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1 Additional Results1

1.1 Synthetically generated partially annotated datasets2

1.1.1 Knowledge-graph based partially annotated dataset generation3

The knowledge graph used for the MS COCO panoptic segmentation dataset results [7] in Appendix B.4

1.2 Real partially annotated datasets5

In this section, we discuss results on the LVIS dataset [6]. LVIS dataset has 57K training and 5K test6

images with 1200 categories. The label categories are categorized into three categories based on their7

frequencies. We use the two highest frequency ones which result in 776 label categories. We use8

3332 images from the training set for our validation set while maintaining the same label distribution.9

Experimental details. We followed the same network (ResNeXt101 pretrained on ImageNet) and10

optimization strategies as used in [14]. The networks have been trained using the sgd optimizer with11

an initial learning rate of 0.001, momentum of 0.9 and weight decay of 0.0005. The learning rate is12

decreased by a factor of 10 at the end of 10th and 20th epochs. We use a batch size of 24 with the13

input image dimension as 224 × 224. The networks are trained for 36 epochs. During testing we14

choose the model which has the highest mAP score on the validation dataset.15

Results. We report the performance of the models on the test set of the LVIS benchmark in Tab. 1.16

Since the all the labels for the test images are not annotated, we only evaluate the performance of17

our model on the set of annotated labels. Hence false positive can happen only if a positively18

annotated label is predicted as a negative class. Similarly, false negative can happen only if19

a negatively annotated label is predicted as a positive class. We observe that our approach20

performs significantly better compared to the baseline models by a margin of ∼2%.21

1.3 Partial label annotations when training models across multiple datasets22

One of the common scenarios where datasets are partially annotated is when we have multiple23

datasets. Let us consider two datasets as shown in Fig. 1. We observe the following sources of partial24

label annotations.25

1. Missing instance: This problem occurs when a thing/stuff is visually present in the image,26

but any visual concept related to that thing/stuff was not defined while that dataset was27

annotated. Let’s say that the label TENNIS is present in both datasets, while PERSON, TENNIS28

RACKET is present only in D2. If the image in Fig. 1 (b) is present in D1, it will be labeled29

as tennis. However, if the image in Fig. 1 (c) is present in D2, it will be labeled as TENNIS,30

PERSON, TENNIS RACKET. In this case, while each of the latter categories are present31

visually in D1, they can be considered as negative during training. However, they would be32
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Training Strategy NE wNE [3] FE LS SE-I (Ours) SE-L (Ours) SE (Ours)
mAP 19.14 22.45 22.18 22.56 22.51 23.76 24.11

Table 1: LVIS results
Im

ag
es

Po
s

Man, Human head, Human arm, Human hair,
Clothing, Girl, Human mouth, Cosplay,
Woman, Person, Costume, Human face,

Superhero, Boy

Real tennis Real tennis, Racketlon, Tennis skirt, Person,
Woman, Sports equipment, Clothing, Ball,
Strings, Tennis Equipment, Tennis player,
Tennis, Soft tennis, Racquet sport, Human

face, Racket

N
eg

Comics, Convention, Anime Tennis polo Hockey, Girl, Rackets, Soccer, Tennis polo,
Statue, Basketball (Sport), Elbow, Baseball,

Bowling

(a) (b) (c)
Figure 1: Types of partial label annotations

considered as positives in D2. This discrepancy could result in sub-optimal performance,33

especially when this is a frequently occurring phenomena.34

2. Fine-grained mismatch problem: This problem occurs when a parent label (e.g. person) is35

present in both D1 and D2 datasets, but the child label(s) (e.g. MAN, GIRL) is present only36

in one of the datasets, say D2. For example, if the image in Fig. 1 (a) is present only in D1,37

it would be labeled as PERSON. But if the image in Fig. 1 (b) is present in D2, it would be38

labeled as PERSON, MAN. This discrepancy in labeling could affect the embedding space to39

get confused whether labels like PERSON, MAN, GIRL are related to the same visual concept40

or not.41

Thus even if the datasets are fully and correctly annotated, partial labels can still occur while42

training across multiple datasets. Learning paradigms such as lifelong learning, continual learning,43

incremental learning have been developed to keep training a model on increasing label sets.However,44

incremental learning approaches suffer from the catastrophic forgetting problem [4, 5, 11, 12, 13].45

