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1 Appendix 1: Assumptions (A1) - (A4)

For a smooth function g, we write ġ(x) for its gradient vector at x. The following conditions are
assumed throughout this paper.

(A1) The setR ⊂ Rd is a compact d-dimensional manifold with boundary ∂R.

(A2) The set S = {x ∈ R : η(x) = 1/2} is nonempty. There exists an open subset U0 of Rd
which contains S such that: (1) η is continuous on U\U0 with U an open set containingR; (2) the
restriction of the conditional distributions of X , P1 and P0, to U0 are absolutely continuous with
respect to Lebesgue measure, with twice continuously differentiable Randon-Nikodym derivatives f1
and f0.

(A3) There exists ρ > 0 such that
∫
Rd ‖x‖

ρdP̄ (x) < ∞. In addition, for sufficiently small δ > 0,
infx∈R P̄ (Bδ(x))/(adδ

d) ≥ C0 > 0, where ad = πd/2/Γ(1 + d/2), Γ(·) is gamma function, and
C0 is a constant independent of δ.

(A4) For all x ∈ S , we have η̇(x) 6= 0, and for all x ∈ S ∩ ∂R, we have ∂̇η(x) 6= 0, where ∂η is the
restriction of η to ∂R. �

2 Appendix 2: Definitions of a(x), B1, B2, Wn,β and WN,β

For a smooth function g: Rd → R, denote gj(x) as its j-th partial derivative at x and gjk(x) the
(j, k)-th element of its Hessian matrix at x. Let cj,d =

∫
v:‖v‖≤1 v

2
jdv, f̄ = π1f1 +(1−π1)f0. Define

a(x) =

d∑
j=1

cj,d{ηj(x)f̄j(x) + 1/2ηjj(x)f̄(x)}
a
1+2/d
d f̄(x)1+2/d

.

Moreover, define two distribution-related constants

B1 =

∫
S

f̄(x)

4‖η̇(x)‖
dVold−1(x), B2 =

∫
S

f̄(x)

‖η̇(x)‖
a(x)2dVold−1(x),
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where Vold−1 is the natural (d− 1)-dimensional volume measure that S inherits as a subset of Rd.
According to Assumptions (A1)-(A4) in Appendix 1, B1 and B2 are finite with B1 > 0 and B2 ≥ 0,
with equality only when a(x) = 0 on S .

In addition, for β > 0, we define Wn,β as the set of wn satisfying:

(w.1)
∑n
i=1 w

2
ni ≤ n−β ;

(w.2) n−4/d(
∑n
i=1 αiwni)

2 ≤ n−β , where αi = i1+
2
d − (i− 1)1+

2
d ;

(w.3) n2/d
∑n
i=k2+1 wni/

∑n
i=1 αiwni ≤ 1/ log n with k2 = dn1−βe;

(w.4)
∑n
i=k2+1 w

2
ni/
∑n
i=1 w

2
ni ≤ 1/ log n;

(w.5)
∑n
i=1 w

3
ni/(

∑n
i=1 w

2
ni)

3/2 ≤ 1/ log n.

When n in (w.1)–(w.5) is replaced by N , we can define the set WN,β . �

3 Simulations

In this section, we compare various DiNN methods with the oracle KNN and the oracle OWNN
methods respectively, with slightly different emphases. In comparing DiNN(k) (kNN is trained at
each subsample) with the oracle KNN, we aim to verify the main results in Theorem 2 and Theorem
4, namely, the M-DiNN and W-DiNN can approximate or attain the same performance as the oracle
method. In comparing the DiNN methods with optimal local weights and the oracle OWNN method,
we aim to verify the sharpness of upper bound on γ in Corollary 1 and 2. This is by showing that
the difference in performance between the DiNN methods and the oracle OWNN deviates when γ is
greater than the theoretical upper bound identified in these results.

Three simulation settings are considered. Simulation 1 allows a relatively easy classification task,
Simulation 2 examines the bimodal effect, and Simulation 3 combines bimodality with dependence
between variables.

In Simulation 1, N = 27000 and d = 4, 6, 8. The two classes are generated as P1 ∼ N(0d, Id) and
P0 ∼ N( 2√

d
1d, Id) with the prior class probability π1 = P(Y = 1) = 1/3. Simulation 2 has the same

setting as Simulation 1, except that both classes are bimodal with P1 ∼ 0.5N(0d, Id)+0.5N(3d, 2Id)
and P0 ∼ 0.5N(1.5d, Id) + 0.5N(4.5d, 2Id). Simulation 3 has the same setting as Simulation 2,
except that P1 ∼ 0.5N(0d,Σ) + 0.5N(3d, 2Σ) and P0 ∼ 0.5N(1.5d,Σ) + 0.5N(4.5d, 2Σ) with
π1 = 1/2, where Σ is the Toeplitz matrix whose j-th entry of the first row is 0.6j−1.

Recall s = Nγ . We let the exponent γ = 0.0, 0.1 . . . 0.8. When comparing the kNN methods, the
number of neighbors K in the oracle KNN is chosen as K = N0.7. The number of local neighbors
in M-DiNN(k) and W-DiNN(k) are chosen as k = d(π/2)d/(d+4)K/se and k = dK/se as suggested
by Theorem 2 and Theorem 4 respectively. These k values are truncated at 1, since we cannot have a
fraction of an observation. In comparing with the oracle OWNN method, them∗ parameter in OWNN
is tuned using cross-validation. The parameter l in M-DiNN and W-DiNN for each subsample are
chosen as l∗ = d(π/2)d/(d+4)(m∗/s)e and l† = dm∗/se as stated in Corollary 1 and Corollary 2
respectively. For both comparisons, the test set is independently generated with 1000 observations.
We repeat the simulation for 1000 times for each γ and d. Here the empirical risk (test error) and the
computation time are calculated for each of the methods.

Figure S1 shows that M-DiNN(k) and W-DiNN(k) require similar computing time, and both are
significantly faster than the oracle method. As the number of subsamples increases, the running time
decreases, which shows the time benefit of the distributed learning framework. The computing time
comparison with the oracle OWNN is omitted since the message is the same.

The comparison between the risks of the three kNN methods (one oracle and two distributed) are
reported in Figure S2. For smaller γ values, the risk curve for W-DiNN(k) overlaps with that of
the oracle kNN, while the curve for M-DiNN(k) has a conceivable gap with both. These verify the
main results in Theorem 2 and Theorem 4. The performance of the M-DiNN(k) method starts to
deviate from the oracle kNN since γ = 0.6. As s increases and goes beyond the threshold γ = 0.7,
the risk deteriorates more quickly. These may be caused by the finite (or very small) number of
voting neighbors k at each subsample, which means the requirements k = d(π/2)d/(d+4)K/se → ∞,
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Figure S1: Computation time (seconds) of M-DiNN(k), W-DiNN(k), and oracle KNN for different
γ. Left/middle/right: Simulation 1/2/3, d = 4/6/8.
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Figure S2: Risk of M-DiNN(k), W-DiNN(k), oracle KNN and the Bayes rule for different γ.
Top/middle/bottom: Simulation 1/2/3; left/middle/right: d = 4/6/8. γ = 0.7 is shown as a vertical
line: DiNN methods at or after this line have only 1 nearest neighbor at each subsample which
participates in the prediction.

k = dK/se → ∞ suggested by Theorem 2 and Theorem 4 respectively are not satisfied. Specifically,
when γ = 0.6, 0.7, 0.8, the number of voting neighbors k are no more than 3 in these simulated
examples. We did not tune the parameters and simply set K in the oracle KNN as N0.7, since the
results in Theorem 2 and Theorem 4 should hold for any reasonable weights (or reasonable choice of
k), not necessarily the optimal one.

