
Appendix A: Missing Proofs

A.1 Proof of Lemma 1

Proof : We only prove the existence of π1(·), as the existence of π2(·) can be proved in the same
way. Suppose that the elements in S1 are {u1, · · · , us} (listed according to the order that they are
added into S1). We use an argument inspired by [15] to construct π1(·). LetLs = O+

1 ∪O
−
1 ∪O

−
2 ∪O3.

We execute the following iterations from j = s to j = 0. At the beginning of the j-th iteration, we
compute a set Aj = {x ∈ Lj\{u1, · · · , uj−1} : {u1, · · · , uj−1, x} ∈ I}. If uj ∈ O+

1 ∪ O
−
1 (so

uj ∈ Aj), then we set π1(uj) = uj and Dj = {uj}. If uj /∈ O+
1 ∪O

−
1 and Aj 6= ∅, then we pick an

arbitrary e ∈ Aj and set π1(e) = uj ; Dj = {e}. If Aj = ∅, then we simply set Dj = ∅. After that,
we set Lj−1 = Lj\Dj and enter the (j − 1)-th iteration.

From the above process, it can be easily seen that π1(·) has the properties required by the lemma as
long as it is a valid function. So we only need to prove that each e ∈ O+

1 ∪O
−
1 ∪O

−
2 ∪O3 is mapped

to an element in S1, which is equivalent to prove L0 = ∅ as each e ∈ Ls\L0 is mapped to an element
in S1 according to the above process. In the following, we prove L0 = ∅ by induction, i.e., proving
|Lj | ≤ j for all 0 ≤ j ≤ s.

We first prove |Ls| ≤ s. By way of contradiction, let us assume |Ls| = |O+
1 ∪O

−
1 ∪O

−
2 ∪O3| > s =

|S1|. Then, there must exist some x ∈ O−2 ∪O3 satisfying S1 ∪ {x} ∈ I according to the exchange
property of matroids. Moreover, according to the definition of O3, we also have x /∈ O3, which
implies x ∈ O−2 . So we can get Pre(x, S1) ∪ {x} ∈ I due to Pre(x, S1) ⊆ S1, S1 ∪ {x} ∈ I and
the hereditary property of independence systems, but this contradicts the definition of O−2 . Therefore,
|Lj | ≤ j holds when j = s.

Now suppose |Lj | ≤ j for certain j ≤ s. If Aj 6= ∅, then we have Dj 6= ∅ and hence |Lj−1| =
|Lj | − 1 ≤ j − 1. If Aj = ∅, then we know that there does not exist x ∈ Lj\{u1, · · · , uj−1} such
that {u1, · · · , uj−1} ∪ {x} ∈ I. This implies |{u1, · · · , uj−1}| ≥ |Lj | due to the exchange property
of matroids. So we also have |Lj−1| = |Lj | ≤ j − 1, which completes the proof. �

A.2 Proof of Lemma 2

For clarity, we decompose Lemma 2 into three lemmas (Lemmas 4-6) and prove each of them.

Lemma 4 The TwinGreedy algorithm satisfies

f(O+
1 | S2) ≤

∑
e∈O+

1

δ(π1(e)); f(O+
2 | S1) ≤

∑
e∈O+

2

δ(π2(e)) (15)

Proof of Lemma 4: We only prove the first inequality, as the second one can be proved in the same
way. For any e ∈ O+

1 , consider the moment that TwinGreedy inserts e into S1. At that moment,
adding e into S2 also does not violate the feasibility of I according to the definition ofO+

1 . Therefore,
we must have f(e | Pre(e, S2)) ≤ δ(e), because otherwise e would not be inserted into S1 according
to the greedy rule of TwinGreedy. Using submodularity and the fact that π1(e) = e, we get

f(e | S2) ≤ f(e | Pre(e, S2)) ≤ δ(e) = δ(π1(e)), ∀e ∈ O+
1 (16)

and hence ∑
e∈O+

1

f(O+
1 | S2) ≤

∑
e∈O+

1

f(e | S2) ≤
∑
e∈O+

1

δ(π1(e)), (17)

which completes the proof. �

Lemma 5 The TwinGreedy algorithm satisfies

f(O−1 | S2) ≤
∑
e∈O−1

δ(π2(e)); f(O−2 | S1) ≤
∑
e∈O−2

δ(π1(e)) (18)

