
A Proofs

A.1 Proof of Proposition 5

Proposition 5 (GP-SCM noise posterior). Let {xi}ni=1 be an observational sample from (5). For each r 2 [d]
with non empty parent set |pa(r)| > 0, the posterior distribution of the noise vector ur = (u1
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denotes the Gram matrix.

Proof. First, note that, by definition, ur is independent of fr = (fr(x
1
pa(r)), ..., fr(x

n
pa(r))) given Xpa(r).

Moreover, it follows from the assumed GP-SCM model in (5) and Definition 4, as well as properties of the GP
prior, that both are multivariate Gaussian random variables with distributions given by

ur ⇠ N (0,�2
rI) independently of Xpa(r), and (A.1)

fr|Xpa(r) ⇠ N (0,K), (A.2)
where 0 denotes the zero vector (or matrix, see below) and K is as defined in Proposition 5.
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Conditioning on xr and using the conditioning formula [e.g., 52], the result follows:
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A.2 Proof of Proposition 6

Proposition 6 (GP-SCM counterfactual distribution). Let {xi}ni=1 be an observational sample from (5). Then,

for r 2 [d] with |pa(r)| > 0, the counterfactual distribution over Xr had Xpa(r) been x̃pa(r) (instead of xF
pa(r))

for individual xF 2 {xi}ni=1 is given by
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Proof. We follow the three steps of abduction, action, and prediction for computing counterfactual distributions
(see §2 for more details). Starting from the factual observation xF 2 {xi}ni=1 generated according to

xF
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F
pa(r)) + uF

r, (A.7)
we first compute the noise posterior (abduction). According to Proposition 5 it is given by a marginal of (6), i.e.,
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and sFr is given by element (F, F) of the covariance matrix
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of the noise posterior given by (6).

Next, we simulate the hypothetical intervention by updating the structural equation (A.7) (action step),
xF
r(Xpa(r) = x̃pa(r)) := fr(x̃pa(r)) + uF

r. (A.11)
The GP predictive posterior at the new input x̃pa(r) has distribution [see, e.g., 62],
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Substituting (A.12) and (A.8) into (A.11) and noting that the sum of two Gaussians is again Gaussian with
mean and variance equal to the sums of means and variances of the two individual Gaussians (prediction step)
completes the proof.
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A.3 Proof of Proposition 7

Proposition 7. Subject to causal sufficiency, PX
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Proof. This is a direct consequence of the properties of causally sufficient (Markovian) causal models, but we
include a derivation for completeness. Recall that P factorises over its underlying causal graph G as follows,

p(X) =
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This joint distribution is transformed by the intervention do(XI = ✓) as follows,
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Splitting the non-intervened variables into descendants d(I) and non-descendants nd(I), and conditioning on
the intervened variables do(XI = ✓), we obtain
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As the non-descendants Xnd(I) are, by their very definition, not affected by the intervention, we can write
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B Additional results

This section presents additional results complementing those from Section 7. Table 3 presents results that
mirror those in Table 1, where the brute-force approach discussed at the beginning of §6 is used instead of the
gradient-based optimisation. Here, each real-valued feature was discretised into 20 bins within the range of its
observed values in the training dataset.

Fig. 3 mirrors the results in Fig. 2c, for which a snapshot (�LCB = 2.5) is also provided in Table 2. Here we show
the trade-off between validity and cost by varying the values of �LCB, using as trained classifiers a non-linear
multilayer perceptron (MLP) in (a) and a non-differentiable random forest classifer in (b). Note that optimisation
for the latter can only be done with the brute-force approach. All these additional results mostly confirm the
insights presented in the main body.

Finally, Table 4 provides a qualitative comparison of the proposed recourse approaches against the oracles and
baselines in terms of their selection of intervention targets. We show empirically, on the three synthetic datasets,
that CATE approaches have more predictable behaviour, as they are less sensitive to model assumptions, and are
thus more preferable for the individual seeking recourse under imperfect causal knowledge.

Table 3: Experimental results for the brute-force (20-bin discretization) approach on different 3-
variable SCMs. We show average performance for Nruns = 100, NMC-samples = 100, and �LCB = 2.
The relative trends reflect those in Table 1.

