
A Statistical Boosting via Improper Game Playing
In this section we first give a game-theoretic perspective of our method when applied to the statistical
setting (Subsection A.1). We then demonstrate a general reduction from both the agnostic (Subsection
3.1), and realizable (Subsection 3.2) boosting settings, to online convex optimization. The following
algorithm is given as input a sample S = (x1, y1), . . . , (xm, ym) ∈ X × Y , and has a black-box
access to two auxiliary algorithms: a weak learner, and an online-convex optimizer. Note that this in
fact defines a family of boosting algorithms, depending on the choice of the online-convex optimizer.

The algorithm iteratively chooses a weak hypothesis by applying re-weighting / re-labeling examples,
in the realizable / agnostic setting, respectively. That is, the OCO algorithm A is (only) used to
determine the pt parameters which correspond to either a re-weighting or re-labeling of them training
examples, at iteration t. Intuitively, each weak hypothesis ht was chosen to correct for mistakes of
the previously chosen hypotheses. A formal description is provided in Algorithm 4.

Algorithm 4 Boosting with OCO

1: for t = 1, . . . , T do
2: Pass m0 examples toW drawn from the following distribution:
3: Realizable: Draw (xi, yi) w.p. ∝ pt(i)4.
4: Agnostic: Draw xi w.p. 1

m , and re-label according to yipt(i).
5: Let ht be the weak hypothesis returned byW .
6: Set loss: `t(p) =

∑m
i=1 p(i)(

1
γht(xi)yi − 1).

7: Update: pt+1 = A(`1, ..., `t).
8: end for
9: return h̄(x) = Π

(
1
γT

∑T
t=1 ht(x)

)
.

Figure 4: The algorithm has oracle access to either a (γ, ε0,m0)-AWL algorithm (see
Definition 6) or a (γ,m0)-WL algorithm (see Definition 8). Both are denoted as W . The
optimizer is a (γ,K, T )-OCO algorithm A (see Definition 1), where K = [0, 1]m in the
realizable case andK = [−1, 1]m in the agnostic case. In line 4, we pass (xi, y

i
t) toWi, where

yit is a random label s.t. P[yti = yi] = 1+pt(i)
2 . The final hypothesis “Π

(
1
γT

∑T
t=1 ht(x)

)
” is

a randomized majority-vote, as defined in Equation 2.

A.1 Solving Zero Sum Games Improperly Using an Approximate Optimization Oracle
Our framework uses as a main building block a procedure for approximately solving zero sum games
using an approximate optimization oracle. It is described in this section.
In the zero sum games setting, there are two players A and B, and a payoff function g that depends on
the players’ strategies. Player A’s goal is to minimize the payoff, while player B’s goal is to maximize
it. Let KA and KB be the convex, compact decision sets of players A and B, respectively, and assume
that g is convex-concave. By Sion’s minimax theorem [35], the value of the game is well-defined,
and we denote it by λ∗:

min
p∈KA

max
q∈KB

g(p, q) = max
q∈KB

min
p∈KA

g(p, q) = λ∗

Let K′B be a convex, compact set such that KB ⊆ K′B . We refer to strategies in KB as proper
strategies, while those in K′B are improper strategies. We consider a modified zero sum games setting
where the payoff function g is defined on K′B , the set of improper strategies. Note that λ∗ is defined
with respect to the set of proper strategies, and it is still a well-defined quantity in this game.
Assumption 1: Player B has access to a randomized approximate optimization oracleW . Given
any p ∈ KA, W outputs an improper best response: a strategy q ∈ K′B such that E[g(p, q)] ≥
maxq∗∈KB

g(p, q∗)− ε0, where the expectation is taken over the randomness ofW .
Assumption 2: Player B is allowed to play strategies in K′B .
Assumption 3: Player A has access to a possibly randomized (KA, T )-OCO algorithmA with regret
RA(T ) (See Definition 1).

4Note that when pt = 0 is constantly zero then the distribution used in the realizable setting is not well
defined. There are several ways to circumvent it. Concretely, we proceed in such case by setting ht = ht−1 and
proceeding to step 6.
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Algorithm 5 Improper Zero Sum Games with Oracles

1: for t = 1, . . . , T do
2: Player A plays pt.
3: Player B plays qt ∈ K′B , where qt =W(pt).
4: Define loss: `t(p) = g(p, qt)
5: Player A updates pt+1 = A(`1, ..., `t).
6: end for

Proposition 12. If players A and B play according to Algorithm 5, then player B’s average strategy
q̄ = 1

T

∑T
t=1 qt, q̄ ∈ K′B , satisfies for any p∗ ∈ KA,

λ∗ ≤ E[g(p∗, q̄)] +
RA(T )

T
+ ε0,

where the expectation is taken over the randomness ofW .