Even current state of the art approaches have a forgetting rate of 10 − 15%. We study the partial46

annotation problem here and use the baselines described in the paper and our training approach47

to analyze this problem from the multi-dataset training perspective. One of the key differences of48

this approach compared to incremental learning approaches is that we do use all the images across49

all datasets, which is more expensive in terms of memory used to train our network. We do not50

propose this approach as an incremental learning approach, but provide a new “oracle” baseline for51

the incremental learning approaches.52

We use the CIFAR100 [8] and MS COCO panoptic segmentation [7] datasets for this purpose.53

1.3.1 Multi-label CIFAR dataset54

We used the CIFAR-100 dataset [8] for this purpose. There are 20 super-classes, each of which have55

5 children, forming a total of 100 classes. We added more labels to this structure to replicate a similar56

hierarchy structure such as RKGv2. The root of the tree sub-divides into two children, NATURAL and57

THINGS. Their sub-trees are shown in Fig. 9 in Appendix A. We defined the subsets in the manner as58

shown in Tab. 2. The common classes to both datasets are LARGE_MAN-MADE_OUTDOOR_THINGS59

and PEOPLE and its leaf classes, i.e., images of these classes are labeled just as is for both datasets.60

Second row has the images belonging to the sub-tree corresponding to the left class being labeled61

as the right-class for the Dataset 1. The third row has the similar thing, but for Dataset 2. Roughly62

2



Common super-classes LARGE_MAN-MADE_OUTDOOR_THINGS, PEOPLE

Missing super-classes in Dataset 1
HOUSEHOLD_ELECTRICAL_DEVICES → HOUSEHOLD_ITEMS

VEHICLES_1 → VEHICLES
VEHICLES_2 → VEHICLES

Missing super-classes in Dataset 2 FLOWERS → NATURAL
FRUIT_AND_VEGETABLES → NATURAL

Table 2: Subset class groups for multi-label CIFAR-100 dataset.

Scenario
Wide ResNet DenseNet

Validation Test Validation Test
mAP meanF1 mAP meanF1 mAP meanF1 mAP meanF1

Oracle 0.7686 0.7717 0.7638 0.7483 0.7789 0.7739 0.7818 0.7538
FE 0.6743 0.70006 0.6789 0.6713 0.6618 0.7101 0.6972 0.6847
NE 0.6551 0.6789 0.6529 0.6515 0.6955 0.7153 0.6982 0.6868

wNE 0.6712 0.6885 0.6553 0.6546 0.7074 0.71140 0.7020 0.6827
LS 0.6896 0.7052 0.6868 0.6748 0.7124 0.7165 0.7113 0.6887

SE-I 0.7135 0.7202 0.7017 0.6878 0.7427 0.7440 0.7332 0.7101
SE-L 0.7536 0.7428 0.7533 0.7114 0.7749 0.7546 0.7851 0.7322
SE 0.7766 0.7570 0.7729 0.7228 0.7914 0.7690 0.7909 0.7360

Table 3: Mean AP and Mean F1 score on the Validation and Test sets of Multi-label CIFAR-100

Dataset 1 have 3x more data as the Dataset 2, with a total of 45k images across both. The validation63

and test sets have 5k and 10k image respectively.64

Experimental Details. We experimented on 40-layer Wide Resnets and DenseNets, with wide factor65

of 4 and growth rate of 40 respectively. We use the same training schemes as in the original Wide66

