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Abstract

Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine
learning system’s ability to generalize beyond the biases of a training set. OOD
benchmarks are designed to present a different joint distribution of data and labels
between training and test time. VQA-CP has become the standard OOD benchmark
for visual question answering, but we discovered three troubling practices in its
current use. First, most published methods rely on explicit knowledge of the
construction of the OOD splits. They often rely on “inverting” the distribution of
labels, e.g. answering mostly “yes” when the common training answer is “no”.
Second, the OOD test set is used for model selection. Third, a model’s in-domain
performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit
a more balanced distribution of labels. These three practices defeat the objective of
evaluating generalization, and put into question the value of methods specifically
designed for this dataset. We show that embarrassingly-simple methods, including
one that generates answers at random, surpass the state of the art on some question
types. We provide short- and long-term solutions to avoid these pitfalls and realize
the benefits of OOD evaluation.

1 Introduction

Goodhart’s law: When a measure becomes a target, it ceases to be a good measure.

The practical value of a machine learning (ML) system is strongly related to its capacity to generalize,
i.e. to produce relevant outputs for data beyond its training set. The common paradigm in learning
theory [42] assumes that the training and test data are drawn as independent and identically distributed
(IID) samples. Therefore, most datasets are built following this IID assumption, such that data points
are assigned randomly to training or test splits. For many tasks however, this fails to assess whether
an ML system adequately generalizes, or whether it has simply captured the idiosyncrasies of a
dataset, including spurious correlations that manifest in both the training and test sets [28].

Out-of-distribution (OOD) testing is an increasingly popular method for evaluating generalization [3,
4, 7, 23, 25, 29]. In this paper, we use “OOD” to refer to splits designed such that the joint distribution
of inputs and labels differs between the training and testing sets. The differences in this distribution
concern features of the data that are irrelevant to the task of interest, e.g. the background in an image
recognition task. Such irrelevant factors can be spuriously correlated with the correct labels. They
form “dataset biases” and other statistical patterns that a robust model should not rely on.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



What sport  is this ?

Training set OOD Test set
What sport  is the man playing ?

What sport  are they playing ?

How many people  are on the beach ?

How many people  are on the photo ?

How many people  are riding a bike ?

Histograms of frequent answers

one
two

three
zero

tennis
baseball

skiing
frisbee

Figure 1: In the VQA-CP dataset, the distribution of answers given a question prefix differs between
training and testing. We show that many existing methods exploit the fact that the training and
test distributions are approximately inverse of each other. This is made possible through the bad
practice of using the OOD test set for model selection. Moreover, the issue is completely hidden
from the in-domain evaluation typically performed after retraining on the VQA v2 dataset, because
its distribution of answers is more uniform.

This paper takes a close look at VQA-CP [3], an OOD benchmark for visual question answering
(VQA). In VQA, a model is provided with an image and a related question and must produce a
relevant answer. VQA is usually approached as a classification problem over a large set (1000+) of
candidate answers, and usually trained with a large dataset of questions and correct answers [39, 44].
These datasets are produced by human annotators and contain strong biases. For example, most
questions of the form Is there a ... in the image ? are correctly answered with yes [6]. The VQA-CP
dataset was designed to evaluate models in an OOD setting. It was built by re-splitting the VQA v2
dataset [20] such that the joint distribution of answers and question prefixes differs between training
and testing (see Fig. 1). Considerable effort has been put into methods specifically designed to
improve performance on VQA-CP [3, 10, 12, 22, 32, 36, 41]. Unfortunately, we discovered multiple
flaws in the experimental setup and design of many of these methods.

This paper exposes three critical issues. First, almost all published methods evaluated on VQA-CP are
designed for high performance specifically on its OOD test set. They rely on the known construction
procedure of the OOD splits (see Fig. 1). Second, since the dataset has no official validation set,
almost all methods use the OOD test set for model selection. Third, the common practice is to verify
that a model performs well on in-domain data, but this is performed after retraining on standard splits
(VQA v2), which exhibit a different label distribution.