Proof. Since the game is well-defined over KA and KB , there exists a max-min strategy q∗ ∈ KB
for player B such that for all p ∈ KA, g(p, q∗) ≥ λ∗. Let p̄ = 1

T

∑T
t=1 pt, and observe that since the

pt’s depend on the sequence of qt’s, they are also random variables, as well as p̄. We have,

E[
1

T

T∑
t=1

g(pt, qt)] ≥ E[
1

T

T∑
t=1

g(pt, q
∗)]− ε0 ≥ E[g(p̄, q∗)]− ε0 ≥ λ∗ − ε0.

The first inequality is due to Assumption 1, where E[g(pt, qt)] ≥ maxq∈KB
g(pt, q) − ε0 ≥

g(pt, q
∗)− ε0. The second inequality holds because g is convex in p.

Now, let q̄ = 1
T

∑T
t=1 qt; note that q̄ ∈ K′B since K′B is convex. For the upper bound, observe that

the OCO regret guarantee implies that for any p∗ ∈ KA we have,

E[
1

T

T∑
t=1

g(pt, qt)] ≤ E[
1

T

T∑
t=1

g(p∗, qt)] +
RA(T )

T
≤ E[g(p∗, q̄)] +

RA(T )

T
,

where the second inequality holds because g is concave in q. Combining the lower and upper bounds
yields the theorem.

B Supplementary material for Section 4
Lemma 13. Let pi,Wi(x), yi, y be random variables, such that y, yi ∈ {±1}, and P[yi = y|pi, y] =
1+pi

2 , P[yi = −y|pi, y] = 1−pi
2 . Moreover,Wi(x) and yi are conditionally independent given pi

and y, namely P[Wi(x), yi|pi, y] = P[Wi(x)|pi, y]P[yi|pi, y] Then E[Wi(x) · yi] = E[Wi(x) · ypi].

Proof.

E[Wi(x) · yi] = Epi,y[E[Wi(x) · yi|pi, y]] (law of total expectation)

= Epi,y[E[Wi(x)|pi, y] · E[yi|pi, y]] (conditional independence)

= Epi,y[ypi · E[Wi(x)|pi, y]] (E[yi|pi, y] = ypi)

= E[Wi(x) · ypi]

Proof of Theorem 11
We first state the following Lemma that will be used in the proof:

Lemma 14. For any weak learner (γ, T )-WLW , there exists c = Õ(
√∑

t pt) + 2RW(T ) such that
for any sequence p1, ..., pT ∈ [0, 1],

T∑
t=1

pt · W(xt)yt ≥ γ
T∑
t=1

pt − c.

Proof. The proof of this lemma is based on the proof of Lemma 1 in [9].
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We are now ready to prove Theorem 11. Let h∗ be an optimal hypothesis in hindsight for the given
sequence of examples. We prove by lower and upper bounding the sum of losses. For simplicity of
presentation we assume an oblivious adversary, however, using a standard reduction, our results can
be generalized to an adaptive one 5. Let (x1, y1), ..., (xT , yT ) be any sequence of observed examples.
Observe that there are several sources of randomness at play; the weak learning algorithm Wi’s
internal randomness, the booster randomly passing the example to Wi (line 5, Algorithm 3), and
the randomized prediction (line 2, Algorithm 3). The analysis below is given in expectation with
respect to all these random variables. We can now begin the analysis, starting with lower bounding
the expected sum of losses, using the weak learning guarantee,

1

γ
E
[ N∑
i=1

T∑
t=1

Wi(xt) · ytpit
]
≥ E

[ 1

γ

N∑
i=1

(
γ

T∑
t=1

pit − R̃W(T )
)]

(Weak learning (1, Lemma 14))

≥
N∑
i=1

T∑
t=1

E[pit]−
N

γ
R̃W(T ),

Thus, we obtain the lower bound on the expected sum of losses
∑
t

∑
i `
i
t(p

i
t) (see Line 6 in

Algorithm 1 for the definition of the `it’s), given by,

E[

T∑
t=1

N∑
i=1

`it(p
i
t)] ≥ −

N

γ
R̃W(T ).

For the upper bound, observe that the OCO regret guarantee implies that for any t ∈ [T ], and any
p∗t ∈ [0, 1],

E
[ 1

N

N∑
i=1

`it(p
i
t)
]
≤ p∗t

((
1

γN

N∑
i=1

E
[
Wi(xt)

])
yt − 1

)
+

1

N
RA(N),

Thus, by setting p∗t according to Lemma 5, and summing over t ∈ [T ], we get,

E
[ 1

N

T∑
t=1

N∑
i=1

`it(p
i
t)
]
≤

T∑
t=1

(E[ŷt]yt − 1) +
T

N
RA(N).