Method LINEAR SCM NON-LINEAR ANM NON-ADDITIVE SCM

Valid? (%) LCB Cost (%) Valid? (%) LCB Cost (%) Valid? (%) LCB Cost (%)

M? 100 - 11.0±5.6 100 - 20.7±11.0 100 - 15.8± 8.9
MLIN 100 - 11.3±5.8 60 - 19.9± 8.9 92 - 17.0±10.4
MKR 95 - 11.2±5.6 88 - 20.5±10.7 47 - 15.8±10.6
MGP 100 .55±.04 11.6±5.8 99 .55±.04 21.2±10.9 88 .58±.05 16.8±10.3
MCVAE 100 .55±.04 11.5±5.8 95 .55±.03 21.7±10.7 95 .59±.07 16.9±10.3
CATE? 90 .57±.07 11.0±5.5 95 .55±.05 22.8±10.8 99 .57±.06 16.2± 8.9
CATEGP 92 .56±.07 11.2±5.5 95 .55±.04 22.8±10.9 85 .58±.07 16.4±10.5
CATECVAE 90 .57±.06 11.1±5.4 96 .55±.03 23.0±10.8 94 .59±.07 16.8±10.2

(a) MLP (b) random forest

Figure 3: Trade-off between validity and cost which can be controlled via �LCB for the probabilistic
recourse methods. Shown is the same setting as in Fig. 2c using instead a non-linear logistic regression
in the form of a multilayer perceptron (MLP; left), and a random forest (right) as classifiers h.
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Table 4: Experimental results for the gradient-descent approach on different 3-variable SCMs (top
to bottom: linear SCM, non-linear ANM, non-additive SCM). We show average performance for
Nruns = 100, NMC-samples = 100, and �LCB = 2, and display the number (out of Nruns) of performed
interventions on all subsets of variables by each recourse type. The two right-most columns display
how many of the intervention sets for each recourse type agreed with the suggestions made by
the oracle methods, M? and CATE?, respectively. We observe that interventions proposed by the
subpopulation-based oracle often differ from the ones proposed at the individual level, which can be
visually explained by Fig. 2a. Importantly, we observe general agreement among all CATE approaches
in their selection of intervened-upon variables. In contrast, we observe that individual-based methods
deviate away from their oracle (i.e., M?) in their selection of variables to intervene upon for recourse.
This result further suggest that the CATE approaches presented in this work exhibit more predictable
behaviour, as they are less sensitive to model assumptions, and are thus more preferable for the
individual seeking recourse under imperfect causal knowledge.

Method SCM INTERVENTION SET IDENTICAL INT. SET

Valid? (%) LCB Cost (%) {X1} {X2} {X3} {X1, X2} {X1, X3} {X2, X3} {X1, X2, X3} M? CATE?

M? 100 - 10.9±7.9 0 25 0 56 0 0 19 100 23
MLIN 100 - 11.0±7.0 0 26 0 50 0 1 23 52 23
MKR 90 - 10.7±6.5 0 22 0 44 0 0 34 54 27
MGP 100 .55±.04 12.2±8.3 0 6 0 13 0 7 74 25 61
MCVAE 100 .55±.07 11.8±7.7 0 12 0 25 0 5 58 31 57
CATE? 90 .56±.07 11.9±9.2 0 6 0 11 0 13 70 23 100
CATEGP 93 .56±.05 12.2±8.4 0 3 0 9 1 15 72 18 76
CATECVAE 89 .56±.08 12.1±8.9 0 6 1 11 0 16 66 18 78

M? 100 - 20.1±12.3 70 0 0 2 16 0 11 99 17
MLIN 54 - 20.6±11.0 13 0 0 0 81 0 5 20 41
MKR 91 - 20.6±12.5 65 0 0 1 23 0 10 76 22
MGP 100 .54±.03 21.9±12.9 39 0 0 0 38 0 22 54 38
MCVAE 97 .54±.05 22.6±12.3 33 0 0 0 51 0 15 45 42
CATE? 97 .55±.05 26.3±21.4 4 0 0 0 44 2 49 17 99
CATEGP 94 .55±.06 25.0±14.8 4 1 0 0 37 4 53 11 69
CATECVAE 98 .54±.05 26.0±14.3 3 0 0 1 32 1 62 12 70

M? 100 - 13.2±11.0 0 0 1 0 11 78 7 97 78
MLIN 98 - 14.0±13.5 0 0 0 1 0 85 11 81 77
MKR 70 - 13.2±11.6 0 17 0 4 10 59 7 55 53
MGP 95 .52±.04 13.4±12.8 3 1 2 0 0 82 9 73 78
MCVAE 95 .51±.01 13.4±12.2 0 3 1 5 2 71 15 72 76
CATE? 100 .52±.02 13.5±13.0 0 0 2 0 9 77 9 78 97
CATEGP 94 .52±.03 13.2±13.1 3 1 5 0 3 73 12 70 76
CATECVAE 100 .52±.05 13.6±12.9 0 1 2 0 1 82 11 78 78
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C (Non-)identifability of SCMs under different assumptions