This paper discusses how these issues defeat the purpose of an OOD evaluation. The situation
is a striking example of Goodhart’s law: the metrics of the benchmark are gamed in a way that
defeats its original, well-intended purpose. Instead of making advances towards generalization in
vision-and-language, the performance on VQA-CP has been treated as a standalone objective. This
puts the value of many published methods into question. To demonstrate this point, we present several
embarrassingly-simple baselines (including one that draws answers at random) that surpass the state
of the art on some or all question types on VQA-CP.

In summary, the contributions of this paper are as follows.
1. We highlight three major flaws in the experimental setup and in the design of methods for VQA-CP,

and we discuss how they amount to subtly cheating the OOD evaluation.
2. To demonstrate the point concretely, we describe and evaluate embarrassingly-simple methods

that surpass published results on VQA-CP on some or all question types.
3. We provide guidelines for the continued use of VQA-CP to best capture the benefits of OOD

evaluation. We also point at promising directions for the design of future benchmarks.

2 Background
2.1 Visual question answering

VQA involves answering a text question q about an image v with an answer apred. It is typically
treated as a classification task over a large set of candidate answers [39, 44]. Formally, a VQA model
is a function f(q,v) = apred where the question q is a vector of tokens from a predefined vocabulary,
the visual features v are a set of vectors representing visual features of object detection [5], and the
output apred ∈ RK is a vector of predicted scores over a large set of K predefined answers. This
function f(·) is typically implemented as a neural network and trained with supervision on a training
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Figure 2: Statistical dependencies in VQA datasets. When creating VQA-CP (b), the question type
(T ) and answers (A) serve to assign data points to the training or test split (S). A typical VQA model
is trained to approximate P(A |Q,V ). Many methods for VQA-CP exploit dataset-specific priors,
additionally conditioning on T and S and learning P(A |Q,V, T, S).

set T of triplets made of questions, images, and their correct answers: T = {(qi,vi,a
gt
i )}Ni=1. The

ground truth answers agt ∈ (0, 1)K are vectors of scores over the same set of candidate answers as
apred. We use upper-case letters to refer to the random variables representing distributions over the
whole dataset, such that qi ∼ Q, vi ∼ V and agt

i ∼ A.

2.2 Dataset biases

The most popular dataset, VQA v2 [20], is built from human annotators. Therefore, it inevitably
displays strong biases. This includes static biases i.e. non-uniform distributions over individual
modalities (images, questions, or answers). For instance, questions such as What is the person doing
are extremely frequent. The image distribution is also biased. They come from COCO/Flickr [30]
and depict a surprising number of people surfing and playing Wii, for example. The images also
focus on the 80 object classes annotated in COCO. The dataset also features conditional biases,
i.e. non-uniform conditional distributions. The one most discussed in the literature, known as the
language bias, refers to the distribution of answers given the questions. It makes answers easy to
guess without considering the image [3, 21, 28], a form of “shortcut learning” [18].

2.3 The VQA-CP dataset

The VQA-CP dataset (for Changing Priors) was designed to evaluate VQA models in a setting where
they cannot rely on language biases. The benchmark penalizes models for predictions that agree
with the language biases present in the training data. The dataset was built by reorganizing the
training/test splits of VQA v2 as follows. The questions are assigned to one of 65 question types
according to their prefix (first few words). The prefixes were defined in [20]. All question/image/an-
swer triplets are then clustered according to the combination of prefix and answer. The clusters
are randomly assigned to the training/test splits, while ensuring that most words appearing in test
questions also appear in some of the training questions (see [3] for details).

To formally understand the issues with VQA-CP, it is useful to identify the statistical dependencies
within the dataset. In Fig. 2a, we use Bayesian networks to represent the dependencies between
the distributions of questions, visual features, and answers, i.e. the random variables Q, V , and A,
respectively. The random variables represent distributions over the union of all splits of a dataset.
The examples in the dataset are samples for an underlying distribution P (A,Q, V ).

– In VQA v2, the samples are assigned randomly to the training and test splits. We formal-
ize this as an additional random variable S ∈ {train, test}. Since S is independent, we have
P(A |Q,V, S=train) ≈ P(A |Q,V, T=test). This means there is no significant distribution shift
between the training and test sets.