On the other hand, since the comparison with the oracle OWNN is meant to verify the sharp upper
bound for γ in the optimal weight setting (Corollary 1 and Corollary 2), we carefully tune the weights
in the oracle OWNN method in order to reach the optimality. Figure S3 shows the comparison of
risks for M-DiNN, W-DiNN and oracle OWNN methods. Our focus here is when the two DiNN
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Figure S3: Risk of optimal M-DiNN, W-DiNN, oracle OWNN and the Bayes rule for different γ.
Left/middle/right: Simulation 1/2/3, d = 4. Upper bounds for number of subsamples in optimal
M-DiNN (γ = 1/4) and W-DiNN (γ = 1/2) are shown as two vertical lines.

methods start to have significantly worse performance than the oracle OWNN, and the answers lie
in the upper bounds in Corollary 1 and Corollary 2. For simplicity, we set d = 4, which leads to an
upper bound of 2/(d+ 4) = 0.25 for the M-DiNN method, and an upper bound of 4/(d+ 4) = 0.5
for the W-DiNN method. These upper bounds are shown as vertical lines in Figure S3. Specifically,
the M-DiNN deteriorates much earlier than W-DiNN with much few machines (subsamples) at
its disposal. The W-DiNN method performs much better than M-DiNN, having almost the same
performance as the OWNN method for γ ≤ 0.4. However, even W-DiNN does not perform well
enough for γ ≥ 4/(d+ 4) = 0.5 when compared to OWNN. These verify the results in Corollary 2
and Corollary 4.

4 Proof of Theorem 1

For the sake of simplicity, we omit wn in the subscript of such notations as φ̂Mn,s,wn and S(j)
n,wn . Write

P ◦ = π1P1 − (1− π1)P0. We have

Regret(φ̂Mn,s) = R(φ̂Mn,s)−R(φ∗)

=

∫
R
π1
[
P
(
φ̂Mn,s(x) = 0

)
− 1

{
φ∗(x) = 0

}]
dP1(x)

+

∫
R

(1− π1)
[
P
(
φ̂Mn,s(x) = 1

)
− 1

{
φ∗(x) = 1

}]
dP0(x)

=

∫
R

[
P
(
φ̂Mn,s(x) = 0

)
− 1

{
η(x) < 1/2

}]
dP ◦(x).

Without loss of generality, we consider the j-th subsample ofD: D(j) = {(X(j)
i , Y

(j)
i ), i = 1, . . . , n}.

Given X = x, we define (X
(j)
(i) , Y

(j)
(i) ) such that ‖X(j)

(1) − x‖ ≤ ‖X
(j)
(2) − x‖ ≤ . . . ≤ ‖X(j)

(n) − x‖.
Denote the estimated regression function on the j-th subsample as

S(j)
n (x) =

∑n
i=1wniY

(j)
(i) .

Denote the WNN classifier on the j-th subsample as

φ̂(j)n (x) = 1
{
S(j)
n (x) ≥ 1/2

}
.

For any j and x, we have P
(
S
(j)
n (x) ≥ 1/2

)
= P

(
Sn(x) ≥ 1/2

)
, where Sn(x) is a generic local

WNN regression function on any subsample. Hence, φ̂(j)n (x) (j = 1, . . . , s) have i.i.d. Bernoulli
distribution with success probability P

(
Sn(x) ≥ 1/2

)
. In particular, we have

E{φ̂(j)n (x)} = P
(
Sn(x) ≥ 1/2

)
,

V ar{φ̂(j)n (x)} = P
(
Sn(x) < 1/2

)
P
(
Sn(x) ≥ 1/2

)
.

Denote the average of the predictions from s subsamples as

SMn,s(x) = s−1
∑s
j=1φ̂

(j)
n (x).

4



Therefore,

E{SMn,s(x)} = P
(
Sn(x) ≥ 1/2

)
,

V ar{SMn,s(x)} = s−1P
(
Sn(x) < 1/2

)
P
(
Sn(x) ≥ 1/2

)
.

The M-DiNN classifier is defined as

φ̂Mn,s(x) = 1
{
SMn,s(x) ≥ 1/2

}
.

Since P
(
φ̂Mn,s(x) = 0

)
= P

(
SMn,s(x) < 1/2

)
, the regret of M-DiNN becomes

Regret(φ̂Mn,s) =

∫
R

{
P
(
SMn,s(x) < 1/2

)
− 1

{
η(x) < 1/2

}}
dP ◦(x).

In any subsample, denote the boundary S = {x ∈ R : η(x) = 1/2}. For ε > 0, let Sεε = {x ∈ Rd :
η(x) = 1/2 and dist(x,S) < ε}, where dist(x,S) = infx0∈S ‖x− x0‖. We will focus on the set

Sε =
{
x0 + t

η̇(x0)

‖η̇(x0)‖
: x0 ∈ Sεε, |t| < ε

}
.

Let µn(x) = E{Sn(x)}, σ2
n(x) = Var{Sn(x)}, and εn = n−β/(4d). Denote s2n =

∑n
i=1 w

2
ni and

tn = n−2/d
∑n
i=1 αiwni. Samworth [5] showed that, uniformly for wn ∈Wn,β ,

sup
x∈Sεn

|µn(x)− η(x)− a(x)tn| = o(tn), (S.1)

sup
x∈Sεn

∣∣σ2
n(x)− 1

4
s2n
∣∣ = o(s2n). (S.2)

Let εMn,s = a0tn + b0
log(s)√

s
sn, where a0 and b0 are constants that a0 >

2|a(x0)|
‖η̇(x0)‖ and b0 >

√
2π

‖η̇(x0)‖ , for
any x0 ∈ S.

We organize our proof in four steps. In Step 1, we decompose the integral overR∩Sεn as an integral
along S and an integral in the perpendicular direction; in Step 2, we bound the contribution to regret
from R\Sεn ; in Step 3, we bound the contribution to regret from Sεn\Sε

M
n,s ; Step 4 combines the

results in previous steps and applies the normal approximation in Sε
M
n,s to yield the final conclusion.

Step 1: For x0 ∈ S and t ∈ R, denote xt0 = x0 + tη̇(x0)/‖η̇(x0)‖. Denote ψ = π1f1 − (1− π1)f0,
f̄ = π1f1 + (1− π1)f0 as the Radon-Nikodym derivatives with respect to Lebesgue measure of the
restriction of P ◦ and P̄ to Sεn for large n respectively.

Similar to Samworth [5], we consider a change of variable from x to xt0. By the theory of integration
on manifolds and Weyl’s tube formula [2], we have, uniformly for wn ∈Wn,β ,∫

R∩Sεn

{
P(SMn,s(x) < 1/2)− 1

{
η(x) < 1/2

}}
dP ◦(x)

=

∫
S

∫ εn

−εn
ψ(xt0)

{
P
(
SMn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0){1 + o(1)}.