1

Proof of Lemma 5: We only prove the first inequality, as the second one can be proved in the
same way. For any e ∈ O−1 , consider the moment that TwinGreedy inserts π2(e) into S2. At that
moment, adding e into S2 also does not violate the feasibility of I as Pre(π2(e), S2) ∪ {e} ∈ I
according to Lemma 1. This implies that e has not been inserted into S1 yet. To see this, let us
assume (by way of contradiction) that e has already been added into S1 when TwinGreedy inserts
π2(e) into S2. So we have Pre(e, S2) ⊆ Pre(π2(e), S2). As Pre(π2(e), S2) ∪ {e} ∈ I, we must
have Pre(e, S2) ∪ {e} ∈ I due to the hereditary property of independence systems. However, this
contradicts Pre(e, S2) ∪ {e} /∈ I as e ∈ O−1 .

As e has not been inserted into S1 yet at the moment that π2(e) is inserted into S2, and
Pre(π2(e), S2) ∪ {e} ∈ I, we know that e must be a contender to π2(e) when TwinGreedy in-
serts π2(e) into S2. Due to the greedy selection rule of the algorithm, this means δ(π2(e)) =
f(π2(e) | Pre(π2(e), S2)) ≥ f(e | Pre(π2(e), S2)). As Pre(π2(e), S2) ⊆ S2, we also have
f(e | Pre(π2(e), S2)) ≥ f(e | S2). Putting these together, we have

f(O−1 | S2) ≤
∑
e∈O−1

f(e | S2) ≤
∑
e∈O−1

f(e | Pre(π2(e), S2)) ≤
∑
e∈O−1

δ(π2(e)) (19)

which completes the proof. �

Lemma 6 The TwinGreedy algorithm satisfies

f(O3 | S1) ≤
∑
e∈O3

δ(π1(e)); f(O4 | S2) ≤
∑
e∈O4

δ(π2(e)) (20)

Proof of Lemma 6: We only prove the first inequality, as the second one can be proved in the
same way. Consider any e ∈ O3. According to Lemma 1, we have Pre(π1(e), S1) ∪ {e} ∈ I,
which means that e can be added into S1 without violating the feasibility of I when π1(e) is
added into S1. According to the greedy rule of TwinGreedy and submodularity, we must have
δ(π1(e)) = f(π1(e) | Pre(π1(e), S1)) ≥ f(e | Pre(π1(e), S1)), because otherwise e should be
added into S1, which contradicts e ∈ O3. Therefore, we get

f(O3 | S1) ≤
∑
e∈O3

f(e | S1) ≤
∑
e∈O3

f(e | Pre(π1(e), S1)) ≤
∑
e∈O3

δ(π1(e)) (21)

which completes the proof. �

A.3 Proof of Theorem 1

Proof : We only consider the special case that S1 or S2 is empty, as the main proof of the theorem
has been presented in the paper. Without loss of generality, we assume that S2 is empty. According
to the greedy rule of the algorithm, we have

f(O ∩ S1 | ∅) ≤
∑

e∈O∩S1

f(e | ∅) ≤
∑

e∈O∩S1

δ(e) ≤
∑
e∈S1

δ(e) = f(S1 | ∅) (22)

and f(O\S1 | ∅) ≤
∑
e∈O\S1

f(e | ∅) ≤ 0. Combining these with

f(O\S1) + f(O ∩ S1) ≥ f(O) + f(∅), (23)

we get f(S1) ≥ f(O), which proves that S1 is an optimal solution when S2 is empty. �

A.4 Proof of Lemma 3

For clarity, we decompose Lemma 3 into three lemmas (Lemmas 7-9) and prove each of them.

