
Algorithm 4 Execution of tree policy T : T .get action

Input: Tree policy T using classifiers {fv} ⊂ (F → {left, right}), context x.
Let v← T .root.
while v is an internal node of T do
v← v.fv(x)

return a← label(v), the action label of v.

A Additional Notation

Throughout the appendices, we will use all notation from Section 2, without further recap, as
well as some additional notation presented below. For a policy π, define V (π) = λ0(π) =
E(x,`)∼DEa∼π(·|x) [`(a)] to be its expected loss. We will use the notations V (π) and λ0(π) in-
terchangably throughout the appendix.

For a subset of indices B ⊂ [n] and a policy π, denote by V̂B(πh) = 1
|B|
∑
s∈B

πh(as|xs)
Ps(as|xs) `s(as).

For a general policy class Π ⊂ (X → A), we define the h-smoothed regret of an algorithm against
Π for a time horizon of T as:

Reg(T,Π, h) ,
T∑
t=1

E [`t(at)]− T inf
π∈Π

λh(π) =

T∑
t=1

E [`t(at)]− T inf
π∈Π

V (πh).

We will be using the following property of logged data, which has the essential independence struc-
ture to guarantee the quality of the model trained with Train tree on its induced CSMC examples
using IPS.
Definition 8 (Well-formed logged data). The logged data {(xs, as, Ps(as | xs), `s(as))}ns=1 is said
to be pmin-well-formed, if it is generated by the following process: (xs, `s)

n
s=1 are drawn iid from

D, action distribution Ps(· | ·) depends only on (xs′ , as′ , `s′)
s−1
s′=1, Ps(a | x) ≥ pmin for all a ∈ A,

x ∈ X , and s ∈ [n].

A formal description of the execution of tree policies, i.e. T .get action(x), is given in Algo-
rithm 4.

B Proofs of Theorems 6 and 7

In this section, we first prove a key lemma, namely Lemma 9, and use it to show Theorems 6 and 7
in the main text respectively.

B.1 Off-policy optimization guarantees on trees with well-formed logged data

Recall that F is a class of binary classifiers, and D is a distribution over (context, loss) pairs. In
words, this lemma states that, under realizability and the well-formedness property of the logged
data, training using Train tree based on its induced IPS CSMC examples yields a tree policy that
has a h-smoothed loss competitive with any tree policy in tree class FK .
Lemma 9 (Off-policy optimization with tree classes under realizability). Suppose:

1. (F ,D) is (h,K)-realizable for h > 0, K = 2D for some D in N.

2. The logged data {(xs, as, Ps(as | xs), `s(as))}ns=1 is pmin-well-formed.

In addition, Algorithm 2 is run with dataset S = {(xs, c̃s)}ns=1 (a set of CSMC examples induced by
the logged data using IPS; see Section 2 for the definition of c̃s), bandwidth h, discretization level
K, base class F . Then, with probability 1− δ, the policy T returned is such that:

V (Th) ≤ min
T ′∈FK

V (T ′h) + 20

√
K2 logK

npminh
·
(

ln
2nK |F|

δ

)

13

Proof of Lemma 9. We will show the following claim: for every node v in T , there exists an event
Ev that happens with probability at least 1− δ|T v|/2K, in which

E
[
E[`h(T v(x)) | x]− min

a∈range(T v)
E[`h(a) | x]

]
= E [`h(T v(x))]− E

[
min

a∈range(T v)
E[`h(a) | x]

]

≤ |T v|

8

√
ln 2n′K|F|

δ

n′pminh
+ 4

ln 2n′K|F|
δ

n′pminh

 , (2)

where |T v| is the total number of nodes in subtree T v (including internal nodes and leaves), and
n′ = n

logK is the number of examples for training at each level of T . As T is a complete binary tree
with K − 1 internal nodes and K leaves,|T v| = 2K − 1. To see why it completes the proof, we set
v to be the root of T . In this case, we get that with probability 1− δ|T |/2K ≥ 1− δ,

E [`h(T (x))]− E
[

min
a∈AK

E[`h(a) | x]

]
≤ (2K − 1) ·

8

√
ln 2n′K|F|

δ

n′pminh
+ 4

ln 2n′K|F|
δ

n′pminh

 .

Observing that as range(T ′) = AK for all T ′ in FK , we have that E [mina∈AK E[`h(a) | x]] ≤
minT ′∈FK E [E[`h(T ′(x)) | x]] = minT ′∈FK V (Th). In conjunction with the fact that n

2 logK ≤
n′ ≤ n, we get that

E [`h(T (x))]− min
T ′∈FK

E [`h(T ′(x))] ≤

16

√
K2 logK ln 2nK|F|

δ

npminh
+

8K logK ln 2nK|F|
δ

npminh

 .

The lemma follows, because if 8K logK ln
2nK|F|

δ

npminh
≥ 1

2 , the lemma statement is trivially true, as

the right hand is at least 1, and the left hand side is at most 1; otherwise, 8K logK ln
2nK|F|

δ

npminh
≤

4

√
K logK ln

2nK|F|
δ

npminh
, in which case the right hand side is at most 20

√
K2 logK ln

2nK|F|
δ

npminh
.

Next we turn to show the above claim by induction.

Base case. If v is of depth D − 1, i.e. it is the parent of a pair of leaves l , v.left ∈ AK
and r , v.right ∈ AK , then cv(left) = c̃(label(l)), cv(right) = c̃(label(r)). In addition,
range(T v) = {label(l), label(r)}. Given a classifier f : X → {left, right} in F , we define its
induced tree policy at node v, πf : X → AK , as: πf (x) = label(v.f(x)).

Observe that the CSMC examples
{

(xs, c̃
h
s)
}
s∈BD−1

(where BD−1 = [n′]) can be viewed as in-
duced by a set of pmin-well-formed logged data {(xs, as, Ps(as | xs), `s(as))}s∈BD−1

using IPS.
From Lemma 16 in Appendix E, we have that there exists an event Ev such that P(Ev) ≥ 1− δ/K,
on which for all f in F ,∣∣∣V̂BH−1

(πf,h)− V (πf,h)
∣∣∣ ≤

4

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 2

ln |F|+ ln 2n′K
δ

n′pminh

 . (3)

We henceforth condition on Ev happening.

Observe that V̂BD−1
(πf,h) = ESv [cv(f(x))]; As fv = argminf∈F ESv [cv(f(x))], we have that:

V̂BD−1
(πfv,h) ≤ V̂BD−1

(πfv,?,h) for fv,? defined in Definition 5. This fact, in conjunction with
Equation (3), gives that

V (πfv,h)− V (πfv,?,h) ≤

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 .

Also, by Definition 5, V (πfv,?,h) = E [`h(πfv,?(x))] = E [`h(label(v.fv,?(x)))] =
E
[
mina∈range(T v) E[c(a) | x]

]
. In addition, by the definition of πf , T v = πfv . Therefore,

E[`h(T v(x))]− E
[

min
a∈range(T v)

E[`h(a) | x]

]
≤

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 ,

14

proving the base case.

Inductive case. Suppose that the results holds for all nodes v at level≥ d+ 1. For node v at depth
d, suppose l = v.left and r = v.right are its two children at level d+1. In this notation, given an
IPS CSMC example (x, c̃) in Bd, cv(left) = c̃(T l(x)), cv(right) = c̃(T r(x)). Given a classifier
f : X → {left, right} in F , and the subtree policies T l, T r, we define its induced tree policy at
v, πf : X → AK as: πf (x) = T v.f(x)(x).

