Supplementary Material to
Improving Inference for Neural Compression

S1 Stochastic Annealing

Here we provide conceptual illustrations of our stochastic annealing idea on a simple example.
Consider the following scalar optimization problem over integers,
e . 2
minimize z) =2
nimize  f(z)
Following our stochastic annealing method in Section. 3.2, we let x € R be a continuous proxy

variable, and r € {(1,0), (0,1)} be the one-hot vector of stochastic rounding direction. We let r
follow a Bernoulli distribution with temperature 7 > 0,

o (rle) = [oP{ =@~ @)/} /Clar) ifr = (1,0
T exp{ —¢([2] —2)/r}/Clz,7)  ifr=(0,1)
where
C(z,7) = exp{—t(z — |z])/7} + exp{—([z] — x)/7}

is the normalizing constant.

The stochastic optimization problem for SGA is then
mir;ierﬂréize lr(x) =By (rjoy [f(r - (2], [2])]

_expl=v(e = lal)/r}
= PP () +

exp{—([z] —x)

7}
s )

Below we plot the rounding probability ¢, (r = (0, 1)|x) and the SGA objective ¢, as a function of
x, at various temperatures.
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Figure S2: Graphs of stochastic annealing objec-
tive £, at various temperatures. £, interpolates
the discrete optimization problem between inte-
gers, and approaches round(z)? as 7 — 0.

Figure S1: Tustration of the probability ¢, (r =
(0,1)|z) of rounding up, on the interval (0, 1), at
various temperatures.

S2 Model Architecture and Training

As mentioned in the main text, the Base Hyperprior model uses the same architecture as in Table 1 of
Minnen et al. [2018] except without the “Context Prediction” and “Entropy Parameters” components
(this model was referred to as “Mean & Scale Hyperprior” in this work). The model is mostly
already implemented in bmshj2018.py! from Ballé et al., Ballé et al. [2018], and we modified their
implementation to double the number of output channels of the HyperSynthesisTransform to
predict both the mean and (log) scale of the conditional prior p(y|z) over the latents y.

As mentioned in Section 3.3 and 4, lossy bits-back modifies the above Base Hyperprior as follows:

"https://github. com/tensorflow/compression/blob/master/examples/bmshj2018. py


https://github.com/tensorflow/compression/blob/master/examples/bmshj2018.py

1. The number of output channels of the hyper inference network is doubled to compute both
the mean and diagonal (log) variance of Gaussian ¢(z|x);

2. The hyperprior p(z) is no longer restricted to the form of a flexible density model convolved
with the uniform distribution on [—0.5, 0.5]; instead it simply uses the flexible density, as
described in the Appendix of Ballé et al. [2018].

We trained our models (both the Base Hyperprior and the bits-back variant) on CLIC-2018
2 images using minibatches of eight 256 x 256 randomly-cropped image patches, for A €
{0.001, 0.0025, 0.005,0.01,0.02,0.04,0.08}. Following Ballé et al. [2018], we found that in-
creasing the number of latent channels helps avoid the “bottleneck™ effect and improve rate-
distortion performance at higher rates, and increased the number of latent channels from 192
to 256 for models trained with A = 0.04 and 0.08. All models were trained for 2 million
steps, except the ones with A = 0.001 which were trained for 1 million steps, and A = 0.08
which were trained for 3 million steps. Our code and pre-trained models can be found at https:
//github.com/mandt-lab/improving-inference-for-neural-image-compression.

S3 Hyper-Parameters of Various Methods Considered

Given a pre-trained model (see above) and image(s) x to be compressed, our experiments in Section 4
explored hybrid amortized-iterative inference to improve compression performance. Below we
provide hyper-parameters of each method considered:

Stochastic Gumbel Annealing. In all experiments using SGA (including the SGA+BB experiments,
which optimized over ¥ using SGA), we used the Adam optimizer with an initial learning rate of
0.005, and an exponentially decaying temperature schedule 7(¢) = min(exp{—ct}, 0.5), where ¢ is
the iteration number, and ¢ > 0 controls the speed of the decay. We found that lower c generally
increases the number of iterations needed for convergence, but can also yield slightly better solutions;
in all of our experiments we set ¢ = 0.001, and obtained good convergence with 2000 iterations.