– In VQA-CP, in contrast, the assignment of a sample to the training or test split depends on its
question type t ∼ T ∈ {1, 2, ..., 65} and answer agt ∼ A. Now S is dependent on T and A
(Fig. 2b). This fulfills the aim of creating OOD splits, which is to make the joint distribution of
questions and answers differ between training and test time i.e. P(Q,A) 6= P(Q,A |T ).

When learning a VQA model, one normally seeks to approximate P(A |Q,V ). The first issue
discussed below (Section 3.1) is that models for VQA-CP are often conditioned on T and/or S,
i.e. they learn P(A |Q,V, T, S). This fits the data-generating process of VQA-CP but it exploits
dependencies that are idiosyncratic to VQA-CP.
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3 Existing methods for VQA-CP and their issues

The VQA-CP dataset has sparked much research to address the excessive reliance on the language
bias of existing models. Several proposed methods rely on compensating for question-answer
distribution patterns [10, 12, 14, 36, 22]. This is typically achieved with a regularizer based off an
auxiliary model that is trained to predict answers from the question alone, without access to image
features [10, 12, 22, 36]. Other works [37, 43] have used additional supervision from human attention
maps to encourage a model to use relevant image regions. Jing et al. [26] proposed to use the question
to pre-select a shortlist of potential answers and relevant image regions, and to predict the final
answer with a separate module having no direct access to the question. Other recent works focused
on synthesizing counterfactual examples to improve robustness in VQA-CP [1, 11, 13].

Table 1: Selection of methods and their main issues.

Issue 1 Issue 2 Issue 3
Rely on
dataset

construction

Use
question

type/prefix

Use test set
for model
selection

Retrain for
in-domain
evaluation

Question-based regularization
Ramakrishnan et al. [36]
Grand and Belinkov [22]
RUBi [10]
Learned-Mixin [12]

With additional annotations to improve visual grounding
HINT [37]
SCR [43]

Other methods
GVQA [3]
Decomposed linguistic repr. [26]
Actively Seeking [41]
Unshuffling [14]
Gradient supervision [13]

The performance of methods pro-
posed for VQA-CP has steadily
increased over time. However,
most of these methods were
specifically designed for VQA-
CP (e.g. [10, 22, 36, 26]). We
argue that targeting the improve-
ment of accuracy on VQA-CP
as a sole objective is misguided.
Indeed, we have identified three
common practices that allow
one to obtain a high accuracy
while sidestepping the original
intent of the benchmark. A
summary of existing methods
and their issues is given in Ta-
ble 1.

3.1 Issue 1: Relying on the known construction of the OOD splits

Most methods for VQA-CP exploit the knowledge that the answers are distributed differently
in the test set according to the questions’ prefix (Section 2.3), either by design or inadvertently.
This includes methods that simply aim to reduce the general dependence of the predicted answer
on the question [10, 26, 36] or, more alarmingly, methods that directly use the question prefix
information; even to the point of using the ground truth annotations that was originally used to create
the dataset[26]. While this is effective for maximizing the accuracy on the test set, the resulting model
is unlikely to generalize beyond the particular setup of VQA-CP. Many of these methods would either
fail or require considerable rework if the dataset had bias stemming from other sources (sentiment,
object-attribute, images, etc.).

Teney et al. [14] acknowledge the issue. The “unshuffling” technique can be applied on multiple
sets of feature, but, unsurprisingly, unshuffling using the ground truth question prefix maximizes the
accuracy on the VQA-CP test set. While the same technique could be used to reduce reliance on
other types of biases, it would not be visible on VQA-CP.

A related, but more subtle issue than using the prefixes, is to exploit the fact that the distributions
of answers given a prefix are approximately inverse of each other between training and testing
(see Fig. 3, and 6 in the supplementary material). This systematic relation is highly artificial but and
exploiting it is very effective on this particular dataset (see Section 5). More troublesome, a method
may rely on this heuristic only implicitly, as a consequence of issue 2.