First, consider the training of classifier fv at node v. We note that given logged data with indices
∪H−1
d′=d+1Bd′ = [(H − d − 1)n′] used to learn downstream classifiers in internal nodes of Tl and
Tr, the CSMC examples

{
(xs, c̃

h
s)
}
s∈Bl

can be viewed as induced by a set of pmin-well-formed
logged data {(xs, as, Ps(as | xs), `s(as))}s∈Bd using IPS (See Definition 8). Therefore, applying
Lemma 16, we get that there exists an event E1

v such that P(E1
v) ≥ 1− δ/K, on which for all f in F ,∣∣∣V̂Bd(πf,h)− V (πf,h)

∣∣∣ ≤
4

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 2

ln |F|+ ln 2n′K
δ

n′pminh

 . (4)

In addition, by inductive hypothesis, we have that there exists two eventsEl andEr, happening with
probability 1− |Tl|δ/2K and 1− |Tr|δ/2K respectively, in which

E
[
E[`h(T l(x))]|x]− min

a∈range(T l)
E[`h(a)|x]

]

≤ |Tl|

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 , (5)

and

E
[
E[`h(T r(x))]|x]− min

a∈range(T r)
E[`h(a)|x]

]

≤ |Tr|

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 , (6)

holds respectively. We define Ev = E1
v ∩ El ∩ Er. By union bound, P(Ev) ≥ 1 − |Tv|/2K. We

henceforth condition on Ev happening.

First, we note that by Equation (4) and the optimality of πfv,h, V̂Bd(πfv,h) ≤ V̂Bd(πfv,?,h) for fv,?
defined in Definition 5. This fact, in conjunction with Equation (4), gives that

E [`h(T v(x))]− E
[
`h(T v.fv,?(x)(x))

]
= V (πfv,h)− V (πfv,?,h)

≤

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 . (7)

We have the following inequalities:

E
[
`h(T v.fv,?(x)(x))

]
= E

[
E[`h(T l(x))|x] 1I(fv,?(x) = left) + E[`h(T r(x))|x] 1I(fv,?(x) = right)

]
≤ E

[
min

a∈range(T l)
E[c(a)|x] 1I(fv,?(x) = left)

]
+ E

[
min

a∈range(T r)
E[c(a)|x] 1I(fv,?(x) = right)

]

+(|T l|+ |T r|)

8

√
ln |F|+ ln n′K

δ

n′pminh
+ 4

ln |F|+ ln n′K
δ

n′pminh


≤ E

[
min

a∈range(T v)
E[c(a)|x]

]
+ (|T l|+ |T r|)

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 . (8)

15

where the first inequality is from Equations (5) and (6), the second inequality is from the (h,K)-
realizability assumption.

Therefore, combining Equations (7) and (8), we get

E [`h(T v(x))]− E
[

min
a∈range(T v)

E[`h(a)|x]

]

≤ (1 + |T l|+ |T r|)

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh


= |T v|

8

√
ln |F|+ ln 2n′K

δ

n′pminh
+ 4

ln |F|+ ln 2n′K
δ

n′pminh

 .

This completes the induction, and proves the claim.

B.2 Proof of Theorem 6

We first give a formal statement of Theorem 6 in the theorem below.
Theorem 10. Suppose Algorithm 1 is run with greedy parameter ε, smoothing parameter h, dis-
cretization scale K, and base hypothesis class F . In addition, suppose (F ,D) is (h,K)-realizable.
Then with probability 1− δ, it has h-smoothed regret against F∞ bounded as:

Reg(T,F∞, h) ≤ O

((
ε+

1

Kh

)
T +K

√
T

εh
·
(

ln
|F|
δ

))
.

Taking ε =

(
ln
|F|
δ

Th3

)1/5

, K =

(
T

h2 ln
|F|
δ

)1/5

, we have Reg(T,F∞, h) ≤ O
((

T 4 ln
|F|
δ /h3

)1/5
)
.

Proof of Theorem 10. We will show that with probability 1− δ,

Reg(T,FK , h) ≤ O

(
εT +K

√
T

εh
·
(

ln
2TK |F|

δ

))
,

to see why this completes the proof, we observe that for any policy T in F∞, there is a policy TK
in FK , such that |TK(x)− T (x)| ≤ 1

K : we can take TK to be a truncation of T that only keeps its
top logK levels. In addition, as `h is 1/h-Lipschitz, we have

E [`h(TK(x))] ≤ E [`h(T (x))] +
1

Kh
.

This implies that minT ∈FK E [`h(T (x))] ≤ minT ′∈F∞ E [`h(T ′(x))] + 1
Kh . As a result,

Reg(T,F∞, h) ≤ Reg(T,FK , h) +
T

Kh
= O

((
ε+

1

Kh

)
T +K

√
T

εh
·
(

ln
2TK |F|

δ

))
.

We now come back to the proof of the above claim. First observe that the h-smoothed regret can be
rewritten as:

Reg(T,FK , h) =

T∑
t=1

(
E [`t(at)]− min

T ′∈FK
V (T ′h)

)
. (9)

Let πt+1 denote the tree T at the beginning of time step t+1, which is learned from CSMC examples
{(xs, c̃s)}ts=1 by Train tree. Define event

E =

{
for all time steps t in [T − 1], V (πt+1,h) ≤ min

T ′∈FK
V (T ′h) + 20

√
K2 logK

εht
·
(

ln
2TK |F|

δ

)}
.

16

From Lemma 9 with pmin = ε, δ′ = δ
T , and a union bound over all t ∈ [T], we get that P(E) ≥ 1−δ.

Now, conditioned on event E happening, we conclude the regret bound. We first have the following
upper bound on the algorithm’s instantaneous loss at time t, namely E [`t(at)]:

E[`t(at)] = (1− ε) · E(xt,`t)∼DEa∼πt,h(·|xt)[`t(a)] + ε · E(xt,`t)∼DEa∼U(A)[`t(a)]

≤ V (πt,h) + ε. (10)

Therefore, for all t ∈ {2, . . . , T}, we have

E[`t(at)] ≤ ε+ min
T ′∈FK

V (T ′h) + 20

√
K2 logK

εh(t− 1)
·
(

ln
2TK |F|

δ

)
(11)

We now conclude the regret bound:

Reg(FK , T, h) =

T∑
t=1

(
E[`t(at)]− min

T ′∈FK
V (T ′h)

)

≤ 1 + ε(T − 1) +
T∑
t=2

20

√
K2 logK

εh(t− 1)
·
(

ln
2TK |F|

δ

)

≤ 1 + εT + 40 ·

√
TK2 logK

εh
·
(

ln
2TK |F|

δ

)
.

where the first inequality uses the fact that E[`t(at)] −minT ′∈FK V (T ′h) is at most 1 if t = 1, and

is at most ε + 20

√
K2 logK
εh(t−1) ·

(
ln 2TK|F|

δ

)
if t ≥ 2, and the second inequality uses the fact that∑T−1

t=1
1√
t
≤ 2
√
T . The theorem follows.

B.3 Proof of Theorem 7

We first give a formal statement of Theorem 7 below.
Theorem 11. Suppose Algorithm 3 is run with a set of pmin-well-formed logged data
{xt, at, Pt(at | xt), `t(at)}Tt=1, set of (bandwidth, discretization) combinations J ⊂ [0, 1] × 2N,
base hypothesis class F . In addition, suppose (F ,D) is (h,K)-realizable for all (h,K) ∈ J .
Then, with probability 1− δ, its returned policy π̂ ensures:

λ0(π̂) ≤ min
(h,K)∈J ,π∈FK

(
λh(π) +O

(
K

√
ln
|F||J |
δ /(pminhT)

))
.

Proof of Theorem 11. For every (h,K) in J , recall that T h,Kt denotes the policy trained by
CATS Off at the beginning of iteration t for that (h,K) combination.

Define events

E1 =
{
∀(h,K) ∈ J ,∀t ∈ [T − 1], V (T h,Kt+1,h) ≤ min

T ′∈FK
V (T ′h)

+ 20

√
K2 logK

pminht
·
(

ln
4TK |F| |J |

δ

)}

E2 =
{
∀(h,K) ∈ J ,∀t ∈ [T],

∣∣∣∣∣ 1

T

T∑
t=1

c̃ht (T h,Kt (xt))−
1

T

T∑
t=1

V (T h,Kt,h)

∣∣∣∣∣
≤ 8

√√√√(1

T

T∑
t=1

V (T h,Kt,h)

)
·

ln 2T |J |
δ

pminhT
+ 4

ln 4T |J |
δ

pminhT

}

17

From Lemma 9 in Appendix E and union bound, we know that P(E1) ≥ 1 − δ
2 ; from Lemma 16,

item 1 and union bound over all (h,K) ∈ J , we get that P(E2) ≥ 1− δ
2 . Define eventE , E1∩E2.