Step 2: Bound the contribution to regret fromR\Sεn . We show that,

sup
wn∈Wn,β

∫
R\Sεn

{
P
(
SMn,s(x) < 1/2

)
− 1

{
η(x) < 1/2

}}
dP ◦(x) = o(

s2n
s

+ t2n).

According to [5], for all M > 0, uniformly for wn ∈Wn,β and x ∈ R\Sεn , we have

|P
(
Sn(x) < 1/2

)
− 1{η(x) < 1/2}| = O(n−M ).

Therefore, for x ∈ R\Sεn and sufficiently large n, we have

inf
η(x)<1/2

P
(
Sn(x) < 1/2

)
− 1/2 > 1/4, (S.3)

sup
η(x)≥1/2

P
(
Sn(x) < 1/2

)
− 1/2 < −1/4. (S.4)

5



Applying Hoeffding’s inequality to SMn,s(x), along with (S.3) and (S.4), we have

|P
(
SMn,s(x) < 1/2

)
− 1

{
η(x) < 1/2

}
| ≤ exp

(−2(E{SMn,s(x)} − 1/2)2∑s
j=1(1/s− 0)2

)
= exp

(−2(P(Sn(x) < 1/2)− 1/2)2

1/s

)
= o(

s2n
s

+ t2n),

uniformly for wn ∈Wn,β and x ∈ R\Sεn . This completes Step 2.

Step 3: Bound the contribution to regret from Sεn\Sε
M
n,s . We show that

sup
wn∈Wn,β

∫
S

∫
(−εn,εn)\(−εMn,s,εMn,s)

ψ(xt0)
{
P
(
SMn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) = o(s2n/s+ t2n).

For xt0 ∈ Sεn\Sε
M
n,s , we have t 6∈ (−εMn,s, εMn,s). By (S.1), (S.2) and Taylor expansion, we have

1/2− µn(xt0)

σn(xt0)
=
−t‖η̇(x0)‖ − a(x0)tn + o(tn)

sn/2 + o(sn)
.

Since t 6∈ (−εMn,s, εMn,s) , |t| ≥ εMn,s = a0tn + b0
log(s)√

s
sn, we have for a sufficiently large n,

∣∣1/2− µn(xt0)

σn(xt0)

∣∣ > √2π
log(s)√

s
.

If in addition,
∣∣ 1/2−µn(xt0)

σn(xt0)

∣∣ = o(1), then by Lemma 1, we have

∣∣Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

∣∣ > log(s)√
s
,

where Φ is the standard normal distribution function.

Otherwise if
∣∣ 1/2−µn(xt0)

σn(xt0)

∣∣ > c10, where c10 is a positive constant, then we have, for s large enough,

∣∣Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

∣∣ > log(s)√
s
.

In summary, for xt0 ∈ Sεn\Sε
M
n,s ,∣∣Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

∣∣ > log(s)√
s
. (S.5)

Let Zi = (wniY(i) − wniE
[
Y(i)
]
)/σn(x) and W =

∑n
i=1 Zi. Note that E(Zi) = 0, Var(Zi) <∞

and Var(W ) = 1. The nonuniform Berry-Esseen Theorem [3] implies that there exists a constant
c11 > 0 such that ∣∣∣P(W ≤ By)− Φ(y)

∣∣∣ ≤ c11A

B3(1 + |y|3)
,

where A =
∑n
i=1E|Zi|3 and B =

(∑n
i=1E|Zi|2)1/2. In our case,

A =

n∑
i=1

E|wniYi − wniE[Yi]

σn(x)
|3 ≤

n∑
i=1

2|wni|3

(sn/2)3
=

16
∑n
i=1 w

3
ni

(
∑n
i=1 w

2
ni)

3/2
,

B = (
∑n
i=1Var(Zi))1/2 =

√
Var(W ) = 1.

Let c12 = 16c11, we have

sup
x0∈S

sup
t∈[−εn,εn]

∣∣∣P(Sn(xt0)− µn(xt0)

σn(xt0)
≤ y
)
− Φ(y)

∣∣∣ ≤ ∑n
i=1 w

3
ni

(
∑n
i=1 w

2
ni)

3/2

c12
1 + |y|3

.

6



Setting y =
1/2−µn(xt0)
σn(xt0)

, we have

sup
x0∈S

sup
t∈[−εn,εn]

∣∣∣P(Sn(xt0) < 1/2
)
− Φ

(1/2− µn(xt0)

σn(xt0)

)∣∣∣ (S.6)

≤
c12
∑n
i=1 w

3
ni

(
∑n
i=1 w

2
ni)

3/2
= o
( 1√

s(log(s))2

)
.

The last equality holds by (3).

By (S.5) and (S.6), we have, when xt0 ∈ Sεn\Sε
M
n,s ,∣∣P(Sn(xt0) < 1/2

)
− 1/2

∣∣ > log(s)/
√
s. (S.7)

Applying Hoeffding’s inequality to SMn,s(x
t
0), we have

|P(SMn,s(x
t
0) < 1/2)− 1

{
t < 0

}
| ≤ exp

[−2(E{SMn,s(xt0)} − 1/2)2∑s
j=1(1/s− 0)2

]
= exp

[
− 2s(P(Sn(xt0) < 1/2)− 1/2)2

]
< s−2 log(s) = o(s2n/s+ t2n),

uniformly for wn ∈Wn,β and xt0 ∈ Sεn\Sε
M
n,s . This completes Step 3.

Step 4: In the end, we will show∫
S

∫ εMn,s

−εMn,s
ψ(xt0)

{
P
(
SMn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0)

= B1
π

2s
s2n +B2t

2
n + o(

s2n
s

+ t2n).

Applying Taylor expansion, we have, for x0 ∈ S,

ψ(xt0) = ψ(x0) + ψ̇(x0)T (xt0 − x0) + o(xt0 − x0) (S.8)

= ψ̇(x0)T
η̇(x0)

‖η̇(x0)‖
t+ o(t)

= ‖ψ̇(x0)‖t+ o(t),

where the above second equality holds by definition of xt0, and the third equality holds by Lemma 4.
Hence, ∫

S

∫ εMn,s

−εMn,s
ψ(xt0)

{
P
(
SMn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.9)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
P
(
SMn,s(x

t
0) < 1/2

)
−1
{
t < 0

}}
dtdVold−1(x0){1 + o(1)}.

Next, we decompose∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
P
(
SMn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.10)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
[ √

s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]
− 1

{
t < 0

}}
dtdVold−1(x0) +R11.
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If |1/2− P
(
Sn(xt0) < 1/2

)
| ≤ log(s)/

√
s, by the uniform Berry-Esseen Theorem [4], there exists a

constant c13 > 0 such that∣∣∣P( √s[SMn,s(xt0)− P
(
Sn(xt0) ≥ 1/2

)]√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

) < y
)
− Φ

(
y
)∣∣∣

≤ c13√
s

E
∣∣φ̂(j)n (xt0)− P

(
Sn(xt0) ≥ 1/2

)∣∣3[
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]3/2 ≤ 8c13√
s

= O
( 1√

s

)
.

Setting y =
√
s(1/2−P(Sn(xt0)≥1/2))√

P(Sn(xt0)<1/2)P(Sn(xt0)≥1/2)
, we have

∣∣∣P(SMn,s(xt0) < 1/2
)
− Φ

[ √
s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]∣∣∣ = O
( 1√

s

)
.