3.2 Issue 2: Using the test set for model selection

Many methods use the OOD test set of VQA-CP in place of a validation set since the dataset only
defines official training and test sets. This goes against widely accepted “best practice” in ML to
reserve the test set for the final evaluation of a model so as to avoid adaptive overfitting [9, 15]. A
validation set is a practical necessity for debugging, tuning hyperparameters, early stopping, etc..
OOD benchmarks bring the additional challenge that an ideal validation set cannot be trivially held
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Figure 3: Histograms of the most frequent answers for examples of question prefixes in VQA v2 and
VQA-CP. The training/test distributions in VQA-CP are approximately inverses of one another. This
artefact is often exploited to obtain artificially-strong performance, explicitly (issue 1) or implicitly
(issue 2). Unfortunately, in-domain evaluation on VQA v2 does not reveal this behaviour (issue 3)
because it displays a more uniform distribution of answers (additional examples in supp. mat.).

out from the training data, because it would not reflect OOD conditions. The absence of an OOD
validation set has been used as justification to use the test set for model selection by authors who
do recognize it to be problematic [22]. Others [22, 14, 41] build a validation set held out from the
training data. Even though it cannot predict OOD performance, the authors reported it to be suitable
for hyperparameter tuning [14] and early stopping [22].

In Section 5, we show that hyperparameter tuning and early stopping have a massive influence
on the accuracy on yes/no and number (Nb) questions. Using the test data for model selection is
therefore a subtle form of overfitting and it leads to an artificially inflated performance on the test set.
Since an OOD benchmark fundamentally aims at simulating a situation where the distribution
of the test data is unknown, this practice defeats the purpose of the benchmark. In comparison to
standard IID splits, the risk of adaptive overfitting is magnified with OOD splits because the optimal
hyperparameters best suited to the test set are likely to greatly differ from those that are best for the
training data.

3.3 Issue 3: Evaluating in-domain performance after retraining

OOD Performance is essentially a proxy measure of generalization, and it is therefore important that
a model remains simultaneously effective on in-domain data. However, almost all works evaluated on
VQA-CP monitor in-domain performance after retraining the model on VQA v2 which effectively
means evaluating two different copies of the model, each optimized on a different training set. The
intention is to make the in-domain performance serve the separate purpose of being comparable with
existing models evaluated on VQA v2. The subtle issue is that a method can behave differently
depending on the distribution of labels in the training data.

This is precisely the case between VQA v2 and VQA-CP. VQA v2 was specifically designed such
each question is paired with two images leading to different answers. Antagonist answers like yes
and no) are thus similarly likely. VQA-CP, by construction, breaks this property (see Fig. 3).

As detailed in issue 1, many methods invert the distribution of answers between training and testing
(implicitly or explicitly). This means they rely on the non-uniform distribution of answers in VQA-CP.
When retrained on VQA v2, the training distribution is more balanced and the effect of these methods
is correspondingly scaled down. As shown in Section 5, the performance of methods trained on VQA-
CP significantly drop on in-domain data which indicates limited benefits in overall generalization).
This effect is however not visible when retraining on VQA v2.

4 Proposed methods
We describe simple, strong baselines on VQA-CP. They are of no real-world utility by construction.
They serve to evaluate the extent to which high performance can be obtained by exploiting the issues
described above.

• Random predictions. This method samples answers at random according to the distribution of
answers observed per individual question type in the training set. A question q is associated to
a type t ∈ {0, 1, ..., 65} by trivially matching its first few words with the set of 65 prefixes defined
in [20]. We use a function t = matchPrefix(q) that performs longest-string matching with these
known prefixes. The method is “trained” by accumulating an empirical estimate of P(A |T ) over
the training set, i.e. a 2D histogram H ∈ N65×K . At test time, for a question q of prefix p, the
method samples an index k of a candidate answer from P(A |T=t). The method outputs a one-hot
vector of scores apred such that apred[k] = 1 and 0 elsewhere, where [k] denotes the kth element.
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• Random predictions, inverted. This variation exploits the knowledge that the distribution over
the test data is approximately proportional to the inverse of the distribution over the training
data, i.e. P(A |P, S=train) ∝∼ 1/P(A |P, S=test). After accumulating H as described above,
we compute H̄ = 1/H . The empty bins in H stay empty in H̄ (combinations of answers and
question types never observed together in the training data). At test time, we sample answers using
H̄ instead of H .