By union bound, P(E) ≥ 1− δ. We henceforth condition on event E happening.

We denote ĝ(h,K) , 1
T

∑T
t=1 c̃

h
t (T h,Kt (xt)), g(h,K) , 1

T

∑T
t=1 V (T h,Kt,h), σ(h,K) ,

64 ln
4T |J |
δ

pminhT
. Using this notation, and by the definition of E2, for all (h,K) in J ,

|ĝ(h,K)− g(h,K)| ≤
√
g(h,K)σ(h,K) + σ(h,K)

Specifically,
g(h,K) ≤ ĝ(h,K) +

√
ĝ(h,K)σ(h,K) + σ(h,K), (12)

In addition, from the elementary fact that A ≤ B + C
√
A⇒ A ≤ B + C2 + C

√
B, we have

g(h,K) ≤ ĝ(h,K) +
√
ĝ(h,K)σ(h,K) + 3σ(h,K). (13)

By the optimality of ĥ, K̂, for all (h,K) in J ,

ĝ(ĥ, K̂) +

√
ĝ(ĥ, K̂)σ(ĥ, K̂) + 3σ(ĥ, K̂) ≤ ĝ(h,K) +

√
ĝ(h,K)σ(h,K) + 3σ(h,K). (14)

Therefore, we have the following set of inequalities for every h ∈ H and K ∈ K:

g(ĥ, K̂) ≤ ĝ(ĥ, K̂) +

√
ĝ(ĥ, K̂)σ(ĥ, K̂) + 3σ(ĥ, K̂)

≤ ĝ(h,K) +
√
ĝ(h,K)σ(h,K) + 3σ(h,K)

≤ g(h,K) + 3
√
g(h,K)σ(h,K) + 6σ(h,K) (15)

where the first inequality uses Equation (12); the second inequality is from Equation (14), the third
inequality again uses Equation (12) and algebra.

We claim that g(ĥ, K̂) ≤ g(h,K) + 9
√
σ(h,K), because If σ(h,K) ≥ 1, the statement is trivially

true as g(ĥ, K̂) ≤ 1; otherwise, 6σ(h,K) ≤ 6
√
σ(h,K), and the RHS of the above inequality is at

most g(h,K) + (3 + 6)
√
σ(h,K) ≤ g(h,K) + 9

√
σ(h,K).

Rephrasing the above inequality using our previous notation, we have:

1

T

T∑
t=1

V (T ĥ,K̂
t,ĥ

) ≤ 1

T

T∑
t=1

V (T h,Kt,h) + 72

√
ln 4T |J |

δ

pminhT
. (16)

Meanwhile, observe that by the definition of E1, we can bound 1
T

∑T
t=1 V (T h,Kt−1,h) as follows:

1

T

T∑
t=1

V (T h,Kt,h) ≤ min
T ∈FK

V (Th) +
1

T

(
1 +

T−1∑
t=1

44

√
K2 logK

pminht
·
(

ln
4TK |F| |J |

δ

))

≤ min
T ∈FK

V (Th) +
1

T
+ 88

√
K2 logK

pminhT
·
(

ln
4TK |F| |J |

δ

)
(17)

where the first inequality uses the simple fact that V (T h,K0,h) ≤ 1; the second inequality uses the

algebraic fact that
∑T−1
t=1

1√
t
≤ 2
√
T .

Combining Equations (16) and (17), along with some algebra, we get:

1

T

T∑
t=1

V (T ĥ,K̂
t,ĥ

) ≤ min
T ∈FK

V (Th) +
1

T
+ 88

√
K2 logK

pminhT
·
(

ln
4TK |F| |J |

δ

)
+ 72

√
ln 4T |J |

δ

pminhT

≤ min
T ∈FK

V (Th) + 160

√
K2 logK

pminhT
·
(

ln
4TK |F| |J |

δ

)
.

The theorem follows by recognizing that the left hand side is EV (π̂) = Eλ0(π̂), where π̂ is drawn

uniformly at random from
{
T ĥ,K̂
t,ĥ

}T
t=1

.

18

C CATS with adaptive bandwidth

As can be seen from Theorem 6, CATS obtains smoothed regret guarantees with respect to a fixed
value of h; in practice, as different loss function have different smoothness properties, it would be
useful to develop an algorithm that has performance competitive with Th for all T in F∞ and all
h in (0, 1] simultaneously. In this section, we develop a variant of CATS, namely Algorithm 5, that
has such guarantees. Specifically, with appropriate tuning of its greedy parameters, it achieves the
following type of high-probability regret guarantee for some function R in terms of bandwidth h,
number of discretized actions K, base class F , time horizon T :

∀h ∈ [0, 1] � Reg(T,F∞, h) ≤ R(h,K, |F|, T),

under the realizability assumptions stated in Definition 5.

At a high level, Algorithm 5 follows the same outline of Algorithm 1: it has an ε-greedy action
selection step (lines 4 to 5) and has a tree training step (lines 6 to 8). A crucial difference between
Algorithm 5 and Algorithm 1 is that, it now maintains |H| policies

{
T ht
}
h∈H over time as opposed

to only one; to this end, it accumulates |H| CSMC datasets
{{

(xs, c̃
h
s)
}t
s=1

}
h∈H

. After generating

policies
{
T ht
}
h∈H, it selects T htt using structural risk minimization [55] (line 9). This choice of ht

ensures that the expected loss of T htt,ht is competitive with all T ht,h’s. Finally, we remark that the set
of bandwidthH acts as a covering of the [0, 1] interval; as we will see, settingH to be a fine grid as
in Algorithm 5 ensures that for any T in FK , and every h in [0, 1], there exists a h′ in H such that
the optimal Th′ has expected loss close to that of Th.

Algorithm 5 CATS with adaptive bandwidth

Input: Greedy parameter ε, number of discretized actions K = 2D, base class F .
1: LetH =

{
h ∈

{
1

4T 2 ,
2

4T 2 , . . . , 1
}

: h ≥ 1
2T

}
be the set of bandwidths in consideration.

2: Let πt be an arbitrary policy in FK .
3: for t = 1, 2, . . . , T do
4: Define policy Pt(a | x) := (1− ε)πt(a|x) + ε.
5: Observe context xt, select action at ∼ Pt(· | xt), observe cost `t(at).
6: for all h inH do
7: c̃ht (i/K)← Smoothh(at|i/K)

Pt(at|xt) `t(at) for all i.

8: Let T h ← Train tree(
{

(xs, c̃
h
s)
}t
s=1

).

9: Let ht ∈ argminh∈H

(
V̂t(T hh) + 4

√
K ln |F|+ln 8T4

δ

tεh + 2
K ln |F|+ln 8T4

δ

tεh

)
, and let πt+1 =

T htht .

We next present a theorem on the regret guarantee of Algorithm 5.

Theorem 12. Suppose Algorithm 5 is run with greedy parameter ε, number of discretized actions
K, and base class F . In addition, suppose (F ,D) satisfies the (h,K)-realizability assumption for
all h ∈ (0, 1). Then with probability 1− δ, it has uniform h-smoothed regret bounded as:

∀h ∈ [0, 1]�Reg(T,F∞, h) ≤ Õ

(ε+
1

Kh
)T +

√√√√K2 logK · T ·
(

ln |F|δ

)
εh

 .

Specifically, by taking ε =

(
ln
|F|
δ

T

)1/5

, K =

(
T

ln
|F|
δ

)1/5

, we have

∀h ∈ [0, 1] � Reg(T,F∞, h) ≤ Õ

(
1

h
·
(
T 4 ln

|F|
δ

)1/5
)
.

19

Before going into the proof of the theorem, we remark that the only difference between the above
regret guarantee of Algorithm 5 and that of CATS (Theorem 6) is that, the order of h is different (1

h

versus 1
h3/5). This can be seen as a price we pay for adaptivity: Algorithm 5 sets K independent of

h, whereas CATS can set K that depends on h.

