
(
C (q, ε3)

m̃

) m̃∑
r=1

1
{

sgn(〈U (0)
r , x+ v〉+ β(0)

r ) 6= sgn(〈U (0)
r , x〉+ β(0)

r )
}

≤ O
(
C (q, ε3)

m̃

) m̃∑
r=1

(
1

{
|〈U (0)

r , x〉+ β(0)
r | ≤

1√
m̃

}
+ 1

{
‖U (0)

r ‖2 > c2
√
m̃
})

.

where c2 can be chosen to be as large as we want (but still a constant) as long as we choose the
constant c, that appears at the construction of the net, to be sufficiently large. We prove the following
claim, whose proof is almost identical to the proof of Claim 10.18, but we provide it for completeness.

Claim 10.18. With probability at least 1− exp(−Ω(m̃)), for all r ∈ [m̃], ‖U (0)
r ‖2 ≤ O(

√
m̃).

Proof. From concentration of sum of independent Chi-Square random variables, we have that for all
r, with probability at least 1 − exp(−Ω(m̃2/d)), ‖U (0)

r ‖22 ≤ O(m̃). Since m̃ ≥ d, a union bound
over all r finishes the proof of the claim.

Thus, by appropriately choosing c2, we get that with probability at least 1− exp(−Ω(m̃)),

D1 ≤ O
(
C (q, ε3)

m̃

) m̃∑
r=1

1

{
|〈U (0)

r , x〉+ β(0)
r | ≤

1√
m̃

}
Now, 1

{
|〈U (0)

r , x〉+ β
(0)
r | ≤ 1√

m̃

}
are m̃ independent Bernoulli random variables and because of

Claim 10.1, the corresponding probability is at most O
(

1√
m̃

)
. Thus, from Chernoff bounds we get

that with probability at least 1− exp(−Ω(
√
m̃)),

∑m̃
r=1 1

{
|〈U (0)

r , x〉+ β
(0)
r | ≤ 1√

m̃

}
≤ O(

√
m̃).

By applying a union bound, we get that with probability at least 1−exp(−Ω(
√
m̃))−exp(−Ω(m̃)) =

1− exp(−Ω(
√
m̃)), D1 ≤ O

(
C(q,ε3)√

m̃

)
.

We proceed with bounding D2. Since |h(·)| ≤ C (q, ε3), we have

D2 ≤ C (q, ε3) E
u∼N (0,Id),β∼N (0,1)

[|1{〈u, x+ v〉+ β ≥ 0} − 1{〈u, x〉+ β ≥ 0}|]

≤ C (q, ε3) E
u∼N (0,Id),β∼N (0,1)

[
1{|〈u, x〉+ β| ≤ 1√

m̃
}+ 1{‖u‖2 > c2

√
m̃}
]

where c2 is the same constant as before. But, same as be-
fore, Pru∼N (0,Id),β∼N (0,1)

[
|〈u, x〉+ β| ≤ 1√

m̃

]
≤ O( 1√

m̃
) and

Pru∼N (0,Id),β∼N (0,1)

[
‖u‖2 > c2

√
m̃
]
≤ exp(−Ω(m̃)). So, D2 ≤ O

(
C(q,ε3)√

m̃

)
.
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