By combining the lower and upper bounds for E
[

1
NT

∑
t

∑
i `
i
t(p

i
t)
]
, we get,

1

T

T∑
t=1

E[ŷt]yt ≥ 1−

(
RW(T )

γT
+
RA(N)

N

)
.

C Supplementary material for Section 3
C.1 Proof of Theorem 7
Proof. The proof has two parts. The first part is a straightforward reduction to the game-theoretic
setup of Proposition 12, and the second part shows how to project the “improper” strategy obtained
by Proposition 12 to the desired output hypothesis.

Reduction to Proposition 12. The agnostic version of Algorithm 4 can be presented as an instance of
Algorithm 5, where Player A and B are the weak learner and the OCO oracle algorithms, respectively.
The decision sets are KA = [−1, 1]m, KB = ∆H, and K′B = 1

γ∆H, and the payoff function g(·, ·) is
given by

g(p, q) =

m∑
i=1

p(i)(q(xi)yi − 1),

where p ∈ KA is a vector in the m dimensional continuous cube, and q ∈ K′B is a non-negative
combination of hypotheses in H (and so q corresponds to the mapping x 7→

∑
h∈H q(h) · h(x)).

5See discussion in [12], Pg. 69, as well as Exercise 4.1 formulating the reduction.
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We leave it to the reader to verify that the agnostic weak learner corresponds to an approximate
optimization oracleW . Namely, for any p ∈ KA the output q′ =W(p) satisfies q′ ∈ K′B and

E[g(p, q′)] ≥ max
q∈KB

g(p, q)− ε0m

γ
.

Furthermore, it can be shown that the value of the above game is
λ∗ = m ·max

h∈H
corS(h)−m.

This can be done by (i) observing that the strategy p = (1, 1, . . . 1) ∈ KA is dominant for Player A
and (ii) computing maxq∈KB

g(p, q) which is equal to λ∗ (since p is dominating).
Now, Proposition 12 implies that for any p ∈ [−1, 1]m, we have

m ·max
h∈H

corS(h)−m ≤ E
[ m∑
i=1

p(i)(q̄(xi)yi − 1)
]

+
RA(T )

T
+
ε0m

γ
, (4)

where q̄(xi) = 1
γT

∑
t=1 ht(xi) ∈ K′B .

Projection. Recall that the output hypothesis h̄ is defined using the projection Π (see Definition 2):
h̄(xi) = Π(q̄(xi)).

Now, by Lemma 5 there exists p∗ such that

m ·max
h∈H

corS(h)−m ≤ E
[ m∑
i=1

p∗(i)(q̄(xi)yi − 1)
]

+
RA(T )

T
+
ε0m

γ
(Equation 4)

≤ m · E[ corS(h̄)]−m+
RA(T )

T
+
ε0m

γ
(Lemma 5)

where the expectation is taken over the randomness of the projection, the weak learner, and the
random samples given to the weak learner. Simple manipulation on the above inequality directly
yields

max
h∈H

corS(h) ≤ E[ corS(h̄)] +
RA(T )

Tm
+
ε0
γ
.

If we use OGD as the OCO algorithm, we have RA(T ) = GD
√
T , where G ≤ 2

√
m
γ and D = 2

√
m.

We arrive at the theorem by plugging in RA(T )
Tm .

Proof of Theorem 9
Reduction to Proposition 12. Let h∗ be a concept consistent with the input sample (i.e. h∗(xi) = yi
for i ≤ m) and let H′ = H ∪ {h∗}. It is convenient to define the decision sets are defined by
KA = [0, 1]m, KB = ∆H′ , and K′B = 1

γ∆H′ , and the payoff function g(·, ·) is again given by

g(p, q) =

m∑
i=1

p(i)(q(xi)yi − 1).

The weak learner corresponds to an approximate optimization oracleW with no additive error. That
is, for any p ∈ KA the output q′ =W(p) satisfies q′ ∈ K′B and

E[g(p, q′)] ≥ 0.

Next, one can show that the value of the game in this setting is λ∗ = 0: indeed, this follows simce λ∗ =
minp∈KA

g(p, q∗) = 0 and since the pure strategy supported on h∗, q∗ = qh∗ ∈ KB is dominant for
player B. Applying Proposition 12, we have for any p ∈ KA, with q̄(xi) = 1

γT

∑
t=1 ht(xi) ∈ K′B ,

0 ≤ E[

m∑
i=1

p(i)(q̄(xi)yi − 1)] +
RA(T )

T
. (5)

Projection. By the definition of h̄, using Equation 5 and Lemma 5, we have

0 ≤ E[ corS(h̄)]− 1 +
RA(T )

Tm
.

As before, using OGD as the OCO algorithm A yields RA(T )
Tm = O( 1

γ
√
T

).
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