Lemma 7 For the TwinGreedyFast algorithm, we have

f(O+
1 | S2) ≤

∑
e∈O+

1

δ(π1(e)); f(O+
2 | S1) ≤

∑
e∈O+

2

δ(π2(e)) (24)

2

Proof of Lemma 7: The proof is similar to that of Lemma 4, and we present the full proof for
completeness. We will only prove the first inequality, as the second one can be proved in the same
way. For any e ∈ O+

1 , consider the moment that TwinGreedy inserts e into S1 and suppose that
the current threshold is τ . Therefore, we must have δ(e) ≥ τ . At that moment, adding e into
S2 also does not violate the feasibility of I according to the definition of O+

1 . So we must have
f(e | Pre(e, S2)) ≤ δ(e), because otherwise we have f(e | Pre(e, S2)) > δ(e) ≥ τ , and hence e
would be inserted into S2 according to the greedy rule of TwinGreedyFast. Using submodularity and
the fact that π1(e) = e, we get

f(e | S2) ≤ f(e | Pre(e, S2)) ≤ δ(e) = δ(π1(e)), ∀e ∈ O+
1 (25)

and hence ∑
e∈O+

1

f(O+
1 | S2) ≤

∑
e∈O+

1

f(e | S2) ≤
∑
e∈O+

1

δ(π1(e)), (26)

which completes the proof. �

Lemma 8 For the TwinGreedyFast Algorithm, we have

f(O−1 | S2) ≤ (1 + ε)
∑
e∈O−1

δ(π2(e)); f(O−2 | S1) ≤ (1 + ε)
∑
e∈O−2

δ(π1(e)) (27)

Proof of Lemma 8: We only prove the first inequality, as the second one can be proved in the same
way. For any e ∈ O−1 , consider the moment that TwinGreedyFast adds π2(e) into S2. Using the same
reasoning with that in Lemma 5, we can prove: (1) e has not been inserted into S1 at the moment that
π2(e) is inserted into S2; (2) Pre(π2(e), S2) ∪ {e} ∈ I (due to Lemma 1).

Let τ be the threshold set by the algorithm when π2(e) is inserted into S2. So we must have
δ(π2(e)) ≥ τ . Moreover, we must have f(e | Pre(π2(e), S2)) ≤ (1 + ε)τ . To see this, let us
assume f(e | Pre(π2(e), S2)) > (1 + ε)τ by way of contradiction. If τ = τmax, then we get
f(e) ≥ f(e | Pre(π2(e), S2)) > (1 + ε)τmax, which contradicts f(e) ≤ τmax. If τ < τmax, then
consider the moment that e is checked by the TwinGreedyFast algorithm when the threshold is
τ ′ = (1 + ε)τ . Let S2,τ ′ be the set of elements in S2 at that moment. Then we have f(e | S2,τ ′) ≥ τ ′
due to S2,τ ′ ⊆ Pre(π2(e), S2) and submodularity of f(·). Moreover, we must have S2,τ ′ ∪ {e} ∈ I
due to Pre(π2(e), S2)∪{e} ∈ I and the hereditary property of independence systems. Consequently,
e should have be added by the algorithm when the threshold is τ ′, which contradicts the fact stated
above that e has not been added into S1 at the moment that π2(e) is inserted into S2 (under the
threshold τ). According to the above reasoning, we get

f(O−1 | S2) ≤
∑
e∈O−1

f(e | S2) ≤
∑
e∈O−1

f(e | Pre(π2(e), S2)) ≤ (1 + ε)
∑
e∈O−1

δ(π2(e)) (28)

which completes the proof. �

Lemma 9 For the TwinGreedyFast algorithm, we have

f(O3 | S1) ≤ (1 + ε)
∑
e∈O3

δ(π1(e)); f(O4 | S2) ≤ (1 + ε)
∑
e∈O4

δ(π2(e)) (29)

Proof of Lemma 9: We only prove the first inequality, as the second one can be proved in the same
way. Consider any e ∈ O3. According to Lemma 1, we have Pre(π1(e), S1)∪ {e} ∈ I, i.e., e can be
added into S1 without violating the feasibility of I when π1(e) is added into S1. By similar reasoning
with that in Lemma 8, we can get f(e | Pre(π1(e), S1)) ≤ (1 + ε)δ(π1(e)), because otherwise e
must have been added into S1 in an earlier stage of the TwinGreedyFast algorithm (under a larger
threshold) before π1(e) is added into S1, but this contradicts e /∈ S1 ∪ S2. Therefore, we get

f(O3 | S1) ≤
∑
e∈O3

f(e | S1) ≤
∑
e∈O3

f(e | Pre(π1(e), S1)) ≤ (1 + ε)
∑
e∈O3

δ(π1(e)), (30)

which completes the proof. �

3

A.5 Proof of Theorem 2

Proof : In Theorem 3 of Appendix B, we will prove the performance bounds of TwinGreedyFast
under a p-set system constraint. The proof of Theorem 3 can also be used to prove Theorem 2, simply
by setting p = 1. �

Appendix B: Extensions for a p-Set System Constraint

When the independence system (N , I) input to the TwinGreedyFast algorithm is a p-set system,
it returns a solution S∗ achieving 1

2p+2 − ε approximation ratio. To prove this, we can define O+
1 ,

O−1 , O+
2 , O−2 , O3, O4, Pre(e, Si) and δ(e) in exact same way as Definition 1, and then propose

Lemma 10, which relaxes Lemma 1 to allow that the preimage by π1(·) or π2(·) of any element in
S1 ∪ S2 contains at most p elements. The proof of Lemma 10 is similar to that of Lemma 1. For the
sake of completeness and clarity, We provide the full proof of Lemma 10 in the following:

Lemma 10 There exist a function π1 : O+
1 ∪O

−
1 ∪O

−
2 ∪O3 7→ S1 such that:

1. For any e ∈ O+
1 ∪O

−
1 ∪O

−
2 ∪O3, we have Pre(π1(e), S1) ∪ {e} ∈ I.

2. For each e ∈ O+
1 ∪O

−
1 , we have π1(e) = e.

3. Let π−11 (y) = {e ∈ O+
1 ∪ O

−
1 ∪ O

−
2 ∪ O3 : π1(e) = y} for any y ∈ S1. Then we have

|π−11 (y)| ≤ p for any y ∈ S1.

Similarly, there exists a function π2 : O−1 ∪O
+
2 ∪O

−
2 ∪O4 7→ S2 such that Pre(π2(e), S2)∪{e} ∈ I

for each e ∈ O−1 ∪ O
+
2 ∪ O

−
2 ∪ O4 and π2(e) = e for each e ∈ O+

2 ∪ O
−
2 and |π−12 (y)| ≤ p for

each y ∈ S2.

Proof of Lemma 10: We only prove the existence of π1(·), as the existence of π2(·) can be
proved in the same way. Suppose that the elements in S1 are {u1, · · · , us} (listed according to the
order that they are added into S1). We use an argument inspired by [15] to construct π1(·). Let
Ls = O+

1 ∪O
−
1 ∪O

−
2 ∪O3. We execute the following iterations from j = s to j = 0. At the beginning

of the j-th iteration, we compute a set Aj = {x ∈ Lj\{u1, · · · , uj−1} : {u1, · · · , uj−1, x} ∈ I}.
If |Aj | ≤ p, then we set set Dj = Aj ; if |Aj | > p and uj ∈ O+

1 ∪ O
−
1 (so uj ∈ Aj), then we pick

a subset Dj ⊆ Aj satisfying |Dj | = p and uj ∈ Dj ; if |Aj | > p and uj /∈ O+
1 ∪ O

−
1 , then we

pick a subset Dj ⊆ Aj satisfying |Dj | = p. After that, we set π1(e) = uj for each e ∈ Dj and set
Lj−1 = Lj\Dj , and then enter the (j − 1)-th iteration.

From the above process, it can be easily seen that Condition 1-3 in the lemma are satisfied. So we
only need to prove that each e ∈ O+

1 ∪ O
−
1 ∪ O

−
2 ∪ O3 is mapped to an element in S1, which is

equivalent to prove L0 = ∅ as each e ∈ Ls\L0 is mapped to an element in S1 according to the
above process. In the following, we will prove L0 = ∅ by induction, i.e., proving |Lj | ≤ pj for all
0 ≤ j ≤ s.
When j = s, consider the set M = S1 ∪ O−2 ∪ O3. Clearly, each element e ∈ O3 satisfies
S1 ∪ {e} /∈ I according to the definition of O3. Besides, we must have S1 ∪ {x} /∈ I for each
x ∈ O−2 , because otherwise there exists e ∈ O−2 satisfying S1 ∪ {e} ∈ I, and hence we get
Pre(e, S1) ∪ {e} ∈ I due to Pre(e, S1) ⊆ S1 and the hereditary property of independence systems;
contradicting e ∈ O−2 . Therefore, we know that S1 is a base of M . As O+

1 ∪O
−
1 ∪O

−
2 ∪O3 ∈ I

and O+
1 ∪O

−
1 ∪O

−
2 ∪O3 ⊆M , we get |Ls| = |O+

1 ∪O
−
1 ∪O

−
2 ∪O3| ≤ p|S1| = ps according to

the definition of p-set system.