Resnet and DenseNet papers.67

Results. We show the mean F1 scores on the validation and test sets in Tab. 3.68

In Fig. 2, we analyze the performance based on different categories of how the labels are annotated69

in our CIFAR100 subset datasets. The temperature based model corresponds to our proposed SE70

approach. The different label categorizations are defined above.71

72

(a) F1 (b) AP

Figure 2: Subset Category-wise performance on CIFAR100 test set
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Figure 3: MS COCO Label Categorization Statistics

Figure 4: MS COCO Label-wise Image Frequency Statistics

1.3.2 MS-COCO panoptic segmentation dataset73

In this section, we show results on the MS-COCO panoptic segmentation dataset [10, 7] which74

includes 80 thing categories and 53 stuff categories. for this purpose. To build the knowledge graph,75

we start from the one defined in [1]. We add some additional parent labels such as ROOM, MAN-MADE,76

ORGANISM, DEVICE and NATURAL. The final knowledge graph is shown in Appendix B. The final77

number of all classes in the dataset is 164.78

We divide the classes in a way such that the number of labels in Dataset 1 is 57 and the number79

of labels in Dataset 2 is 139 while having 32 labels in common. The category specific pie charts80

which show the categorization of labels are shown in Fig. 3. This results in 46 labels being correctly81

annotated, i.e., the number of images that contain these labels match the oracle scenario. In this82

setting, there are 93 labels that suffer from the missing instance problem and 23 labels suffer from83

the fine-grained mismatch problem. The label-wise statistics are shown in Fig. 4. The number of84

training images in the Datasets 1 and 2 is ∼ 67K (58%) and ∼ 48K (42%) respectively.85
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(a) F1 (b) AP

Figure 5: Subset Category-wise performance on MS COCO test set

86

Overall Results. We followed the same network (ResNeXt101 pretrained on ImageNet) and opti-87

mization strategies as used in [14, 3]. We plot the mean F1 scores on the validation set as a function88

of epochs in Fig. 5(a). Using our proposed SE approach improves the performance over naive89

full-exposure and no-exposure settings (and also the oracle model!).90

Quantitative results on different types of missing label problems. In Fig. 5, we analyze the91

performance based on different categories of how the labels are annotated in our MS COCO subset92

datasets. The labels which are correctly annotated in both subsets (Correct Annotations) have the93

best performance.94

95

Performance vs fraction of missing labels. In Fig. 6, we plot the label-wise difference of the96

AP performance of our approach compared with that of the ORACLE, FULL EXPOSURE and NO97

EXPOSURE settings. Red represents labels with the missing instance problem, green indicates the98

labels with the fine-grained mismatch problem and blue represents the labels which are correctly99

annotated. Within each categorization, the labels are sorted based on the improvement in the100

performance of our approach. The darkest color coding of the bar represents lesser noise in the101

label annotation, while the brightest color coding indicates more noise in the label annotations. We102

observe that as the fraction of noisy annotations increase, the performance of ORACLE and the NO103

EXPOSURE settings are better than ours. Hence when the noisy annotations are less, using fully104

exposed label space with some temperature parameter helps the overall performance. For fine-grained105

labels, we perform better than the no-exposure setting for most categories.106

107

Performance vs #oracle annotations. In Fig. 7, we plot the label-wise difference in performances108

where the brightness of the color bars vary based on the # oracle annotations. For the ORACLE and109

NO EXPOSURE settings, we observe that our approach works better for labels which have lesser #110

number of annotations. As the number of annotations increase, we are similar to the baseline settings.111

112
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Figure 6: MS COCO Label-wise Performance (Sorted by the AP score). Increasing color brightness
of the bars indicate increasing fraction of missing annotations.
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Figure 7: MS COCO Label-wise Performance (Sorted by the AP score). Increasing color brightness
of the bars indicate increasing # oracle annotations.
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Figure 8: CIFAR100 Knowledge Graph
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Figure 9: MS-COCO Knowledge Graph
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