In addition, if |1/2− P
(
Sn(xt0) ≥ 1/2

)
| > log(s)√

s
, applying Hoeffding’s inequality and Lemma 3 ,

we have

|P(SMn,s(x
t
0) < 1/2)− 1

{
P
(
Sn(xt0) ≥ 1/2

)
< 1/2

}
|

= exp
[
− 2s(1/2− P(Sn(xt0) ≥ 1/2))2

]
≤ exp(−2[log(s)]2) = o

( 1√
s

)
,∣∣∣Φ[ √

s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]− 1{P(Sn(xt0) ≥ 1/2
)
< 1/2

}∣∣∣
≤ 1

2 log(s)

e−[2 log(s)]2/2

√
2π

= o
( 1√

s

)
.

In this case, we have∣∣∣P(SMn,s(xt0) < 1/2
)
− Φ

[ √
s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]∣∣∣
≤
∣∣P(SMn,s(xt0) < 1/2

)
− 1

{
P
(
Sn(xt0) ≥ 1/2

)
< 1/2

}∣∣
+
∣∣∣Φ[ √

s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]− 1{P(Sn(xt0) ≥ 1/2
)
<

1

2

}∣∣∣
=o
( 1√

s

)
.

In summary, we have

sup
x0∈S

sup
t∈[−εMn,s,εMn,s]

∣∣∣P(SMn,s(xt0) < 1/2
)

(S.11)

−Φ
[ √

s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]∣∣∣ = O
( 1√

s

)
.

Thus, we have

|R11| ≤
∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖

∣∣∣P(SMn,s(xt0) < 1/2
)

− Φ
[ √

s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]∣∣∣dtdVold−1(x0)

≤O(
1√
s

)

∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖dtdVold−1(x0) = o(t2n +

1

s
s2n).
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Next, we decompose∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
[ √

s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)] (S.12)

− 1
{
t < 0

}}
dtdVold−1(x0)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]
− 1

{
t < 0

}}
dtdVold−1(x0) +R12.

If |P
(
Sn(xt0) < 1/2

)
− 1/2| ≤ log(s)/

√
s, along with Lemma 2, we have

∣∣Φ[ √
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(x) ≥ 1/2

)]
−Φ
[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]∣∣
≤
√
s
∣∣P(Sn(xt0) < 1/2

)
− 1/2

∣∣∣∣∣ 1√
1/4 +O( log(s)√

s
)
− 2
∣∣∣

≤
√
s

log(s)√
s

1− 2
√

1/4 +O( log(s)√
s

)√
1/4 +O( log(s)√

s
)

= O(
(log(s))2√

s
).

In addition, if |P
(
Sn(xt0) ≥ 1/2

)
− 1/2| > log(s)√

s
, applying Lemma 3, we have

∣∣∣1− Φ
[ √

s
∣∣P(Sn(xt0) < 1/2

)
− 1/2

∣∣√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]∣∣∣
≤
∣∣∣1− Φ

(
2 log(s)

)∣∣∣ ≤ 1

2 log(s)

e−[2 log(s)]2/2

√
2π

= o
( 1√

s

)
,∣∣1− Φ

[
2
√
s
∣∣P(Sn(xt0) < 1/2

)
− 1/2

∣∣]∣∣
≤
∣∣1− Φ

(
2 log(s)

)∣∣ ≤ 1

2 log(s)

e−[2 log(s)]2/2

√
2π

= o
( 1√

s

)
.

In this case, we have

∣∣Φ[ √
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(x) ≥ 1/2

)]
− Φ

[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]∣∣
≤
∣∣1− Φ

[ √
s
∣∣P(Sn(xt0) < 1/2

)
− 1/2

∣∣√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]∣∣
+
∣∣1− Φ

[
2
√
s
∣∣P(Sn(xt0) < 1/2

)
− 1/2

∣∣]∣∣ = o(1/
√
s).

In summary, we have

sup
x0∈S

sup
t∈[−εMn,s,εMn,s]

∣∣Φ[ √
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(x) ≥ 1/2

)] (S.13)

−Φ
[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]∣∣ = O((log(s))2/
√
s).
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Therefore,

|R12| ≤
∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖

∣∣Φ[ √
s
(
1/2− P

(
Sn(xt0) ≥ 1/2

))√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]
− Φ

[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]∣∣dtdVold−1(x0)

=

∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖

∣∣Φ[ √
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)√
P
(
Sn(xt0) < 1/2

)
P
(
Sn(xt0) ≥ 1/2

)]
− Φ

[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]∣∣dtdVold−1(x0)

≤O(
(log(s))2√

s
)

∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖dtdVold−1(x0) = o(t2n +

1

s
s2n).

Next, we decompose ∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
[
2
√
s
(
P
(
Sn(xt0) < 1/2

)
− 1/2

)]
(S.14)

− 1
{
t < 0

}}
dtdVold−1(x0)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
[
2
√
s
(
Φ
(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]
− 1

{
t < 0

}}
dtdVold−1(x0) +R13.

Applying Lemma 2 and (S.6), we have

sup
x0∈S

sup
t∈[−εMn,s,εMn,s]

∣∣Φ[2√s(P(Sn(xt0) < 1/2
)
− 1/2

)]
(S.15)

− Φ
[
2
√
s
(
Φ
(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]∣∣
≤ sup
x0∈S

sup
t∈[−εMn,s,εMn,s]

√
s
∣∣P(Sn(xt0) < 1/2

)
− Φ

(1/2− µn(xt0)

σn(xt0)

)∣∣
≤o
(√

s
1√

s(log(s))2

)
= o((log(s))−2).

Hence,

|R13| ≤
∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖

∣∣∣Φ[2√s(P(Sn(xt0) < 1/2
)
− 1/2

)]
− Φ

[
2
√
s
(
Φ
(1/2− µn(xt0)

σn(xt0)

)
− 1/2

))∣∣∣dtdVold−1(x0)

=o((log(s))−2)

∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖dtdVold−1(x0) = o(s2n/s+ t2n).

Next, we decompose ∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
[
2
√
s
(
Φ
(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]
(S.16)

− 1
{
t < 0

}}
dtdVold−1(x0)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
( 1/2− µn(xt0)√

π/(2s)σn(xt0)

)
− 1

{
t < 0

}}
dtdVold−1(x0) +R14.
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If | 1/2−µn(x
t
0)

σn(xt0)
| ≤ log(s)√

s
, applying Lemma 1 and Lemma 2, we have, for large s,∣∣∣Φ[2√s(Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]
− Φ

( 1/2− µn(xt0)√
π/(2s)σn(xt0)

)∣∣∣
≤
√
s
∣∣∣Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2− 1√

2π

(1/2− µn(xt0)

σn(xt0)

)∣∣∣
=O
(√

s
(1/2− µn(xt0)

σn(xt0)

)3)
= O

(√
s(

log(s)√
s

)3
)

= o
( 1√

s

)
.

In addition, if | 1/2−µn(x
t
0)

σn(xt0)
| > log(s)√

s
, applying mean value theorem, there exists x0 ∈ (0, log(s)√

s
) such

that, for large s

Φ
(∣∣∣1/2− µn(xt0)

σn(xt0)

∣∣∣)− 1/2 > Φ
( log(s)√

s

)
− Φ(0)

=
log(s)√

s

1√
2π

exp(−x20/2) >
log(s)√

s

1√
2π

exp
(
− (

log(s)√
s

)2/2
)
>

log(s)

4
√
s
.