In general form, i.e., without any further assumption on the structural equations S or noise distribution PU,
SCMs are not identifiable from data alone, meaning that there are multiple different SCMs (possibly with different
underlying causal graphs) which imply the same observational distribution [38]. One possible construction relies
on the use of the inverse cumulative distribution function (cdf) in combination with uniformly-distributed random
variables [12] and is also used in non-identifiability proofs for non-linear independent component analysis
(ICA) [17]. Even knowing the causal graph is generally not enough as summarised in the following proposition.
Proposition 9. Even when the causal graph is known, the conditionals P (Xr|Xpa(r)) alone are insufficient to

uniquely determine the structural equations Xr := fr(Xpa(r), Ur) without further assumptions.

Proof. This can be shown by using the following argument from [18, Footnote 1] (adapted to our notation):

“let Ur consist of (possibly uncountably many) real-valued random variables Ur[xpa(r)], one for each value

xpa(r) of the parents Xpa(r). Let Ur[xpa(r)] be distributed according to PXr|xpa(r)
and define

fr(xpa(r), Ur) := Ur[xpa(r)]. Then Xr|Xpa(r) has distribution PXr|Xpa(r)
”.

We can now build on this formulation to construct a second SCM with the same observational distribution and
causal graph, e.g., by shifting the noise variables and structural equations by some fixed constant C as follows.

For r 2 [d], define Yr := Xr �C. Let Ũr consist of (possibly uncountably many) real-valued random variables
Ũr[xpa(r)], one for each value xpa(r) of the parents Xpa(r). Let Ũr[xpa(r)] be distributed according to PYr|xpa(r)

and define fr(xpa(r), Ũr) := Ũr[xpa(r)] + C. Then Xr|Xpa(r) also has distribution PXr|Xpa(r)
, but for C 6= 0

the structural equations and noise distributions are different from the previous construction.

In the case of the CVAE-SCM model from (13) the setting is slightly less general than the above, since we
additionally assume that: (i) the noise distributions are isotropic multivariate Gaussian distributions of fixed
dimension, zr ⇠ Ndzr (0, I); and (ii) the structural equations Dr are from the class of functions that can be
expressed as feedforward neural networks if fixed width and depth with learnable parameters  r .

Unfortunately, we are not aware of any identifiability results for this particular setting, and further investigation
into this matter is beyond the scope of the current work. It is interesting to note, however, that the CVAE-SCM
from (13) can be understood as a non-linear extension of the linear Gaussian model with equal error variances
considered by [37], for which identifiability has been shown.

In general, there seem to be very few works addressing identifiability of SCMs in the non-linear case; we
refer to [38, §7.1] for an overview of existing results. Of particular interest for our setting is the post-
nonlinear model of [65], which refers to the setting in which a non-linearity g is applied on top of an ANM,
i.e., Xr := gr(fr(Xpa(r)) + Ur), and for which complete conditions on {fr, gr} have been provided that lead
to identifiability. Given the form of the decoders Dr—feedforward neural networks with stacked layers of
simple non-linearities applied to linear transformations of the previous layers’ output—it may be possible that
the CVAE-SCM from (13) can be interpreted as a nested post-nonlinear model. We consider this an interesting
direction, but leave further investigations into this matter for future work.
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D Further details on CVAE training

To learn the CVAE latent variable models, we perform amortised variational inference with approximate posteriors
q parameterised by encoders Er in the form of neural nets with parameters �r ,

p r (zr|xr,xpa(r)) ⇡ q�r (zr|xr,xpa(r)) := N (µ̂r, �̂
2
r), (µ̂r, �̂

2
r) := Er(xr,xpa(r);�r). (D.1)

The training objective in form of the evidence lower bound (ELBO) given data {xi}ni=1 is given by

Lr( r,�r) =
nX

i=1

Eq�r (z|xi
r,x

i
pa(r))

h ���xi
r �Dr(x

i
pa(r), z; r)

���
2 i

+ �rDKL

⇣
q�r (z|x

i
r,x

i
pa(r))

���
��� p(z)

⌘

(D.2)
We learn both  r and �r simultaneously via stochastic gradient descend on Lr , with gradients computed by
Monte Carlo sampling from q�r with reparametrisation. Since the pairs of encoder and decoder parameters
( r,�r) are independent for different r, this can be done in parallel.