Proof sketch. By standard analysis on structural risk minimization [see e.g. 55], and union bound,
it can be shown that with probability 1− δ/2, for all time steps t in [T] and all h ∈ H,

V (T htt,ht) ≤ V (T ht,h) +O


√
K ln T |F|

δ

εht

.
On the other hand, from Lemma 9 and union bound over all time steps t in [T], we have that with
probability 1− δ/2,

V (T ht,h) ≤ min
T ∈FK

V (TK) +O


√√√√K2 logK ·

(
ln T |F|

δ

)
εht

.
Combining the above two inequalities, we have that with probability 1− δ, for all h inH,

V (T htt,ht) ≤ min
T ∈FK

V (TK) +O


√√√√K2 logK ·

(
ln T |F|

δ

)
εht

.
By the setting of H, we can guarantee that the above also implies that the equation above holds for
all h ∈ (0, 1] (see [37, Lemma 20] for a detailed argument). By standard regret analysis of ε-greedy
exploration, this implies that for all h ∈ (0, 1],

Reg(T,FK , h) ≤ εT+O

 T∑
t=1

√√√√K2 logK ·
(

ln T |F|
δ

)
εht

 = O

εT +

√√√√K2 logK · T ·
(

ln T |F|
δ

)
εh

.
We conclude the first item, by the above inequality, and observing that for any tree policy in F∞,
there exists a tree policy in FK that has extra h-smoothed expected loss at most 1

hK .

The second item follows directly by the settings of ε, K and algebra.

D Algorithms for general policy classes

In this section, we generalize CATS and propose two algorithms, namely Algorithms 6 and 7, that
works with general policy classes Π. On one hand, the two algorithms presented in this section
may not be computationally efficient in general, because off-policy optimization w.r.t Π can be
computationally intractable; on the other hand, they have similar regret guarantees as CATS and
Algorithm 5 while being able to handle policy classes beyond trees.

We first present Algorithm 6, an algorithm that naturally generalizes the ε-greedy algorithm [e.g.
39] in the discrete action space setting to the continuous action space setting. It has two input
parameters: a bandwidth parameter h, and a parameter ε ∈ [0, 1] that controls the exploration-
exploitation tradeoff.

As we will see, given bandwidth parameter h, the algorithm provides a h-smoothed regret guarantee.
Furthermore, if ε is large, the algorithm explores more, and learns more on the loss function at each
round; in contrast, a choice of small ε lets the algorithm focuses more on exploitation, i.e. utilizing
the learned policy more extensively.

The algorithm proceeds in rounds. At round t, it generates a stochastic policy Pt that is a mixture of
πt,h and the uniform distribution, where the mixture weights are (1 − ε) and ε respectively. Based

20

Algorithm 6 Smoothed ε-greedy algorithm with general policy classes

1: Input: Greedy parameter ε, smoothing parameter h, policy class Π.
2: Let π1 be an arbitrary policy in Π.
3: for t = 1, 2, . . . do
4: Define policy Pt(a|x) := (1− ε)πt,h(a|x) + ε.
5: Observe context xt, select action at ∼ Pt(·|xt), observe loss `t(at).
6: Find πt+1 ← argminπ∈Π V̂t(πh), where

V̂t(πh) :=
1

t

t∑
s=1

πh(as|xs)
Ps(as|xs)

`s(as).

on this policy, the algorithm selects an action at ∼ Pt(·|xt). After action at is taken, the algorithm
observes its loss incurred `t(at) and add the tuple (xt, at, Pt(at | xt), `t(at)) into the interaction
log. Then, it uses the interaction log collected up to round t to build policy loss estimators V̂t(πh)
for every policy π in Π, which serves a proxy of πh’s expected loss λh(π). Then, it finds policy
πt+1 that minimizes V̂t(πh). The rationale is that, as V̂t(πh) concentrates around λh(π) for all π,
πt+1 will also approximately minimize λh(·) among all policies in Π.

We have the following theorem that characterizes the h-smoothed regret of Algorithm 6.
Theorem 13. Suppose Algorithm 6 is run with greedy parameter ε, smoothing parameter h and
policy class Π. Then with probability 1− δ, it has h-smoothed regret bounded as:

Reg(T,Π, h) ≤ Õ

(
εT +

√
T

εh
·
(

ln |Π|+ ln
1

δ

))
.

Furthermore, setting ε = min

(
1,
(

ln|Π|+ln 1
δ

hT

) 1
3

)
, we have that

Reg(T,Π, h) ≤ Õ

((
T 2

h

(
ln |Π|+ ln

1

δ

)) 1
3

+

√
T

h
·
(

ln |Π|+ ln
1

δ

))
.

The above theorem gives a regret bound or order
(
T 2

h ln |Π|
) 1

3

, which is similar to the(
T 2K ln |Π|

) 1
3 regret bound by ε-greedy algorithms obtained in the discrete K-action setting [See

e.g. 39]. Intuitively, 1
h characterizes the difficulty of obtaining a h-smoothed regret guarantee, which

serves as the counterpart of the action set size in the discrete action setting.

The most computationally expensive step of Algorithm 6 is line 6, where we find the policy π
in Π that has the smallest IPS loss Vt(π). As discussed in Section 2, if Π consists of policies
that takes actions in the discrete set {i/K}K−1

i=0 , the policy optimization problem can be cast as a
CSMC problem, where heuristic algorithms that perform approximate ERM abound; indeed, the
Train tree procedure in CATS can be viewed as one such algorithm.

Proof of Theorem 13. We let π? = argminπ∈Π V (πh) denote the optimal policy in Π after h-
smoothing. In this notation, recall that the h-smoothed regret can be written as:

Reg(Π, T, h) =

T∑
t=1

(E [`t(at)]− V (π?,h)) . (18)

Define event

E =

for all t in [T] and all π in Π,
∣∣∣V̂t(πh)− V (πh)

∣∣∣ ≤ 8

√
ln 2T |Π|

δ

tεh
+ 4

ln 2T |Π|
δ

tεh
.


21

Using Lemma 16 with δ′ = δ
T for every t = 1, 2, . . . , T , pmin = ε, along with union bound over

all t’s in [T], we get that P(E) ≥ 1 − δ. We condition on event E happening in the sequel. We
first provide an excess loss bound for policy πt,h. At time step t + 1, πt+1,h is an empirical risk
minimizer, therefore:

V̂t(πt+1,h) ≤ V̂t(π?,h). (19)
Hence,

V (πt+1,h) ≤ V̂t(πt+1,h) + 8

√
ln 2T |Π|

δ

tεh
+ 4

ln 2T |Π|
δ

tεh

≤ V̂t(π?,h) + 8

√
ln 2T |Π|

δ

tεh
+ 4

ln 2T |Π|
δ

tεh

≤ V (π?,h) + 16

√
ln 2T |Π|

δ

tεh
+ 8

ln 2T |Π|
δ

tεh
,

where the first inequality is from the definition of E, and πt ∈ Π; the second inequality is from
Equation (19); the third inequality is from the definition of E, and π? ∈ Π;

We now claim that

V (πt+1,h) ≤ V (π?,h) + 24

√
ln 2T |Π|

δ

tεh
. (20)

This is from a standard case analysis, and the simple fact that V (πt+1,h) ≤ 1: if ln
2T |Π|
δ

tεh ≥ 1 the

inequality is trivial; otherwise, 16

√
ln

2T |Π|
δ

tεh + 8
ln

2T |Π|
δ

tεh ≤ (16 + 8)

√
ln

2T |Π|
δ

tεh = 24

√
ln

2T |Π|
δ

tεh .

We now conclude the regret bound. We first have the following upper bound on the algorithm’s
instantaneous loss E`t(at):

E[`t(at)] = (1− ε)E(xt,`t)∼DEa∼πt,h(·|xt)[`t(a)] + εE(xt,`t)∼DEa∼U(A)[`t(a)]

≤ V (πt,h) + ε. (21)

Combining Equations (18), (20), (21), along with algebra, we have:

Reg(Π, T, h) ≤
T∑
t=1

(ε+ V (πt,h)− V (π?,h))

≤ εT + 1 +

T∑
t=2

24

√
ln 2T |Π|

δ

(t− 1)εh


≤ εT + 1 + 48

√
T ln 2T |Π|

δ

εh
.

The theorem follows.