In this case, applying Lemma 3, we have for large s

1− Φ
(∣∣∣ 1/2− µn(xt0)√

π/(2s)σn(xt0)

∣∣∣) < 1− Φ
(√

2/π log(s)
)

≤ 1√
2/π log(s)

e−[
√

2/π log(s)]2/2

√
2π

= o
( 1√

s

)
and

1− Φ
[
2
√
s
(

Φ
(∣∣∣1/2− µn(xt0)

σn(xt0)

∣∣∣)− 1/2
)]

< 1− Φ
(
(1/2) log(s)

)
≤ 1

(1/2) log(s)

e−[(1/2) log(s)]
2/2

√
2π

= o
( 1√

s

)
.

Therefore, ∣∣∣Φ[2√s(Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]
− Φ

( 1/2− µn(xt0)√
π/(2s)σn(xt0)

)∣∣∣
=

∣∣∣Φ[2√s(Φ
(∣∣∣1/2− µn(xt0)

σn(xt0)

∣∣∣)− 1/2
)]
− Φ

(∣∣∣ 1/2− µn(xt0)√
π/(2s)σn(xt0)

∣∣∣)∣∣∣
≤

∣∣∣1− Φ
[
2
√
s
(

Φ
(∣∣∣1/2− µn(xt0)

σn(xt0)

∣∣∣)− 1/2
)]∣∣∣

+
∣∣∣1− Φ

(∣∣∣ 1/2− µn(xt0)√
π/(2s)σn(xt0)

∣∣∣)∣∣∣ = o
( 1√

s

)
.

In summary, we have,

sup
x0∈S

sup
t∈[−εMn,s,εMn,s]

∣∣∣Φ[2√s(Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]
(S.17)

− Φ
( 1/2− µn(xt0)√

π/(2s)σn(xt0)

)∣∣∣ = o
( 1√

s

)
.

Therefore,

|R14| ≤
∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖

∣∣∣Φ[2√s(Φ(1/2− µn(xt0)

σn(xt0)

)
− 1/2

)]
− Φ

( 1/2− µn(xt0)√
π/(2s)σn(xt0)

)∣∣∣dtdVold−1(x0)

≤o
( 1√

s

)∫
S

∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖dtdVold−1(x0) = o(t2n +

1

s
s2n).
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Next, we decompose∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
( 1/2− µn(xt0)√

π/(2s)σn(xt0)

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.18)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
(−2t‖η̇(x0)‖ − 2a(x0)tn√

π/(2s)sn

)
−1
{
t < 0

}}
dtdVold−1(x0) +R15.

Denote r = t/sn and rx0
= −a(x0)tn
‖η̇(x0)sn‖ . According to (S.1) and (S.2), for a sufficiently small

ε ∈ (0, infx0∈S ‖η̇(x0)‖) and a large n, for all wn ∈ Wn,β , x0 ∈ S and r ∈ [−εn/sn, εn/sn],
Samworth [5] showed that∣∣∣1/2− µn(xrsn0 )

σn(xrsn0 )
− [−2‖η̇(x0)‖(r − rx0

)]
∣∣∣ ≤ ε2(|r|+ tn/sn).

To adapt this to our setting, we need to scale some terms properly. Let rM = r
√

2s/π, sMn,s =

sn
√
π/(2s) and rMx0

= rx0

√
2s/π =

√
2s
π
−a(x0)tn
‖η̇(x0)sn‖ , we have, when rM ∈ [−εn/sMn,s, εn/sMn,s],

∣∣∣ 1/2− µn(x
rMsMn,s
0 )√

π/(2s)σn(x
rMsMn,s
0 )

− [−2‖η̇(x0)‖(rM − rMx0
)]
∣∣∣

=
√

2s/π
∣∣∣1/2− µn(xrsn0 )

σn(xrsn0 )
− [−2‖η̇(x0)‖(r − rx0

)]
∣∣∣

≤
√

2s/πε2(|r|+ tn/sn) = ε2(|rM |+ tn/s
M
n,s).

In addition, when |rM | ≤ εtn/sMn,s,∣∣∣Φ( 1/2− µn(x
rMsMn,s
0 )√

π/(2s)σn(x
rMsMn,s
0 )

)
− Φ

(
− 2‖η̇(x0)‖(rM − rMx0

)
)∣∣∣ ≤ 1

and when εtn/sMn,s < |rM | < εn/s
M
n,s,∣∣∣Φ( 1/2− µn(x

rMsMn,s
0 )√

π/(2s)σn(x
rMsMn,s
0 )

)
− Φ

(
− 2‖η̇(x0)‖(rM − rMx0

)
)∣∣∣

≤ ε2(|rM |+ tn/s
M
n,s)φ(‖η̇(x0)‖|rM − rMx0

|),

where φ is the density function of standard normal distribution.

Therefore, after substituting t = rMsMn,s, we have∫ εMn,s

−εMn,s
|t|‖ψ̇(x0)‖

∣∣∣Φ( 1/2− µn(xt0)√
π/(2s)σn(xt0)

)
− Φ

(−2t‖η̇(x0)‖ − 2a(x0)tn√
π/(2s)sn

)∣∣∣dt
=‖ψ̇(x0)‖(sMn,s)2

∫ εMn,s/s
M
n,s

−εMn,s/sMn,s
|rM |

∣∣∣Φ( 1/2− µn(x
rMsMn,s
0 )√

π/(2s)σn(x
rMsMn,s
0 )

)
− Φ

(
− 2‖η̇(x0)‖(rM − rMx0

)
)∣∣∣drM

≤‖ψ̇(x0)‖(sMn,s)2
[ ∫
|rM |≤εtn/sMn,s

|rM |drM

+ ε2
∫ ∞
−∞
|rM |(|rM |+ tn/s

M
n,s)φ(‖η̇(x0)‖|rM − rMx0

|)drM
]

= o(
s2n
s

+ t2n).

The inequality above leads to R15 = o(s2n/s+ t2n).

12



Combining (S.9), (S.10), (S.12), (S.14), (S.16) and (S.18), we have∫
S

∫ εMn,s

−εMn,s
ψ(xt0)

{
P
(
SMn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.19)

=

∫
S

∫ εMn,s

−εMn,s
t‖ψ̇(x0)‖

{
Φ
(−2t‖η̇(x0)‖ − 2a(x0)tn√

π/(2s)sn

)
−1
{
t < 0

}}
dtdVold−1(x0) + o(

s2n
s

+ t2n).