D.1 Hyperparameter selection for CVAE training

A CVAE model was trained for every Xr|Xpa(r) relation. Generally, hyperparameters were selected by comparing
the distribution of real samples from the dataset against reconstructed samples from the trained CVAE obtained
by sampling noise from the prior. The selection of hyperparameters was done either manually, or by performing
a grid search over various encoder and decoder architectures, latent-space dimensions, and values of the
hyperparameters �r that trade off the MSE and KL terms in the CVAE objective (D.2). For the case of automatic
selection, the setup resulting in the smallest maximum mean discrepancy (MMD) statistic [14] between real
and reconstructed samples was chosen as hyperparameter configuration. Further details on the search space
considered and the selected values are provided in Table 5.

Table 5: Selection of hyperparameters for CVAE training was either performed manually (for Linear
SCM, Non-linear ANM, Non-additve SCM) or automatically (for 7-variable semi-synthetic loan
approval) by selecting the setting that resulted in the minimum MMD statistic between real and
reconstructed samples.

SCM Conditional Encoder Arch. Decoder Arch. Latent Dim. �KLD

Linear SCM
X2|X1, 1⇥32⇥32⇥32 5⇥5⇥1 1 0.01
X3|X1, X2 1⇥32⇥32⇥32 32⇥32⇥32⇥1 1 0.01

Non-linear ANM
X2|X1, 1⇥32⇥32 32⇥32⇥1 5 0.01
X3|X1, X2 1⇥32⇥32⇥32 32⇥32⇥1 1 0.01

Non-additve SCM
X2|X1, 1⇥32⇥32⇥32 32⇥32⇥1 3 0.5
X3|X1, X2 1⇥32⇥32⇥32 5⇥5⇥1 3 0.1

7-variable semi-synthetic
loan approval any

2⇥1

1,2
1⇥3⇥3 2⇥2⇥1 5, 1, 0.5, 0.1,
1⇥5⇥5 3⇥3⇥1 0.05, 0.01,

1⇥3⇥3⇥3 5⇥5⇥1 0.005
3⇥3⇥3⇥1

19



E Experimental details, hyperparameter choices, and specification of SCMs

E.1 Specification of SCMs used in our experiments

The following is a specification of all SCMs used in our experiments on synthetic and semi-synthetic data, both
for data generation and to evaluate the validity of recourse actions proposed by the different approaches by
computing the corresponding counterfactual in the ground-truth SCMs.

In addition, we also specify the model used to generate training labels. Note, however, that these labels are only
used to train a new classifier (e.g., a logistic regression, multi-layer perceptron, or random forest) from scratch:
this is the h(x) referred to in the main paper. The label generating process is thus only used for obtaining labels
to train a classifier on and is subsequently disregarded in favour of h.

In selecting the structural equations and label generating process, we tried to pick combinations that resulted in
roughly centred features, as well as roughly balanced datasets (i.e., with a similar proportion of positive and
negative training examples) that are not perfectly linearly-separable (i.e., with some class overlap). Moreover,
we tried to select settings that result in a diverse set of intervention targets selected by the oracle for different
factual instances, i.e., we try to avoid situations in which the optimal action is to always intervene on the same
(set of) variable(s). To induce more interesting behaviour, we sample root nodes from mixtures of Gaussians.

E.1.1 3-variable synthetic SCMs used for Table 1

A visual summary of the 3-variable synthetic SCMs used for Table 1 is provided in Fig. 4.

(a) Linear SCM (b) Non-linear ANM (c) Non-additive SCM

Figure 4: Histograms and scatter plots of pairwise feature relations for the synthetic 3-variable SCMs.

Linear SCM: The linear 3-variable SCM consists of the following structural equations and noise distributions:

X1 := U1, U1 ⇠ MoG
⇣
0.5N (�2, 1.5) + 0.5N (1, 1)

⌘
(E.1)

X2 := �X1 + U2, U2 ⇠ N (0, 1) (E.2)
X3 := 0.05X1 + 0.25X2 + U3, U3 ⇠ N (0, 1) (E.3)

Non-linear ANM: The non-linear 3-variable ANM consists of the following structural equations and noise
distributions:

X1 := U1, U1 ⇠ MoG
⇣
0.5N (�2, 1.5) + 0.5N (1, 1)

⌘
(E.4)

X2 := �1 +
3

1 + e�2X1
+ U2, U2 ⇠ N (0, 0.1) (E.5)

X3 := �0.05X1 + 0.25X2
2 + U3, U3 ⇠ N (0, 1) (E.6)

Non-additve SCM: The non-additive 3-variable SCM consists of the following structural equations and noise
distributions:

X1 := U1, U1 ⇠ MoG
⇣
0.5N (�2.5, 1) + 0.5N (2.5, 1)

⌘
(E.7)

X2 := 0.25 sgn(U2)X
2
1 (1 + U2

2 ), U2 ⇠ N (0, 0.25) (E.8)

X3 := �1 + 0.1 sgn(U3)(X
2
1 +X2

2 ) + U3, U3 ⇠ N (0, 0.252) (E.9)
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Label generation: For all 3-variable SCMs, labels Y were sampled according to

Y ⇠ Bernoulli
✓⇣

1 + e�2.5⇢�1(X1+X2+X3)
⌘�1

◆
(E.10)

where ⇢ is the average of (X1 +X2 +X3) across all training samples.