We next present Algorithm 7, which achieves h-smoothed regret guarantees against Π for all h in
(0, 1] simultaneously. It has the following key differences from Algorithm 6:

1. Instead of working with a fixed bandwidth h, it works with a set of bandwidths H that
provides a covering of the set of bandwidths (0, 1] we compete with.

2. Instead of finding a policy π that minimizes V̂t(πh) for a fixed h, the algorithm first finds
a minimizer of V̂t(πh) for every h ∈ H (namely πt+1,h), and selects πt+1 among the set
{πt+1,h}h∈H, using a structural risk minimization [55] procedure (line 9). Specifically,
the choice of ht+1 ensures that the expected loss of πt+1,ht+1

has competitive performance
compared with those of the πh’s, for all π in Π and all h in H. Here, the bandwidth-

dependent penalty term P (t, h) , 2

√
ln |Π|+ln 8T4

δ

tεh +3
ln |Π|+ln 8T4

δ

tεh is crucial, as it accounts
for the different concentration rates from V̂t(πt+1,h) to V (πt+1,h) form different values of
h.

22

Theorem 14. Suppose Algorithm 7 is run with greedy parameter ε and policy class Π. Then with
probability 1− δ, the algorithm has smoothed regret guarantee simultaneously for all h ∈ (0, 1]:

Reg(T,Π, h) ≤ Õ

(
εT +

√
T

εh
·
(

ln |Π|+ ln
1

δ

))
.

Furthermore, setting ε = min

(
1,
(

ln|Π|+ln 1
δ

T

) 1
3

)
, we have that for all h ∈ (0, 1]:

Reg(T,Π, h) ≤ Õ

(T 2
(
ln |Π|+ ln 1

δ

)) 1
3

√
h

 .

Before proving the theorem, we make two important remarks:

1. Theorem 12 of [37] shows that a combination of Corral [4] with EXP4 [6], using an appro-
priate tuning of learning rate, can obtain a uniform-h-smoothed regret of the same order,

i.e. O
(
T

2/3 ln|Π|
1
3√

h

)
. However, their algorithm requires explicit enumeration of policies

from policy class Π; in contrast, our algorithm can be reduced to a sequence of policy
optimization problems, which can admit much more efficient implementations.

2. The above uniform-h-smoothed regret rate in terms of h and T , i.e. O
(
T

2/3
√
h

)
, is unim-

provable in general, and is therefore Pareto optimal. This can be seen from the following
result from [37, Theorem 11]: there exists a continuous-action CB problem with action
space [0, 1], constants c, T0 > 0, such that for any algorithm and any T ≥ T0, there ex-
ist two bandwidths h1 = Θ(1) and h2 = o(1)10 such that Reg(T,Π, h1) > cT

2/3
√
h1

or

Reg(T,Π, h2) > cT
2/3
√
h2

. As a result, for any α > 0, designing an algorithm that obtains a

uniform-h-smoothed-regret guarantee of order O
(
T

2
3
−α

h
1
2

)
or order O

(
T

2
3

h
1
2
−α

)
is impos-

sible. This result is perhaps surprising, as it shows that an ε-greedy algorithm, well known
to have suboptimal regret guarantees in the discrete action CB setting, possesses certain
optimality properties in the continuous action CB setting, with appropriate modifications.

Proof sketch. By standard analysis on structural risk minimization [see e.g. 55], it can be shown that
with high probability, for all h ∈ H:

V (πt+1,ht+1) ≤ min
π∈Π

V (πh) +O


√

ln T |Π|
δ

tεh

.
By the setting of H =

{
h ∈

{
1

4T 2 ,
2

4T 2 , . . . , 1
}

: h ≥ 1
2T

}
, we can show that that the above guar-

antee implies that the equation above holds for all h ∈ (0, 1]; see [37, Lemma 20] for a detailed
proof.

By standard regret analysis of ε-greedy algorithms and the above upper bound on the instantenous
loss of πt+1,ht+1 , we get that

Reg(T,Π, h) ≤ εT +O

 T∑
t=1

√
ln T |Π|

δ

tεh

 = O

εT +

√
T

ln T |Π|
δ

εh

.
The second item follows directly by the setting of ε and algebra.

10subject to T → ∞.

23

Algorithm 7 A Pareto-optimal adaptive-h algorithm

1: Input: Greedy parameter ε, policy class Π.
2: LetH =

{
h ∈

{
1

4T 2 ,
2

4T 2 , . . . , 1
}

: h ≥ 1
2T

}
be the set of bandwidths in consideration.

3: Let π1 be an arbitrary policy in Π, and h1 be an arbitrary number inH.
4: for t = 1, 2, . . . , T do
5: Define policy Pt(a|x) := (1− ε)πt,ht(a|x) + ε.
6: Observe context xt, select action at ∼ Pt(·|xt), observe loss `t(at).
7: For every h inH, compute πht+1 ∈ Π such that

V̂t(π
h
t+1,h) ≤ min

π∈Π
V̂t(π

h
t,h), (22)

where

V̂t(πh) ,
1

t

t∑
s=1

πh(as|xs)
Ps(as|xs)

`s(as).

8: Select πt+1 = π
ht+1

t+1 , where

ht ∈ argmin
h∈H

(
V̂t(π

h
t+1,h) + P (t, h)

)
.

where

P (t, h) , 2

√
ln |Π|+ ln 8T 4

δ

tεh
+ 3

ln |Π|+ ln 8T 4

δ

tεh
.

E Concentration inequalities

We first recall a well-known variant of Freedman’s inequality [24, 8] that is useful to establish our
policy evaluation concentration bounds.

Lemma 15 (See [8], Lemma 2). Suppose X1, . . . , Xn is a martingale difference sequence adapted
to filtration {Bi}ni=0, where |Xi| ≤ M almost surely. Denote by Vn =

∑n
j=1 E

[
X2
j | Bj−1

]
. Then

for any constant δ ∈ (0, 1
e), with probability 1− δ,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 4

√
Vn ln

2n

δ
+ 2M ln

2n

δ
. (23)

Proof. Lemma 2 of [8] states that for any δ′ ∈ (0, 1
e), with probability 1− δ′ · log n,

n∑
i=1

Xi ≤ max

(
4

√
Vn ln

1

δ′
, 2 ln

1

δ′

)

Letting δ′ = δ
2 logn , we have that with probability 1− δ/2,

n∑
i=1

Xi ≤ max

(
4

√
Vn ln

1

δ′
, 2 ln

1

δ′

)
≤ 4

√
Vn ln

2n

δ
+ 2M ln

2n

δ
,

where the second inequality is by algebra and the fact that log n ≤ n. Similarly, by considering
random variable {−Xi}ni=1, we have that with probability 1− δ/2,

n∑
i=1

Xi ≥ −

(
4

√
Vn ln

2n

δ
+ 2M ln

2n

δ

)
,

The lemma is concluded by union bound.

24

The above lemma implies the following important concentration result on off-policy evaluation and
optimization. First we set up some notations.

Suppose logged data {(xs, as, Ps(as | xs), `s(as)) : s ∈ [t]} is pmin-well-formed (recall Def-
inition 8). Define a filtration {Bs}ts=0 as follows: for all s ∈ {0, 1, . . . , t}, Bs ,
σ(x1, a1, `1, . . . , xs, as, `s). A sequence of random variables {Zs}ts=1 is said to be predictable w.r.t.
filtration {Bs}ts=1 if Zs is Bs−1-measurable. Using the above notation, we see that the sequence of
logging policies {Ps}ts=1 is predictable wrt {Bs}ts=0. Lastly, recall from Section 2 that c̃hs (i/K) =
Smoothh(as|i/K)
Ps(as|xs) `s(as) for i ∈ {0, 1, . . . ,K − 1}, and therefore, c̃hs (π(xs)) = πh(as|xs)

Ps(as|xs) `s(as).