Finally, after substituting t =
√
π/(2s)usn/2 in (S.19), we have, up to o(s2n/s+ t2n) difference,

Regret(φ̂Mn,s) =
π

8s
s2n

∫
S

∫ ∞
−∞

u‖ψ̇(x0)‖
{

Φ
(
− ‖η̇(x0)‖u− 2a(x0)tn√

π/(2s)sn

)
− 1

{
u < 0

}}
dudVold−1(x0)

=
π

4s
s2n

∫
S

∫ ∞
−∞

u‖η̇(x0)‖f̄(x0)
{

Φ
(
− ‖η̇(x0)‖u− 2a(x0)tn√

π/(2s)sn

)
(S.20)

− 1
{
u < 0

}}
dudVold−1(x0)

=B1
π

2s
s2n +B2t

2
n. (S.21)

(S.20) holds by Lemma 4, and (S.21) can be calculated by applying Lemma 5. This concludes the
proof of Theorem 1. �

5 Proof of Theorem 3

In this section, we apply similar notations as those in Section 4. For the sake of simplicity, we omit
wn in the subscript of such notations as φ̂Wn,s,wn and SWn,s,wn . We have

Regret(φ̂Wn,s) =

∫
R

[
P
(
φ̂Wn,s(x) = 0

)
− 1

{
η(x) < 1/2

}]
dP ◦(x).

Denote the average of estimated regression function from s subsamples as

SWn,s(x) = s−1
∑s
j=1S

(j)
n (x).

We can also write SWn,s(x) as

SWn,s(x) = s−1
∑s
j=1

∑n
i=1wniY

(j)
(i) =

∑N
l=1wNlYl,

where

{Y1, Y2, . . . YN} ={Y (1)
(1) , Y

(2)
(1) , . . . , Y

(s)
(1) , . . . , Y

(1)
(n) , Y

(2)
(n) , . . . , Y

(s)
(n) },

{wN1, wN2, . . . wNN} ={wn1
s
,
wn1
s

. . . ,
wn1
s
, . . . ,

wnn
s
,
wnn
s
, . . . ,

wnn
s
}.

The W-DiNN classifier is defined as

φ̂Wn,s(x) = 1
{
SWn,s(x) ≥ 1/2

}
.

Since P
(
φ̂Wn,s(x) = 0

)
= P

(
SWn,s(x) < 1/2

)
, the regret of W-DiNN becomes

Regret(φ̂Wn,s) =

∫
R

{
P(SWn,s(x) < 1/2)− 1

{
η(x) < 1/2

}}
dP ◦(x).

Let µn,s(x) = E{SWn,s(x)}, σ2
n,s(x) = Var{SWn,s(x)}. We have

µn,s(x) = E{SWn,s(x)} = E{s−1
∑s
j=1S

(j)
n (x)} = µn(x),

σ2
n,s(x) = Var{SWn,s(x)} = Var{s−1

∑s
j=1S

(j)
n (x)} = s−1σ2

n(x).

13



Denote εWn,s = εn/
√
s, s2n,s = s2n/s and tn,s = tn. We have, uniformly for wn ∈Wn,β ,

sup
x∈Sεn

|µn,s(x)− η(x)− a(x)tn,s| = sup
x∈Sεn

|µn(x)− η(x)− a(x)tn|

= o(tn) = o(tn,s),

sup
x∈Sεn

∣∣σ2
n,s(x)− 1

4
s2n,s

∣∣ = sup
x∈Sεn

∣∣∣σ2
n(x)

s
− 1

4

s2n
s

∣∣∣
= o(s2n/s) = o(s2n,s).

We organize our proof in three steps. In Step 1, we decompose the integral over R ∩ Sεn as an
integral along S and an integral in the perpendicular direction; in Step 2, we focus on the complement
setR\Sεn ; Step 3 combines the results and applies a normal approximation in Sεn to yield the final
conclusion.

Step 1: Similarly to Step 1 in Section 4, we have∫
R∩Sεn

{
P(SWn,s(x) < 1/2)− 1

{
η(x) < 1/2

}}
dP ◦(x)

=

∫
S

∫ εn

−εn
ψ(xt0)

{
P
(
SWn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0){1 + o(1)},

uniformly for wn ∈Wn,β .

Step 2: Bound the contribution to regret fromR\Sεn . We show that

sup
wn∈Wn,β

∫
R\Sεn

{
P
(
SWn,s(x) < 1/2

)
− 1

{
η(x) < 1/2

}}
dP ◦(x) = o(

s2n
s

+ t2n).

Samworth [5] showed that, in any subsample, there exists a constant c30 > 0 such that, for a
sufficiently large n,

inf
x∈R\Sεn

∣∣µn(x)− 1/2
∣∣ ≥ c30εn/4.

Applying Hoeffding’s inequality to SWn,s(x), we have

|P(SWn,s(x) < 1/2)− 1
{
η(x) < 1/2

}
| ≤ exp

(−2(µn,s(x)− 1/2)2∑N
l=1(wNl − 0)2

)
= exp

(−2(µn(x)− 1/2)2

s2n/s

)
≤ exp

(−2s(c30εn/4)2

n−β

)
= o(

s2n
s

+ t2n),

uniformly for wn ∈Wn,β and x ∈ R\Sεn .

Step 3: In the end, we will show∫
S

∫ εn

−εn
ψ(xt0)

{
P
(
SWn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0)

= B1
s2n
s

+B2t
2
n + o(

s2n
s

+ t2n).

According to (S.8), we have∫
S

∫ εn

−εn
ψ(xt0)

{
P
(
SWn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.22)

=

∫
S

∫ εn

−εn
t‖ψ̇(x0)‖

{
P
(
SWn,s(x

t
0) < 1/2

)
−1
{
t < 0

}}
dtdVold−1(x0){1 + o(1)}.
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Next, we decompose∫
S

∫ εn

−εn
t‖ψ̇(x0)‖

{
P
(
SWn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.23)

=

∫
S

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(1/2− µn,s(xt0)

σn,s(xt0)

)
−1
{
t < 0

}}
dtdVold−1(x0) +R31.

Let Zl = (wNlYl − wNlE[Yl])/σn,s(x) and V =
∑N
l=1 Zl. Note that E(Zl) = 0, Var(Zl) < ∞,

and Var(V ) = 1. The nonuniform Berry-Esseen Theorem [3] implies that there exists a constant
c31 > 0, such that ∣∣∣P(V ≤ By)− Φ(y)

∣∣∣ ≤ c31A

B3(1 + |y|3)
,

where A =
∑N
l=1E|Zl|3 and

(∑N
l=1E|Zl|2)1/2. In the case of W-DiNN,

A =

N∑
l=1

E|wNlYl − wNlE[Yl]

σ3
n,s(x)

|3 ≤
N∑
l=1

16|wNl|3

s3n,s
=

16
∑N
l=1 w

3
Nl

s3n,s
,

B = (
∑N
l=1Var(Zl))1/2 =

√
Var(V ) = 1.

Denote c32 = 16c31, we have

sup
x0∈S

sup
t∈[−εn,εn]

∣∣∣P(SWn,s(xt0)− µn,s(xt0)

σn,s(xt0)
≤ y
)
− Φ(y)

∣∣∣ (S.24)

≤
∑N
l=1 w

3
Nl

s3n,s

c32
1 + |y|3

.

[5] showed that, there exists constants c33, c34 > 0 such that, uniformly for wn ∈Wn,β ,

inf
x0∈S

inf
c33tn≤|t|≤εn

∣∣∣1/2− µn(xt0)

σn(xt0)

∣∣∣ ≥ c34|t|
sn

.