Now suppose that |Lj | ≤ pj for certain j ≤ s. If |Aj | > p, then we have |Dj | = p and
hence |Lj−1| = |Lj | − p ≤ p(j − 1). If |Aj | ≤ p, then we know that there does not exist
x ∈ Lj−1\{u1, · · · , uj−1} such that {u1, · · · , uj−1} ∪ {x} ∈ I due to the above process for con-
structing π1(·). Now consider the set M ′ = {u1, · · · , uj−1} ∪ Lj−1, we know that {u1, · · · , uj−1}
is a base of M ′ and Lj−1 ∈ I, which implies |Lj−1| ≤ p(j − 1) according to the definition of p-set
system.

4

The above reasoning proves |Lj | ≤ pj for all 0 ≤ j ≤ s by induction, so we get L0 = ∅ and hence
the lemma follows. �

With Lemma 10, Lemma 3 still holds under a p-set system constraint, as the proof of Lemma 3 only
uses the hereditary property of independence systems and does not require that the functions π1(·)
and π2(·) are injective. Therefore, we can still use Lemma 3 to prove the performance bounds of
TwinGreedyFast under a p-set system constraint, as shown in Theorem 3. Note that the proof of
Theorem 3 can also be used to prove Theorem 2, simply by setting p = 1.

Theorem 3 When the independence system (N , I) input to TwinGreedyFast is a p-set system, the
TwinGreedyFast algorithm returns a solution S∗ with 1

2p+2 − ε approximation ratio, under time
complexity of O(nε log r

ε).

Proof of Theorem 3: We first consider the special case that S1 or S2 is empty, and show that
TwinGreedyFast achieves 1− ε approximation ratio under this case. Without loss of generality, we
assume S2 is empty. By similar reasoning with the proof of Theorem 1 (Appendix A.3), we get
f(S1 | ∅) ≥ f(O ∩ S1 | ∅). Besides, for each e ∈ O\S1, we must have f(e | ∅) < τmin (where
τmin is the smallest threshold tested by the algorithm), because otherwise e should be added into S2

by the TwinGreedyFast algorithm. By the submodularity of f(·), we have

f(O)− f(∅) ≤ f(O ∩ S1 | ∅) + f(O\S1 | ∅) ≤ f(S1 | ∅) +
∑

e∈O\S1

f(e | ∅)

≤ f(S1 | ∅) + r · τmin ≤ f(S1 | ∅) + r · ε · τmax
r

≤ f(S1 | ∅) + εf(O),

which proves that S1 has a 1− ε approximation ratio. In the sequel, we consider the case that S1 6= ∅
and S2 6= ∅. Let O5 = O\(S1 ∪S2 ∪O3) and O6 = O\(S1 ∪S2 ∪O4). By submodularity, we have

f(O ∪ S1)− f(S1) ≤ f(O+
2 | S1) + f(O−2 | S1) + f(O3 | S1) + f(O5 | S1) (31)

f(O ∪ S2)− f(S2) ≤ f(O+
1 | S2) + f(O−1 | S2) + f(O4 | S2) + f(O6 | S2) (32)

Using Lemma 3, we get

f(O+
2 | S1) + f(O−2 | S1) + f(O3 | S1) + f(O+

1 | S2) + f(O−1 | S2) + f(O4 | S2)

≤ (1 + ε)

 ∑
e∈O+

1 ∪O
−
2 ∪O3

δ(π1(e)) +
∑

e∈O−1 ∪O
+
2 ∪O4

δ(π2(e))

≤ (1 + ε)

[∑
e∈S1

|π−11 (e)| · δ(e) +
∑
e∈S2

|π−12 (e)| · δ(e)

]

≤ (1 + ε)p

[∑
e∈S1

δ(e) +
∑
e∈S2

δ(e)

]
≤ (1 + ε)p [f(S1) + f(S2)] , (33)

where the third inequality is due to Lemma 10. Besides, according to the definition of O5, we must
have f(e | S1) < τmin for each e ∈ O5, where τmin is the smallest threshold tested by the algorithm,
because otherwise e should be added into S1 as S1 ∪ {e} ∈ I. Similarly, we get f(e | S2) < τmin
for each e ∈ O6. Therefore, we have

f(O5 | S1) ≤
∑
e∈O5

f(e | S1) ≤ r · τmin ≤ r ·
ε · τmax

r
≤ ε · f(O) (34)

f(O6 | S2) ≤
∑
e∈O6

f(e | S2) ≤ r · τmin ≤ r ·
ε · τmax

r
≤ ε · f(O) (35)