Temperature Annealing Schedule for SGA. We initially used a naive temperature schedule,
7(t) = 19 exp{—ct} for SGA, where 7y is the initial temperature (typically set to 0.5 to simulate soft
quantization), and found that aggressive annealing with a large decay factor c can lead to suboptimal
solutions, as seen with ¢ = 0.002 or ¢ = 0.001 in the left subplot of Figure S3. We found that we
can overcome the suboptimality from fast annealing by an initial stage of optimization at a fixed
temperature before annealing: in the initial stage, we fix the temperature to some relatively high value
Tp (to simulate soft discretization), and run the optimization for ¢y steps such that the R-D objective
roughly converges. We demonstrate this in the right subplot of Figure S3, where we modify the naive
schedule to 7(¢) = min{rg, 7o exp{—c(t — to)}}, so that SGA roughly converges after t, = 700
steps at temperature 79 = 0.5 before annealing. As can be seen, the results of SGA are robust to
different choices of decay factor ¢, with ¢ = 0.002 and ¢ = 0.001 giving comparably good results to
¢ = 0.0005 but with faster convergence.
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Figure S3: Comparing different annealing schedules for SGA (Section 3.2).

Lossy bits-back. In the SGA+BB experiments, line 2 of the encode subroutine of Algorithm 1
performs joint optimization W.r.t. fuy, iz, and o2 with Black-box Variational Inference (BBVI), using

https://www.compression.cc/2018/challenge/
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the reparameterization trick to differentiate through Gumbel-softmax samples for ji,,, and Gaussian
samples for (uu5, 02). We used Adam with an initial learning rate of 0.005, and ran 2000 stochastic
gradient descent iterations; the optimization w.r.t. ;1,, (SGA) used the same temperature annealing
schedule as above. The reproducible_BBVI subroutine of Algorithm 1 used Adam with an initial
learning rate of 0.003 and 2000 stochastic gradient descent iterations; we used the same random seed
for the encoder and decoder for simplicity, although a hash of § can also be used instead.

Alternative Discretization Methods In Figure 3 and ablation studies of Section 4, all alternative
discretization methods were optimized with Adam for 2000 iterations to compare with SGA. The
initial learning rate was 0.005 for MAP, Uniform Noise, and Deterministic Annealing, and 0.0001
for STE. All methods were tuned on a best-effort basis to ensure convergence, except that STE
consistently encountered convergence issues even with a tiny learning rate (see [Yin et al., 2019]).
The rate-distortion results for MAP and STE were calculated with early stopping (i.e., using the
intermediate (¥, Z) with the lowest true rate-distortion objective during optimization), just to give
them a fair chance. Lastly, the comparisons in Figure 3 used the Base Hyperprior model trained with
A = 0.0025.

S4 Additional Results

On Kodak, we achieve the following BD rate savings: 17% for SGA+BB and 15% for SGA relative to
Base Hyperprior; 17% for SGA+BB and 15% for SGA relative to BPG. On Tecnick, we achieve the
following BD rate savings: 20% for SGA+BB and 19% for SGA relative to Base Hyperprior; 22%
for SGA+BB and 21% for SGA relative to BPG.

Our experiments were conducted on a Titan RTX GPU with 24GB RAM; we observed about a 100 x
slowdown from our proposed iterative inference methods (compared to standard encoder network
prediction), similar to what has been reported in [Campos et al., 2019]. Note that our proposed
standalone variant [M1] with SGA changes only compression and does not affect decompression
speed (which is more relevant, e.g., for images on a website with many visitors).

Below we provide an additional qualitative comparison on the Kodak dataset, and report detailed
rate-distortion performance on the Tecnick [Asuni and Giachetti, 2014] dataset.
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(a) Original image (b) BPG 4:4:4, (c) Proposed (SGA); (d) [Minnen et al., 2018];
(kodim19 from Kodak) 0.143 BPP (PSNR=29.3) 0.142 BPP (PSNR=29.8) 0.130 BPP (PSNR =28.5)

Figure S4: Qualitative comparison of lossy compression performance on an image from the Kodak
dataset. Figures in the bottom row focus on the same cropped region of images in the top row. Our
method (c; [M1] in Table 1) significantly boosts the visual quality of the Base Hyperprior method (d;
[M3] in Table 1) at similar bit rates. Unlike the learning-based methods (subfigures c,d), the classical
codec BPG (subfigure b) introduces blocking and geometric artifacts near the rooftop, and ringing
artifacts around the contour of the lighthouse.
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Figure S5: Rate-distortion performance comparisons on the Tecnick [Asuni and Giachetti, 2014]
dataset against existing baselines. Image quality measured in Peak Signal-to-Noise Ratio (PSNR) in
RGB; higher values are better.
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Figure S6: BD rate savings (%) relative to BPG as a function of PSNR, computed from R-D curves
(Figure S5) on Tecnick. Higher values are better.