Hence,

inf
x0∈S

inf
c33tn≤|t|≤εn

∣∣∣1/2− µn,s(xt0)

σn,s(xt0)

∣∣∣ ≥ c34|t|
sn/
√
s

=
c34|t|
sn,s

. (S.25)

Therefore, ∫ εn

−εn
|t|‖ψ̇(x0)‖

∣∣∣P(SWn,s(xt0) < 1/2
)
− Φ

(1/2− µn,s(xt0)

σn,s(xt0)

)∣∣∣dt
≤
∫
|t|≤c33tn

|t|‖ψ̇(x0)‖
c32
∑N
l=1 w

3
Nl

s3n,s
dt

+

∫
c33tn≤|t|≤εn

c32
∑N
l=1 w

3
Nl

s3n,s

|t|‖ψ̇(x0)‖
1 + c334|t|3/s3n,s

dt

≤
c32
∑n
i=1 w

3
ni√

ss3n

∫
|t|≤c33tn

|t|‖ψ̇(x0)‖dt

+
c32
∑n
i=1 w

3
ni√

ss3n

∫
c33tn≤|t|≤εn

‖ψ̇(x0)‖|t|
c234s|t|2/s2n

dt = o(
s2n
s

+ t2n).

The inequality above leads to |R31| = o(s2n/s+ t2n).

Next, we decompose∫
S

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(1/2− µn,s(xt0)

σn,s(xt0)

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.26)

=

∫
S

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(−2t‖η̇(x0)‖ − 2a(x0)tn

sn/
√
s

)
− 1

{
t < 0

}}
dtdVold−1(x0) +R32.
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Denote rW = r
√
s and rWx0

= rx0

√
s. Similarly to bounding R15 in (S.18), we have∫ εn

−εn
|t|‖ψ̇(x0)‖

∣∣∣Φ(1/2− µn,s(xt0)

σn,s(xt0)

)
− Φ

(−2t‖η̇(x0)‖ − 2a(x0)tn
sn/
√
s

)∣∣∣dt
=‖ψ̇(x0)‖s2n,s

∫ εn/sn,s

−εn/sn,s
|rW |

∣∣Φ(1/2− µn(x
rW sn,s
0 )

s−1/2σn(x
rW sn,s
0 )

)
− Φ

(
− 2‖η̇(x0)‖(rW − rWx0

)
)∣∣drW

≤‖ψ̇(x0)‖s2n,s
[ ∫
|rW |≤εtn/sn,s

|rW |drW

+ ε2
∫ ∞
−∞
|rW |(|rW |+ tn/sn,s)φ(‖η̇(x0)‖|rW − rWx0

|)drW
]

= o(
s2n
s

+ t2n).

The inequality above leads to R32 = o(s2n/s+ t2n).

By (S.22), (S.23) and (S.26), we have∫
S

∫ εn

−εn
ψ(xt0)

{
P
(
SWn,s(x

t
0) < 1/2

)
− 1

{
t < 0

}}
dtdVold−1(x0) (S.27)

=

∫
S

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(−2t‖η̇(x0)‖ − 2a(x0)tn

sn/
√
s

)
−1
{
t < 0

}}
dtdVold−1(x0) + o(s2n/s+ t2n).

Finally, after replacing t = usn/(2
√
s) in (S.27), we have, up to o(s2n/s+ t2n) difference,

Regret(φ̂Wn,s) =
s2n
4s

∫
S

∫ ∞
−∞
‖ψ̇(x0)‖u

{
Φ
(
− ‖η̇(x0)‖u− 2a(x0)tn

sn/
√
s

)
− 1

{
u < 0

}}
dudVold−1(x0)

=
s2n
2s

∫
S

∫ ∞
−∞
‖η̇(x0)‖f̄(x0)u

{
Φ
(
− ‖η̇(x0)‖u− 2a(x0)tn

sn/
√
s

)
(S.28)

− 1
{
u < 0

}}
dudVold−1(x0)

= B1
1

s
s2n +B2t

2
n. (S.29)

(S.28) holds by Lemma 4, and (S.29) can be calculated by Lemma 5. This completes the proof of
Theorem 3. �

6 Proof of Theorem 2 and Theorem 4

From Theorem 1 and Proposition 1, we have, for large n, s,

Regret(φ̂Mn,s,wn)

Regret(φ̂N,wN )
=

[
B1

π
2s

∑n
i=1 w

2
ni +B2

(∑n
i=1

αiwni
n2/d

)2]{1 + o(1)}[
B1

∑N
i=1 w

2
Ni +B2

(∑N
i=1

αiwNi
N2/d

)2]{1 + o(1)}
→ (

π

2
)

4
d+4 , as n, s→∞.

The last equality holds by (6) and (7). This completes the proof of Theorem 2.

Similarly, from Theorem 3 and Proposition 1, we have, for large n, s,

Regret(φ̂Wn,s,wn)

Regret(φ̂N,wN )
=

[
B1

1
s

∑n
i=1 w

2
ni +B2

(∑n
i=1

αiwni
n2/d

)2]{1 + o(1)}[
B1

∑N
i=1 w

2
Ni +B2

(∑N
i=1

αiwNi
N2/d

)2]{1 + o(1)}
→ 1, as n, s→∞.

The last equality holds by (12) and (13). This completes the proof of Theorem 4. �
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7 Proof of Corollary 1

Denote an � bn if bn = O(an), an � bn if bn = o(an), an � bn if an � bn and bn � an. To find
the optimal value of (4), we write its Lagrangian as

L(wn) =
( n∑
i=1

αiwni
n2/d

)2
+ λ

n∑
i=1

w2
ni + ν(

n∑
i=1

wni − 1),

where λ = (πB1)/(2sB2). Since all the weights are nonnegative, we denote l∗ = max{i : w∗ni > 0}.
Setting the derivative of L(wn) to be 0, we have

∂L(wn)

∂wni
= 2n−4/dαi

l∗∑
i=1

αiwni + 2λwni + ν = 0. (S.30)

(i) Summing (S.30) from 1 to l∗, (ii) multiplying (S.30) by αi and then summing from 1 to l∗, (iii)
multiplying (S.30) by wni and then summing from 1 to l∗, we have

2n−4/d(l∗)1+2/d∑l∗

i=1αiwni + 2λ+ νl∗ = 0,

2n−4/d
∑l∗

i=1αiwni
∑l∗

i=1α
2
i + 2λ

∑l∗

i=1αiwni + ν(l∗)1+2/d = 0,

2n−4/d
(∑l∗

i=1αiwni
)2

+ 2λ
∑l∗

i=1w
2
ni + ν = 0.

Therefore, we have

w∗ni =
1

l∗
+

(l∗)4/d − (l∗)2/dαi∑l∗

j=1 α
2
j + λn4/d − (l∗)1+4/d

, (S.31)

l∗∑
i=1

αiwni � (l∗)2/d, and

l∗∑
i=1

w2
ni �

1

l∗
. (S.32)

Here w∗ni is decreasing in i, since αi is increasing in i and
∑l∗

j=1 α
2
j + λn4/d − (l∗)1+4/d > 0 from

Lemma 6. Next we solve for l∗. According to the definition of l∗, we only need to find the last l such
that w∗nl > 0. Using the results from Lemma 6, solving this equation reduces to finding the l∗ such
that

(1 +
2

d
)(l∗ − 1)2/d ≤ λn4/d(l∗)−1−2/d +

(d+ 2)2

d(d+ 4)
(l∗)2/d{1 +O(

1

l∗
)}

≤ (1 +
2

d
)(l∗)2/d.