As f(·) is a non-negative submodular function and S1 ∩ S2 = ∅, we have

f(O) ≤ f(O) + f(O ∪ S1 ∪ S2) ≤ f(O ∪ S1) + f(O ∪ S2) (36)

5

By summing up Eqn. (31)-(36) and simplifying, we get
f(O) ≤ [1 + (1 + ε)p][f(S1) + f(S2)] + 2ε · f(O)

≤ (2p+ 2 + 2pε)f(S∗) + 2ε · f(O)

So we have f(S∗) ≥ 1−2ε
2p+2+2pεf(O) ≥ (1

2p+2 − ε)f(O). Note that the TwinGreedyFast algorithm
has at most O(log1+ε

r
ε) iterations with O(n) time complexity in each iteration. Therefore, the total

time complexity is O(nε log r
ε), which completes the proof. �

Appendix C: Supplementary Materials on Experiments

C.1 Social Network Monitoring

It can be easily verified that the social network monitoring problem considered in Section 5 is a
non-monotone submodular maximization problem subject to a partition matroid constraint. We
provide additional experimental results on Barabasi-Albert (BA) random graphs, as shown in Fig. 3.
In Fig. 3, we generate a BA graph with 10,000 nodes and m0 = m = 100, and set h = 5 for
Fig. 3(a)-(b) and set h = 10 for Fig. 3(c)-(d), respectively. The other settings in Fig. 3 are the same
with those for ER random graph in Section 5. It can be seen that the experimental results in Fig. 3
are qualitatively similar to those on the ER random graph, and TwinGreedyFast still runs more than
an order of magnitude faster than the other three algorithms. Besides, it is observed from Fig. 3
that TwinGreedyFast and TwinGreedy perform closely to Fantom and slightly outperform RRG and
SampleGreedy on utility, while it is also possible that TwinGreedyFast/TwinGreedy can outperform
Fantom on utility in some cases.

50 100 150 200 250 300 350 400 450 500

k

105

106

107

N
u

m
b

e
r
 o

f
Q

u
e
r
ie

s

(a) BA, Number of Queries (h=5)

TwinGreedy

Fantom

RRG

SampleGreedy

TwinGreedyFast

50 100 150 200 250 300 350 400 450 500

k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
ti

li
ty

×105

(b) BA, Utility (h=5)

RRG

SampleGreedy

TwinGreedyFast

TwinGreedy

Fantom

300 350 400 450 500 550 600 650 700 750

k

106

107

108

N
u

m
b

e
r
 o

f
Q

u
e
r
ie

s

(c) BA, Number of Queries (h=10)

TwinGreedy

Fantom

RRG

SampleGreedy

TwinGreedyFast

300 350 400 450 500 550 600 650 700 750

k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

U
ti

li
ty

×105

(d) BA, Utility (h=10)

RRG

SampleGreedy

TwinGreedyFast

TwinGreedy

Fantom

Figure 3: Experimental results for social network monitoring on Barabasi-Albert (BA) random graph

In Table 2, we study how the utility of TwinGreedyFast can be affected by the parameter ε. The
experimental results in Table 2 reveal that, the utility of TwinGreedyFast slightly increases when

6

Table 2: The utility of TwinGreedyFast (×105) vs. the parameter ε (BA, h = 5)

ε k =50 100 150 200 250 300 350 400 450 500

0.2 0.145 0.281 0.410 0.529 0.637 0.744 0.836 0.925 1.004 1.078
0.15 0.149 0.289 0.415 0.535 0.643 0.747 0.841 0.929 1.008 1.082
0.1 0.154 0.291 0.418 0.538 0.648 0.751 0.846 0.933 1.013 1.085
0.05 0.154 0.293 0.421 0.540 0.651 0.753 0.848 0.935 1.015 1.087
0.02 0.155 0.294 0.422 0.541 0.652 0.754 0.849 0.936 1.015 1.087
0.01 0.155 0.294 0.422 0.541 0.652 0.754 0.849 0.936 1.015 1.087
0.005 0.155 0.294 0.422 0.541 0.652 0.754 0.849 0.936 1.015 1.088

ε decreases, and almost does not change when ε is sufficiently small (e.g., ε ≤ 0.02). Therefore,
we would not suffer a great loss on utility by setting ε to a relatively large number in (0, 1) for
TwinGreedyFast.