Lemma 16. Suppose the setting is described as above. Then,

1. With probability 1−δ′, we have that for any sequence of policies {πs}ts=1 predictable w.r.t.
{Bs}ts=0,∣∣∣∣∣1t

t∑
s=1

c̃hs (πs(xs))−
1

t

t∑
s=1

V (πs,h)

∣∣∣∣∣ ≤
√√√√(1

t

t∑
s=1

V (πs,h)

)
16 ln 2t

δ′

t pmin h
+

2 ln 2t
δ′

t pmin h
. (24)

2. Given a finite set of policies Π, with probability 1− δ′, for all π in Π,∣∣∣V̂t(πh)− V (πh)
∣∣∣ ≤ 4

√
ln |Π|+ ln 2t

δ′

t pmin h
+ 2

ln |Π|+ ln 2t
δ′

t pmin h
. (25)

Proof. For the first item, we define Xs ,
πs,h(as|xs)
Ps(as|xs) `s(as). In this notation, 1

t

∑t
s=1 c̃

h
s (πs(xs)) =

1
t

∑t
s=1Xs. Observe that

E [Xs | Bs−1] = E(xs,`s)∼DEas∼Ps(·|xs)
πs,h(as | xs)
Ps(as | xs)

`s(as)

= E(xs,`s)∼DEas∼πs,h(·|xs)`s(as) = V (πs,h). (26)

Let Zs = Xs − E [Xs | Bs−1] = Xs − V (πs,h). It can be seen that {Zs}ts=1 is a martingale
difference sequence adapted to filtration {Bs}ts=0.

Let M = 1
h pmin

; From the definition of Zs, along with the facts that Ps(as | xs) ≥ pmin, and
πs,h(as | xs) ∈ [0, 1

h] with probability 1, we get that |Zs(π)| ≤M with probability 1.

We now show an upper bound on the conditional variance of Zs:

E
[
Z2
s | Bs−1

]
≤ E

[
X2
s | Bs−1

]
= E

(xs,`s)∼D
E

as∼Ps(·|xs)

[
πs,h(as|xs)2

Ps(as | xs)2
`s(as)

2

]
≤ E

(xs,`s)∼D
E

as∼Ps(·|xs)

[
πs,h(as|xs)2

Ps(as | xs)2
`s(as)

]
= E

(xs,`s)∼D

[∫
[0,1]

πs,h(a | xs)2

Ps(a | xs)2
Ps(a | xs)`s(a) da

]

= E
(xs,`s)∼D

∫
[0,1]

πs,h(a | xs)
Ps(a | xs)

πs,h(a|xs)`s(a) da

≤ E
(xs,`s)∼D

1

pminh
·
∫

[0,1]

πs,h(a|xs)`s(a) da =
V (πs,h)

pminh
.

where the first inequality uses the fact that `s(as) ∈ [0, 1], and the second inequality uses the
facts that πh(a | xs) ∈ [0, 1

h], and Ps(as | xs) ≥ pmin. Consequently,
∑t
s=1 E

[
Z2
s | Bs−1

]
≤

1
pminh

∑t
s=1 V (πs,h).

25

Applying Lemma 15 on Zs’s, with n = t, M = 1
hpmin

, δ = δ′, we have that with probability 1− δ′:∣∣∣∣∣
t∑

s=1

c̃hs (πs(xs))−
t∑

s=1

V (πs,h)

∣∣∣∣∣ ≤ 4

√√√√(t∑
s=1

V (πs,h)

)
ln 2t

δ′

pminh
+

2 ln 2t
δ′

pminh
.

The first item now follows from dividing both sides of the above inequality by t.

We now use the first item to show the second item. Fix a π in Π. We take {πs}ts=1 such that πs = π

for all s. By the previous item, we have that with probability 1− δ′

|Π| ,∣∣∣∣∣1t
t∑

s=1

c̃hs (π(xs))−
1

t

t∑
s=1

V (πh)

∣∣∣∣∣ ≤ 4

√√√√(1

t

t∑
s=1

V (πh)

)
ln 2|Π|t

δ′

t pmin h
+

2 ln 2|Π|t
δ′

t pmin h

≤ 4

√
ln 2|Π|t

δ′

t pmin h
+

2 ln 2|Π|t
δ′

t pmin h
.

We conclude the item by taking a union bound on all π in Π.

F Experimental Details

Of the six datasets five were selected randomly from OpenML with the criterion of having millions
of samples with unique regression values. These include wisconsin, cpu act, auto price,
black friday (customer purchases on black Friday) and zurich delay (Zurich public trans-
port delay data). We also included a synthetic dataset, namely ds, which was created by linear
regression of standard gaussians with additive noise.
Our main comparator is the discretized ε-greedy algorithm dLinear in Vowpal Wabbit which by
default uses the doubly robust approach [22] for policy evaluation and optimization. This method
reduces to cost-sensitive one-against-all multi-class classification which has computational com-
plexity linear w.r.t number of discrete actions. Our other comparator is dTree, the discretized filter
tree which is equivalent to CATS without smoothing, i.e. with zero bandwidth. For all the approaches
we used ε = 0.05 and a parameter free update rule based on coin betting [46].
We implemented CATS in Vowpal Wabbit. The details of the implementation are explained in the
next section.

G CATS implementation with O(logK) time per example

In this section, we present the details of our online implementation of CATS that has O(logK) time
cost per example. Our implementation can be generalized to the setting where the action space A
is a continuous interval in R; for simplicity of presentation, we focus on A = [0, 1] in this section.
Before going into the details, we introduce some additional notation.

Recall that K = 2D is the discretization level; the corresponding discretized action space is defined
as AK =

{
0, 1

K , . . . ,
K−1
K

}
. We will consider choices of bandwidth h in HK =

{
2−i : i ∈ [K]

}
;

our algorithm can be easily generalized to other values of h’s, by modifying the tree initialization
procedure. For a bandwidth h inHK , define an auxiliary parameter m# = log2(K · h), which is an
integer. It can be easily seen that h = 2m

#

/K.

G.1 Build tree: initialization of tree policy

We now describe a procedure Build tree, namely Algorithm 9, that provides essential initialization
of our tree policy T . First, Build tree assigns a unique id for each node v in the tree T through
traversing the tree in a top-down fashion. It also supplies the action labels of all K leaves. The
nodes’ id’s are assigned such that within the same level, the id’s are increasing from left to right.
Furthermore, it initializes the online binary CSMC base learners in all its internal nodes. To ensure
O(logK) time cost of the tree learning algorithm, we disallow actions inAK ∩ [0, h] andAK ∩ [1−
h, 1] to be taken by the tree policy. To this end, two classifiers in nodes vonly left and vonly right are
set to fixed classifiers fv

only left ≡ left and fv
only right ≡ right, both of which are read-only.

26

Algorithm 8 Train tree with no data partitioning

1: Input: K = 2D, F , training data {(xs, cs)}ns=1 with cs ∈ RK
2: for level d from D − 1 down to 0 do
3: for nodes v at level d do
4: For each (xs, cs) define binary cost cvs with

cvs(left) = cs(v.left.get action(xs))

cvs(right) = cs(v.right.get action(xs)).

5: Train fv ∈ F on Sv = {(xs, cvs) : s ∈ [n], cvs(left) 6= cvs(right)}:

fv ∈ argmin
f∈F

ESv [cv(f(x))] .

6: Return tree T with {fv} as node classifiers.

Algorithm 9 Build tree

Input: Tree T with depth D, m# {Initialize a tree policy T with K = 2D leaves by assigning id’s
to each node; in addition, initialize the nodes such that the leftmost and rightmost 2m

#

leaves are
unreachable}

Output: Initialized tree policy T
T .root.id← 0
for level d in {0, . . . , D − 1} do

for nodes v at level d of T do
Initialize the online CSMC base learner at v
v.left.id = 2× v.id + 1
v.right.id = 2× v.id + 2

for nodes v at level D of T do
Set label(v)← (v.id− (2D − 1))/K.

Set vonly right to be the node v with v.id = 2D−m
#−1 − 1, and let fv

only right ≡ right.
Set vonly-left to be the node v with v.id = 2D−m

− 2, and let fv
only left ≡ left.

To see why the above restriction helps with ensuringO(logK) time cost per example, we now recall
the definition of the IPS CSMC example (xt, c̃t) generated by log data (xt, at, `t(at), Pt(at | xt))
in CATS. We first show that c̃t has a simple structure: if a is in AK ∩ [h, 1 − h], we have a concise
formula of c̃t(a):

c̃t(a) =

{
`t(at)

2hPt(at|xt) , |a− at| ≤ h,
0, otherwise.