• Learned baseline. This method is the standard bottom-up-top-down attention (BUTD) model [40]
trained with a binary cross-entropy loss LBCE. Our notation f(·) represents the network without a
sigmoid or softmax activation and apred represents the logits apred = f(q,v).

• Learned, top answer masked. This variation exploits the heuristic that the answer most strongly
correlated with a given question or image is unlikely to be the same in the training and test sets.
The method assigns, at test time, the lowest possible score to the answer of highest predicted score,
such that apred[k] ← −∞ where k=arg max(apred).

• Learned, with random-image regularizer. This is a simple version of adversarial regulariza-
tion [10, 12, 32, 36] similar to the “random premise” model [8] proposed for natural language
inference. The goal is to discourage the model from making predictions that agree with the language
bias P(A |Q) observed during training. We augment the training data T = {(qi,vi,a

gt
i )}Ni=1 with

a copy of the same questions paired with random visual features ṽi: T ′ = {(qi, ṽi,a
gt
i )}Ni=1. In

practice, we get each ṽi by randomly sampling from the visual features of other questions in the
current mini-batch. We define an auxiliary loss to apply on T ′:

Laux(apred,agt) = softmax(apred)[k] where k = arg max(agt) . (1)
Minimizing Laux encourages the score of the correct answer (k) to be low, since no supporting
visual evidence is provided. The softmax makes this particular score depend on the scores of the
other, incorrect answers. Therefore, the loss simultaneously encourages these other scores to be
high. We minimize the main loss LBCE over T and the auxiliary loss Laux over T ′:

min
( N∑
i=1

LBCE

(
f(qi,vi), a

gt
i

)
+ λ

N∑
i=1

Laux

(
f(qi, ṽi), a

gt
i

))
(2)

with λ a scalar hyperparameter. Each mini-batch contains an equal number of instances from T
and T ′. This model is simpler to implement than existing versions of adversarial regularization
since it uses the same architecture for the main and question-only predictions, and it does not
requires gradient splitting or reversal.

5 Experiments
Setup. Each model is trained on VQA-CP and VQA v2. On VQA-CP, we hold out 8,000 instances
from the training set (VQA-CP val.) to measure in-domain performance as proposed in [22, 14, 41].
Please refer to the supplementary material for additional details.

Results. Our random predictions give a relatively high accuracy on yes/no/nb on VQA-CP val.
but low accuracy on VQA-CP test (see Table 2). This is expected: sampling from the training
distribution is effective on the in-domain validation set but not on the OOD test set. The random pre-
dictions, inverted show the opposite. They give a remarkably high accuracy on VQA-CP test: >83%
on yes/no and >49% on nb, both of which are superior to the state of the art on these questions. This
accuracy however comes with a corresponding drop on the validation set. The trade-off between
in-domain and OOD performance can only be assessed thanks to the validation set that we held out
from the training data. The evaluation on VQA v2, which involves retraining the model and is the
usual practice (rightmost columns in Table 2) completely hides this large drop in performance. Note
also that the accuracy on other questions is near zero. Their set of plausible answers is so large that
random sampling is unlikely to pick correct ones by chance. Random predictions have no practical
utility, but these results demonstrate that high accuracy on yes/no/nb questions can be obtained
without any reasoning over text or images by simply exploiting knowledge about the dataset that
the existing methods also utilize.

We now look at the learned models. Top answer masked is remarkably effective on VQA-CP test:
it improves from 43% (baseline) to 82% on yes/no and from 12% to 27% on nb. It is almost as
effective on yes/no as the random predictions, while retaining some accuracy on the other questions.
However, the accuracy on VQA-CP val. is extremely low. This trade-off between in-domain and OOD
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Table 2: Accuracy of existing and proposed methods (%). Remarkably, the “random predictions
inverted” surpass all other methods on yes/no/number. Highlighted cells are mentioned in the text.
We recommend future comparisons to cite results trained on other questions alone (see supp. mat.).