E.1.2 7-variable semi-synthetic loan approval SCM used for Table 2

For the semi-synthetic dataset, we wanted to capture some relations between the involved variables that seemed
somewhat intuitive to us and to some limited extent reflect a loan approval setting in the real-world:

• loan amount and duration being largest for mid-aged people who may want to build a house and start a
family, and smaller for younger and older people;

• loan duration increasing with loan amount due to the an upper limit on monthly payments that can be
afforded

• savings increasing once income passes a certain (minimal-sustenance) threshold;
• income increasing with age;
• education increasing with age initially before eventually saturating;
• gender differences in income and (access to) education due to existing gender-discrimination and

inequality of opportunities in the population;

A visual summary of the 7-variable semi-synthetic loan SCMis shown in Fig. 5.

Semi-synthetic SCM: The loan approval SCM consists of the following structural equations and noise
distributions:

G := UG, UG ⇠ Bernoulli(0.5) (E.11)
A := �35 + UA, UA ⇠ Gamma(10, 3.5) (E.12)

E := �0.5 +

✓
1 + e

�
⇣
�1+0.5G+(1+e�0.1A)�1

+UE

⌘◆�1

, UE ⇠ N (0, 0.25) (E.13)

L := 1 + 0.01(A� 5)(5�A) +G+ UL, UL ⇠ N (0, 4) (E.14)
D := �1 + 0.1A+ 2G+ L+ UD, UD ⇠ N (0, 9) (E.15)
I := �4 + 0.1(A+ 35) + 2G+GE + UI , UI ⇠ N (0, 4) (E.16)
S := �4 + 1.5I{I>0}I + US , US ⇠ N (0, 25) (E.17)

Note that variables in the above SCM often have a relative meaning in terms of deviation from the mean, e.g., we
centre the Gamma-distributed age around its mean of 35, so that A has the meaning of “age-difference from the
mean of 35” (and similarly for other variables).

Label generation: Labels Y were sampled according to

Y ⇠ Bernoulli
✓⇣

1 + e�0.3(�L�D+I+S+IS)
⌘�1

◆
. (E.18)

Note that this label generation process only depends on loan duration and amount, income and savings, but not
on gender, age or education level.
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Figure 5: Histograms and scatter plots of pairwise feature relations for the semi-synthetic loan SCM.
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F Derivation of a Monte-Carlo estimator for the gradient of the variance

We now derive an estimator for the gradient of the square-root of the variance (i.e., standard deviation) of h
over the interventional or counterfactual distribution of Xd(I) w.r.t. ✓, which appears (multiplied by �LCB) in the
threshold tresh(a) of the optimisation constraint/regulariser.

First, we use the chain rule of differentiation to write

r✓

r
VXd(I)

h
h
⇣
Xd(I),✓,xF

nd(I)

⌘i
=

r✓VXd(I)

⇥
h
�
Xd(I),✓,x

F
nd(I)

�⇤

2

r
VXd(I)

h
h
⇣
Xd(I),✓,xF

nd(I)

⌘i (F.1)

Next, we write the variance as expectation and—assuming the interventional or counterfactual distribution of
Xd(I) admits reparametrisation as is the case for the GP-SCM and CVAE models used in this paper—use the
reparametrisation trick to differentiate through the expectation operator as in (15).
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We can now obtain an estimate of the gradient with two independent sets of Monte Carlo samples of Xd(I),
drawn via reparametrisation from the interventional or counterfactual distribution,
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(F.8)

This yields the following Monte Carlo gradient estimator of the variance:
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Substituting the above expression, together with the following Monte Carlo estimate of the (undifferentiated)
variance

VXd(I)

⇥
h
�
Xd(I),✓,x

F
nd(I)

�⇤
⇡ 1

M � 1

MX

m=1

✓
h
⇣
x(m)

d(I),✓,x
F
nd(I)

⌘
� 1

M

M0X

m0=1

h
⇣
x(m0)

d(I) ,✓,x
F
nd(I)

⌘◆2

,

(F.11)
into (F.1) gives the desired estimate for the gradient of the standard deviation of h.
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