(27)

Observe that c̃t is a piecewise constant function overAK∩[h, 1−h] with at most 3 pieces: [0, at−h]
(if at > h), [max(0, at − h),min(1, at + h)], and [at + h, 1] (if at < 1 − h). The IPS cost
vector c̃t can be summarized by three numbers: c∗ = `t(at)

2hPt(at|xt) , the nonzero value in c̃t, amin =

max(0, dK(at−h)e
K), the minimum a ∈ AK such that c̃t(a) = c∗; amax = min(K−1

K , bK(at+h)c
K),

the maximum a ∈ AK such that c̃t(a) = c∗.

We remark that c̃t may not be a piecewise constant function globally over AK . This is because
in general, c̃t(a) = `t(at)Smooth(at|a)

Pt(at|xt) = `t(at)1(a−at≤h)
vol([a−h,a+h]∩[0,1])·Pt(at|xt) , where vol(·) denotes the

Lebesgue measure. Therefore, if, say at is in [0, h], the induced IPS cost function c̃t can take many
possible positive values for a in region [0, h], depending on the value of vol([a−h, a+h]∩ [0, 1]). It
turns out that enforcing the piecewise constant structure of the cost vector (as is done by restricting
the CSMC vectors to only consider entries in a in AK ∩ [h, 1 − h]) is vital to achieve O(logK)
per-example time cost, as we will see next.

27

Algorithm 10 Online train tree with O(logK) time cost per example
Input: Tree policy T , context x, cost vector c̃ implicitly represented by actions amin, amax in AK

and cost c∗ in R+, such that for all a ∈ AK , c̃(a) = c∗ if a ∈ [amin, amax], and c̃(a) = 0
otherwise.

Output: Updated tree policy T .
1: α← leaf corresponding to action amin, β ← leaf corresponding to action amax

2: α.cost← c∗, β.cost← c∗

3: αD ← α, βD ← β.
4: for level d from D down to 1 do
5: if αd.parent 6= βd.parent then
6: Sd ← {αd, βd}
7: else
8: Sd ← {αd};
9: for nodes v ∈ Sd do

10: u← v.parent {Goal: update the online learner in u, the parent of v}
11: if u ∈ {vonly left, vonly right} then
12: continue; {No updates on vonly left and vonly right}
13: w← the sibling of node v. {Create cost vector cu}
14: w.cost← Return cost(w, αd, βd)
15: if v = u.left then
16: cu(left)← v.cost, cu(right)← w.cost {v is the left child of u}
17: else
18: cu(left)← w.cost, cu(right)← v.cost {v is the right child of u}
19: u.learn(fu, (x, cu)) {Update the online CSMC base learner in u}
20: u.cost← cu(fu(x)) {Compute c(T u(x)) for training in nodes of higher level}
21: αd−1 ← αd.parent {Compute the ancestors of α, β to a level up}
22: βd−1 ← βd.parent

Algorithm 11 Return cost

Input: Tree node w; Tree nodes α and β, which are the ancestors of α and β, respectively, at the
same level of w.
if w.id < α.id or w.id > β.id then

return 0
else if α.id < w.id < β.id then

return c∗

else if w.id = α.id then
return α.cost

else if w.id = β.id then
return β.cost

G.2 Online train tree: online update of tree policy

In our implementation, to maximize data-efficiency, we will implement a more practical variant of
Train tree, namely Algorithm 8; the difference between it and Train tree is that, instead of
partitioning the input data to train each level separately, we use the full input data to train nodes at
all levels.

The tree policy training algorithm, namely Online train tree (Algorithm 10), is an online im-
plementation of Algorithm 8. It is used by CATS (in its line 7) to process the IPS CSMC example
generated at every round t, to obtain an updated tree policy. It receives a IPS CSMC example
(x, c̃) as input, represented by context x, and amin, amax, c∗ (representing c̃, as discussed in the
previous section), and a tree T trained over previous CSMC examples S; specifically, (xt, c̃t)’s in
CATS are its valid inputs. Here we assume that the input T is such that for every node v, its stored
classifier fv is an approximation of argminf∈F E(x,c)∼S [cv(f(x))] (recall the definition of cv in
Algorithm 8). Online train tree updates the input T with (x, c̃), such that it approximates the
output of Train tree over S ∪ {(x, c̃)}, that is, for every node v, its stored classifier fv is an ap-
proximation of argminf∈F E(x,c)∼S∪{(x,c̃)}[c

v(f(x))]. Our online implementation replaces line 7

28

of CATS with T ← Online train tree(T , (xt, c̃t)), with the goal of ensuring the updated T after
round t closely approximates Train tree(K,F , {(xs, c̃s)}ts=1).

The tree policy update proceeds in a bottom-up fashion. Given two leaves of the tree α, β that
correspond to actions amin, amax, we use them as “seeds” to “climb up” the tree, reaching nodes
that need updating. Specifically, for every level d ∈ [D], we maintain αd and βd that correspond to
the ancestors of α and β, respectively, at that level.

As discussed in the main text, for a given node v, if cv(left) = cv(right), there is no need to
update the online CSMC learner at v, because fvt+1, the ERM at node v at time t + 1, will be
equal to fvt . From Lemma 17 below, it turns out that it suffices to only update the CSMC online
learners in αd’s and βd’s at levels d ∈ {0, . . . , D − 1}. In addition, to update an internal node v,
one needs to obtain cv(left) and cv(right), which corresponds to costs of the action routed by its
left and right subtrees, i.e. c̃(T v.left(x)) and c̃(T v.right(x)). To ensure computational efficiency,
Algorithm 10 calls a carefully-designed subprocedure, namely Return cost (Algorithm 11), that
given any node v at level d, returns the cost c̃(T v(x)) in constant time, provided that αd, βd, the
ancestors of α, β at the level d, have been identified. We refer the reader to Claim 18 for a proof of
correctness of Return cost. Upon receiving binary CSMC example (x, cv), the CSMC oracle at
node v gets updated using an incremental update rule (such as stochastic gradient descent) on (x, cv)
at line 19 of Online train tree, which we assume takesO(1) time (where theO(·) notation here
is only with respect to the discretization level K). Specifically, our implementation of CATS in
Vowpal Wabbit uses base CSMC learners that performs a reduction from classification to online
least-squares regression to approximate ERM: at every node, its corresponding base learner learns
to predict the cost of going to the left and right branch respectively, and the learned classifier takes
the branch with lower predicted cost. Furthermore, we use a parameter-free gradient update rule [46]
to implement our online least square regression procedure. As a result, in our implementation, the
time costs of each base learner’s prediction and update are both O(d), where d is dimension of the
context space.

We finally remark that in line 12 of Algorithm 10, we skip updates on nodes vonly left and
vonly right, ensuring that the tree policy never outputs actions in AK ∩ [0, h] or AK ∩ [1− h, 1].

G.2.1 Proof of correctness of Online train tree

We now prove that Algorithm 10 does not miss updating nodes that needs updates, i.e. the nodes
u such that cu(left) 6= cu(right); recall that cu(left) = c̃(T u.left(x)) and cu(right) =
c̃(T u.right(x)).

Lemma 17. For every internal node u in T , if cu(left) 6= cu(right), then Algorithm 10 updates
u with binary cost-sensitive example (x, cu). Consequently, Online train tree (Algorithm 10)
faithfully implements Train tree (Algorithm 2) in an online fashion.

Proof. With the notations defined in Online train tree (Algorithm 10), denote by α (resp. β) the
leaf with action label amin (resp. amax). It can be seen from the description of Online train tree
that if node u is an ancestor of α or β, the base CSMC learner in u will get updated. We now show
that if cu(left) 6= cu(right), u must be an ancestor of either α or β, which will let us conclude
that all nodes u with cu(left) 6= cu(right) will be updated.

We will prove the above statement’s contrapositive: if neither α nor β is a child of u, then
cu(left) = cu(right). Indeed, suppose u is at level d, and denote by αd and βd the ancestors
of α, β at level d respectively. Then, it must be the case that u 6= αd and u 6= βd. From the first two
items of Claim 18 below, we have that c̃(a) must agree unanimously for all actions a in range(T u).
Now, because both cu(left) and cu(right) take values in range(T u), they must also be equal.