C.2 Multi-Product Viral Marketing

We first prove that the multi-product viral marketing application considered in Section 5 is an instance
of the problem of non-monotone submodular maximization subject to a matroid constraint. Recall
that we need to select k seed nodes from a social network G = (V,E) to promote m products, and
each node u ∈ V can be selected as a seed for at most one product. These requirements can be
modeled as a matroid constraint, as proved in the following lemma:

Lemma 11 Define the ground set N = V × [m] and I = {X ⊆ N : |X| ≤ k ∧ ∀u ∈ V :

|X ∩Nu| ≤ 1}, where Nu , {(u, i) : i ∈ [m]} for any u ∈ V . Then (N , I) is a matroid.

Proof of Lemma 11: It is evident that (N , I) is an independence system. Next, we prove that it
satisfies the exchange property. For any X ∈ I and Y ∈ I satisfying |X| < |Y |, there must exist
certain v ∈ V such that |Y ∩ Nv| > |X ∩ Nv| (i.e., |Y ∩ Nv| = 1 and |X ∩ Nv| = 0), because
otherwise we have |X| =

∑
u∈V |X ∩Nu| ≥

∑
u∈V |Y ∩Nu| = |Y |; contradicting |X| < |Y |. As

|X| < |Y | ≤ k, we can add the element in Y ∩ Nv into X without violating the feasibility of I,
which proves that (N , I) satisfies the exchange property of matroids. �

Next, we prove that the objective function in multi-product viral marketing is a submodular function
defined on 2N :

Lemma 12 For any S ⊆ N and S 6= ∅, define

f(S) =
∑
i∈[m]

fi(Si) +

B − ∑
i∈[m]

∑
v∈Si

c(v)

 (37)

where Si , {u | (u, i) ∈ S} and fi(·) is a non-negative submodular function defined on 2V (i.e., an
influence spread function). We also define f(∅) = 0. Then f(·) is a submodular function defined on
2N .

Proof of Lemma 12: For any S $ T ⊆ N and any x = (u, i) ∈ N\T , we must have u /∈ Si and
u /∈ Ti. So we get f(x | T) = fi(u | Ti)−c(u). If S 6= ∅, then we have f(x | S) = fi(u | Si)−c(u)
and hence f(x | T) ≤ f(x | S) due to Si ⊆ Ti and the submodularity of fi(·). If S = ∅, then we
also have f(x | S) = fi(u) +B − c(u) ≥ fi(u | Ti)− c(u) = f(x | T), which completes the proof.
�

As we set B = m
∑
u∈V c(u), the objective function f(·) is also non-negative. Note that fi(A)

denotes the total expected number of nodes in V that can be activated by A (∀A ⊆ V) under the
celebrated Independent Cascade (IC) Model [34]. As evaluating fi(A) for any given A ⊆ V under
the IC model is an NP-hard problem, we use the estimation method proposed in [7] to estimate fi(A),
based on the concept of “Reverse Reachable Set” (RR-set). For completeness, we introduce this
estimation method in the following:

7

Given a directed social network G = (V,E) with each edge (u, v) associated with a probability
pu,v, a random RR-set R under the IC model is generated by: (1) remove each edge (u, v) ∈ E
independently with probability 1− pu,v and reverse (u, v)’s direction if it is not removed; (2) sample
v ∈ V uniformly at random and set R as the set of nodes reachable from v in the graph generated by
the first step. Given a set Z of random RR-sets, any i ∈ [m] and any A ⊆ V , we define

f̂i(A) =
∑

R∈Z
|V | ·min{1, |A ∩R|}/|Z| (38)

According to [7], f̂i(A) is an unbiased estimation of fi(A), and f̂i(·) is also a non-negative monotone
submodular function defined on 2V . Therefore, in our experiments, we generate a set Z of one
million random RR-sets and use f̂i() to replace fi() in the objective function shown in Eqn. (37),
which keeps f(·) as a non-negative submodular function defined on 2N .

8