Training set→ VQA-CP Training VQA v2 Training

Test set→ VQA-CP Val. (in-domain) VQA-CP Test (OOD) VQA v2 Val. (in-domain)
All YesNo Nb Other All YesNo Nb Other All YesNo Nb Other

GVQA [3] – – – – 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
Ramakrishnan et al. [36] – – – – 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
Learned-Mixin [12] – – – – 48.78 72.78 14.61 45.58 63.26 81.16 42.22 55.22
Learned-Mixin+H [12] – – – – 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69
RUBi [10] – – – – 47.11 68.65 20.28 43.18 61.16 – – –
Grand and Belinkov [22] 56.90 69.23 42.50 49.36 42.33 59.74 14.78 40.76 51.92 – – –
Actively seeking [41] – – – – 46.00 58.24 29.49 44.33 – – – –
Unshuffling [14] – – – – 42.39 47.72 14.43 47.24 – – – –
Gradient supervision [13] 62.4 77.8 43.8 53.6 46.8 64.5 15.3 45.9 46.2 63.5 10.5 41.4

Random predictions 37.62 70.10 32.79 10.55 10.44 25.87 9.27 2.57 31.98 65.55 22.55 7.95
Random predictions, inverted 24.35 55.36 11.12 0.00 31.81 83.25 49.30 0.02 27.52 64.11 21.16 0.02

Learned baseline (BUTD) 64.73 79.45 49.59 55.66 38.82 42.98 12.18 43.95 59.93 77.66 36.85 52.41
+ Top answer masked 30.90 44.12 25.00 20.85 40.61 82.44 27.63 22.26 31.84 48.22 25.78 20.62
+ RandImg λ=5 (best on CP test other) 59.28 70.66 43.06 53.40 51.15 75.06 24.30 45.99 59.22 77.46 35.13 51.58
+ RandImg λ=12 (best on CP test overall) 54.24 64.22 34.40 50.46 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57
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Figure 4: Accuracy of the random-image regularizer. A higher weight (λ) seemingly improves the
accuracy on the OOD test set but the in-domain accuracy simultaneously drops. This can be assessed
with the proposed held-out validation set (left), while the common practice of retraining on VQA v2
(right) makes the effect far less obvious. See the supp. material for a breakdown by answer type.

performance shows again that the performance of the model has not improved overall. The random-
image regularizer is the closest of our methods to previously published works [10, 12, 22, 36]. The
regularizer weight λ allows tuning the trade-off between in-domain and OOD performance. We plot
in Fig. 4 and Fig. 5 (in the supp. mat.) the accuracy as a function of λ. Three main observations can
be drawn about this type of regularization. (1) It is most impactful on the yes/no/nb questions. With a
large λ, the accuracy on the OOD test set approaches that of random predictions but does not surpass
it. (2) It improves the accuracy on the other questions to a much smaller extent. There is a sweet
spot for λ that causes only a small drop in in-domain accuracy, suggesting an actual improvement in
generalization. The sweet spot cannot be identified from the overall accuracy however, because it is
dominated by the misleading effects on yes/no/nb. (3) The trade-off between in-domain and OOD
performance is obvious with our held-out validation set, but it is near-impossible to assess through
the usual practice of retraining on VQA v2.

Upon examination of existing methods (Table 2), we notice that a large fraction of claimed OOD
improvements are attributable to yes/no/nb questions. Most methods are tuned for maximum overall
accuracy, which puts emphasis on yes/no/nb rather than on the more difficult other questions. This
means that the results reported in most papers do not reflect the true potential of existing
methods12 with the exception of those tuned in isolation on other questions [13, 14, 41]. For future
reference, we report the performance of these methods, trained and evaluated on other questions
alone (see Table 3 in the supplementary material).

1There are non-intuitive implications to random predictions being better than a trained model. A model may
perform best before training or in the early phases of optimization, rather than after convergence.