In addition, from the last item in Claim 18 below, along with the description of
Online train tree’s lines 16 and 18, if node u gets updated, the left (resp. right) entry of the
binary cost vector cu(left) (resp. cu(right)) takes value as u.left.cost (resp. u.right.cost),
which is c̃(T u.left(x)) (resp. c̃(T u.right(x))). Therefore the binary CSMC example u receives is
indeed (x, cu). This completes the proof of the lemma.

Claim 18. For every level d ∈ [D], denote by αd and βd the ancestor of α, β at level d in T
respectively. Then, for node v at level d:

29

1. If v.id < αd.id or v.id > βd.id, then for all a ∈ range(T v), c̃(a) = 0.

2. If αd.id < v.id < βd.id, then for all a ∈ range(T v), c̃(a) = c∗.

3. If v.cost is available, it must equal c̃(T v(x)); in addition, Return cost(v, αd, βd) re-
turns c̃(T v(x)) correctly.

Proof. It can be seen that for every node u at level d, range(T u) spans a separate contiguous subin-
terval of [0, 1]. Specifically, for every u at level d, define interval

Iu =

[
u.id− (2d − 1)

2d
,
u.id + 1− (2d − 1)

2d

)
,

we have range(T u) = range(T) ∩ Iu, and all Iu’s are disjoint for u’s at level d.

For the first item, suppose v.id < αd.id, i.e. v is to the left of αd. In this case, all elements of
range(T v) must be less than amin, and therefore for all a ∈ range(T v), cv(a) = 0. A similar
reasoning applies to the case when v.id > βd.id.

For the second item, suppose αd.id < v.id < βd.id, i.e. v is in the middle of αd and βd. In this
case, all elements of range(T v) must be within the interval [amin, amax], therefore, by the definition
of amin and amax, we have that for all a ∈ range(T v), cv(a) = c∗.

For the last item, we consider two cases.

1. If v 6= αd and v 6= βd, then from the first two items we have just shown, we can decide the
value of cv(T v(x)) directly by comparison with the id’s of α and β, which is consistent
with the implementation of Return cost; also note that in this case, v.cost gets assigned
to Return cost(v, αd, βd), which also equals cv(T v(x)).

2. Otherwise, v = αd or v = βd. In this case, Return cost returns the stored cost of v,
i.e. v.cost. It suffices to show that αd.cost (resp. βd.cost), is indeed c̃(T αd(x)) (resp.
c̃(T βd(x))), which we show by induction:

Base case. In the case when d = D, αD.cost = α.cost (resp. βD.cost = β.cost)
is directly calculated in line 2 of Algorithm 10, and is indeed c̃(label(α)) = cv(α) (resp.
c̃(label(β)) = cv(β)), and is equal to c∗.

Inductive case. Suppose for level d+ 1, Return cost(u, αd+1, βd+1) returns c(T u(x))
correctly for u in {αd+1, βd+1}. Now consider a node v at level d, which is either αd or βd.
By inductive hypothesis, and the correctness of Return cost on the costs of non-ancestors
of α,β in the last item, for both v.left and v.right, their costs cv(left) = c̃(T v.left(x))
and cv(right) = c̃(T v.right(x)) are calculated correctly by Return cost. Hence, the
cost calculated by Return cost on node v, v.cost, at line 20 in Online train tree,
equals cv(fv(x)) = c̃(T v.fv(x)(x)) = c̃(T v(x)). This completes the induction.

The proof of the last item is complete.

G.3 Proof of Theorem 4

We are now ready to prove the time complexity guarantee of CATS, i.e. Theorem 4 in the main body.

Proof of Theorem 4. From Lemma 17, we see that Online train tree faithfully implements
Train tree in an online fashion. As other steps of CATS are intact, the online implementation
of CATS faithfully implements the original CATS.

Moreover, consider the operations of CATS at every time step:

1. Predict T (x): this takesO(D) = O(logK) time as can be directly seen from Algorithm 4.

30

2. Generate ε-greedy action distribution, take action, create (xt, c̃t) implicitly by representing
c̃t as (amin, amax, c

∗): these steps take O(1) time as they are based on manipulations of
piecewise constant density with at most 3 pieces.

3. Online train tree(T , (xt, c̃t)): this takes O(D) = O(logK) time, because at each
of the D levels, there are at most 2 nodes to be updated, and for every such node,
Return cost takes O(1) time to retrieve the costs of both subtrees.

In summary, the total time cost of CATS at every time step is O(logK).

H Additional Experimental Results

Additional figures comparing running times of CATS against dLinear and dTree for the rest of the
datasets are shown in Figures 3-7.

1
210

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

Bandwidth (h)

0.0

2.5

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

2

4

6

8

10
Tr

ai
ni

ng
 ti

m
e

(s
)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

100

200

300

400

Tr
ai

ni
ng

 ti
m

e
(s

)

CATS
dLinear
dTree

Figure 3: Training time of CATS (blue bar) w.r.t: (left) bandwidth (h) with a fixed discretization scale K = 213;
(middle) discretization scale (1/K) with a fixed h = 1/4; (right) discretization scale (1/K) with a fixed
h = 1/4, compared against dLinear (orange bar) and dTree (green bar), in the cpu act dataset.

1
210

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

Bandwidth (h)

0

10

20

30

40

50

60

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

10

20

30

40

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

250

500

750

1000

1250

1500

Tr
ai

ni
ng

 ti
m

e
(s

)

CATS
dLinear
dTree

Figure 4: Training time of CATS (blue bar) w.r.t: (left) bandwidth (h) with a fixed discretization scale K = 213;
(middle) discretization scale (1/K) with a fixed h = 1/4; (right) discretization scale (1/K) with a fixed
h = 1/4, compared against dLinear (orange bar) and dTree (green bar), in the zurich delay dataset.

1
210

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

Bandwidth (h)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

2

4

6

8

10

12

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

100

200

300

400

500

Tr
ai

ni
ng

 ti
m

e
(s

)

CATS
dLinear
dTree

Figure 5: Training time of CATS (blue bar) w.r.t: (left) bandwidth (h) with a fixed discretization scale K = 213;
(middle) discretization scale (1/K) with a fixed h = 1/4; (right) discretization scale (1/K) with a fixed
h = 1/4, compared against dLinear (orange bar) and dTree (green bar), in the wisconsin dataset.

31

1
210

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

Bandwidth (h)

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0.00

0.25

0.50

0.75

1.00

1.25

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

10

20

30

40

Tr
ai

ni
ng

 ti
m

e
(s

)

CATS
dLinear
dTree

Figure 6: Training time of CATS (blue bar) w.r.t: (left) bandwidth (h) with a fixed discretization scale K = 213;
(middle) discretization scale (1/K) with a fixed h = 1/4; (right) discretization scale (1/K) with a fixed
h = 1/4, compared against dLinear (orange bar) and dTree (green bar), in the black friday dataset.

1
210

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

Bandwidth (h)

0

2

4

6

8

10

12

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

2

4

6

8

Tr
ai

ni
ng

 ti
m

e
(s

)

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
210

Discretization scale (1/K)

0

50

100

150

200

250

300

Tr
ai

ni
ng

 ti
m

e
(s

)

CATS
dLinear
dTree

Figure 7: Training time of CATS (blue bar) w.r.t: (left) bandwidth (h) with a fixed discretization scale K = 213;
(middle) discretization scale (1/K) with a fixed h = 1/4; (right) discretization scale (1/K) with a fixed
h = 1/4, compared against dLinear (orange bar) and dTree (green bar), in the auto price dataset.

32

	Additional Notation
	Proofs of Theorems 6 and 7
	Off-policy optimization guarantees on trees with well-formed logged data
	Proof of Theorem 6
	Proof of Theorem 7

	CATS with adaptive bandwidth
	Algorithms for general policy classes
	Concentration inequalities
	Experimental Details
	CATS implementation with K time per example
	Build_tree: initialization of tree policy
	Online_train_tree: online update of tree policy
	Proof of correctness of Online_train_tree

	Proof of Theorem 4

	Additional Experimental Results