2A simple classifier can identify the type of answer (yes/no, nb, other) of >99% questions [27]. The accuracy
of existing methods can thus be maximized by tuning them on other and using our strongest baseline for
yes/no/nb.
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6 Recommendations and discussion
Recommendations for using VQA-CP. We believe that VQA-CP remains one of several useful
benchmarks to measure progress on VQA. We make recommendations for its continued use, aiming
at capturing its original purpose of measuring generalization and resistance to language biases.

• The same model should be evaluated against in-domain and OOD data (same training, same
hyperparameters). The current practice of retraining on VQA v2 is not acceptable to measure
in-domain performance. We recommend holding out a random subset of 8k instances from the
VQA-CP training data to evaluate in-domain performance to make it comparable to some existing
works (see [41, 14] in Table 2).
• We recommend focusing the analysis on other questions exclusively. Questions with yes/no/nb

answers are easier to game e.g. by implicit or explicit random guessing, while other questions
are much less likely to be answered correctly with a naive or malfunctioning method. Training
methods on other questions alone is acceptable, roughly halves the training time, and usually raises
performance slightly on these questions (see supp. mat.).

• Care should be paid to the analysis of the source of improvements of any proposed method (as
done retrospectively in [38] for HINT and SCR). For example, baselines should be tuned with as
much care as the proposed method. The effect size of a regularizer should be shown to correlate
with the weight of the regularizer. Quantitative improvements of small magnitude should be
reported as averages across multiple runs with different random seeds.

Recommendations for future datasets. Evaluating generalization beyond the biases of a particular
dataset is a challenging problem. We point at a few directions applicable beyond the context of VQA.

• Benchmarks with OOD test sets should cover varying levels and types of distributional shifts.
A weakness of VQA-CP is to test for only one specific type of controlled correlation (question
prefix/answer). An improvement would be to provide multiple training/test splits that probe
the gamut from in-domain testing (IID splits) to extreme OOD, and across various confounders
(e.g. correlations between visual concepts and language).
• A single aggregate metric may not be sufficient. In the case of multiple training/test splits, a model

has to improve on a range of settings to be deemed valuable. Given the many ways in which
current models can improve, the overall accuracy may not sufficient. Multidimensional reports
(e.g. radar plots) may better convey the advantages of different methods in different settings.
• Another direction to evaluate generalization is to probe a model’s behaviour densely near its

decision boundaries. Datasets of counterfactual examples (a.k.a. contrastive) [2, 17, 13] contain
alternate questions and/or images. They serve to verify that a model’s decision changes in accor-
dance to these interventions. This probes for a causal model of the predictions P(apred | do(Q, I))
rather than the traditional correlation-based view P(apred |Q, I) [34].

Discussion. This paper focused on three major issues that prevent realizing the full potential of
OOD evaluation. Other issues exist, for example the possibility of subtle data leakage. We noted that
the annotations of human attention used in [37, 43] allow accessing a distribution of labels during
training closer to the OOD test set than to that of the original training set. The annotations are only
available for a subset of the training questions that happens to be biased. The benefit that the methods
using these annotations obtain from this bias has not been investigated, to our knowledge. Such subtle
effects warrant greater care with OOD splits than with standard ones because a biased distribution is
unlikely to provide an unfair advantage in the latter case.

A general solution to the subtle issues involved with OOD benchmarks is to raise the standards of
scientific investigation [16], statistical reporting, and analysis [19, 24] as previously suggested in other
areas of machine learning [31, 35]. The publication of empirical results often hinges on the scores
obtained on top benchmarks, and yet a rigorous statistical analysis is seldom conducted [16, 24].
For example, few authors currently repeat their experiments with multiple random seeds, even when
differences in performance across methods lie within the variance attributable to stochastic training.
A lot of efforts in ML research are directed towards specific datasets and benchmarks, and it is
therefore important that the experimental practices acceptable on these benchmarks incentivize
valuable research. The onus falls not only on the dataset creators, but also on the authors of novel
methods. Blindly optimizing a single metric is seldom a recipe for broadly applicable methods, and
should rarely be the driving factor of a research project. The rising awareness of the need for more
rigour in ML research is encouraging [16, 31, 33, 35]. We hope that this paper contributes to this
trend of self-reflection and constructive criticism of common practices.
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