For large n, s, we have

l∗ =
⌈{d(d+ 4)

2(d+ 2)

} d
d+4

λ
d
d+4n

4
d+4

⌉
=
⌈{d(d+ 4)

2(d+ 2)

} d
d+4
( πB1

2sB2

) d
d+4

n
4
d+4

⌉
.

Due to Assumption (w.1) in Section 2, we have l∗ →∞ as n→∞. When γ < 2/(d+ 4), plugging
l∗ and (S.37) into (S.31) yields the optimal weight and (10).

Denote H(wn) as the Hessian matrix of L(wn). We have

∂2L(wn)

∂w2
ni

= 2n−4/dα2
i + 2λ and

∂2L(wn)

∂wni∂wnj
= 2n−4/dαiαj .

For any nonzero vector Xl∗ = (x1, ..., xl∗)
T , we have

XT
l∗H(wn)Xl∗ =2n−4/d

l∗∑
i=1

α2
ix

2
i + 2λ

l∗∑
i=1

x2i + 2n−4/d
∑
i6=j

αiαjxixj

=2n−4/d
( l∗∑
i=1

αixi
)2

+ 2λ

l∗∑
i=1

x2i > 0.
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Therefore, H(wn) is positive definite, and this verifies that the above optimal value achieves the
global minimum.

Next, we analyze the case of γ ≥ 2/(d+ 4). By Cauchy–Schwarz inequality, we have

(
∑l∗

i=1w
3
ni)(

∑l∗

i=1wni) ≥(
∑l∗

i=1w
3/2
ni w

1/2
ni )2

=(
∑l∗

i=1w
2
ni)

2 ≥ (
∑l∗

i=1w
2
ni)

3/2/
√
l∗.

The above inequality, along with condition (3), suggests that l∗ � s. As γ ≥ 2/(d + 4), we have
l∗ � s � N2/(d+4) and n = O(N (d+2)/(d+4)). Applying (S.32), we have, as n, s→∞,( n∑

i=1

αiwni
n2/d

)2 � (l∗/n)4/d � N−4/(d+4).

Samworth [5] showed that

Regret(φ̂N,w∗N ) � N−4/(d+4). (S.33)

Therefore, we have, as n, s→∞,

Regret(φ̂Mn,s,wn)

Regret(φ̂N,w∗N )
�
B1

π
2s

∑n
i=1 w

2
ni +B2

(∑n
i=1

αiwni
n2/d

)2
N−4/(d+4)

�
B2

(∑n
i=1

αiwni
n2/d

)2
N−4/(d+4)

→∞.

This completes the proof of Corollary 1. �

8 Proof of Corollary 2

To find the optimal value of (11), we write its Lagrangian as

L(wn) =
( n∑
i=1

αiwni
n2/d

)2
+ δ

n∑
i=1

w2
ni + ν(

n∑
i=1

wni − 1),

where δ = (B1)/(sB2).

Similar to Section 7, replacing l∗ by l† in the optimization, we have

w†ni =
1

l†
+

(l†)4/d − (l†)2/dαi∑l†

j=1 α
2
j + δn4/d − (l†)1+4/d

. (S.34)

For large n, s, we have

l† =
⌈{d(d+ 4)

2(d+ 2)

} d
d+4

δ
d
d+4n

4
d+4

⌉
=
⌈{d(d+ 4)

2(d+ 2)

} d
d+4
( B1

sB2

) d
d+4

n
4
d+4

⌉
.

Due to Assumption (w.1) in Section 2, we have l† →∞ as n→∞. When γ < 4/(d+ 4), plugging
l† and (S.37) into (S.34) yields the optimal weight and (15).

When γ ≥ 4/(d+ 4), we have s � N4/(d+4) and n = O(Nd/(d+4)). Similary to (S.32), we have,
as n, s→∞, ( n∑

i=1

αiwni
n2/d

)2 � ( l†
n

)4/d
�
(
l†
)4/d

N−4/(d+4) � N−4/(d+4).

The last inequality holds by l† →∞ as n→∞. Therefore, along with (S.33), we have, as n, s→∞,

Regret(φ̂Wn,s,wn)

Regret(φ̂N,w∗N )
�
B1

π
2s

∑n
i=1 w

2
ni +B2

(∑n
i=1

αiwni
n2/d

)2
N−4/(d+4)

�
B2

(∑n
i=1

αiwni
n2/d

)2
N−4/(d+4)

→∞.

This completes the proof of Corollary 2. �
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9 Lemmas

In this section, we provide some lemmas.

• Lemma 1–Lemma 5 are used for proving Theorem 1.
• Lemma 6 is used for proving Corollary 1.

Lemma 1 When x is close to 0 enough, we have

Φ(x)− 1/2 =
1√
2π
x+O(x3),

where Φ(x) is the standard normal distribution function.

Proof of Lemma 1: When x is close to 0 enough, by Taylor expansion of Φ(x) at 0, we have

Φ(x) = Φ(0) + Φ′(0)x+
1

2
Φ′′(0)x2 +O(Φ′′′(0)x3)

=
1

2
+

1√
2π
x+O(x3).�

Lemma 2 For constant a > 0, we have

|Φ(ax1)− Φ(ax2)| ≤ (a/2)|x1 − x2|, (S.35)

where Φ(x) is the standard normal distribution function.

Proof of Lemma 2: If x1 = x2, (S.35) holds obviously.

If x1 < x2, by mean value theorem, there exists x0 ∈ (x1, x2) such that

Φ(ax1)− Φ(ax2) =
1√
2π
e−(ax0)

2/2a(x1 − x2).

Therefore,

|Φ(ax1)− Φ(ax2)| = 1√
2π

exp
(
− (ax0)2

2

)
a|x1 − x2| ≤ (a/2)|x1 − x2|.

Similary, we can derive (S.35) when x1 > x2. �

Lemma 3 [1] For all x > 0, we have

1− Φ(x) =

∫ ∞
x

1√
2π
e−t

2/2dt ≤ 1

x

e−x
2/2

√
2π

.

Proof of Lemma 3:∫ ∞
x

1√
2π
e−t

2/2dt ≤
∫ ∞
x

t

x

1√
2π
e−t

2/2dt =
1

x

e−x
2/2

√
2π

.�

Lemma 4 For x0 ∈ S, we have

2f̄(x0)‖η̇(x0)‖ = ‖ψ̇(x0)‖ and ψ̇(x0)T η̇(x0) = ‖η̇(x0)‖‖ψ̇(x0)‖.

Proof of Lemma 4: By η = P(Y = 1|X = x) = π1f1
π1f1+(1−π1)f0

, we have

η̇ =
π1(1− π1)(ḟ1f0 − f1ḟ0)

(π1f1 + (1− π1)f0)2
.

For x0 ∈ S, π1f1(x0) = (1− π1)f0(x0) = 1
2 f̄(x0), we have

η̇(x0) =
π1(1− π1)(ḟ1(x0)f0(x0)− f1(x0)ḟ0(x0))

[π1f1(x0) + (1− π1)f0(x0)]2

=
1/2(π1ḟ1(x0)− (1− π1)ḟ0(x0))

f̄(x0)
=

ψ̇(x0)

2f̄(x0)
.
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Therefore,

2f̄(x0)‖η̇(x0)‖ =‖ψ̇(x0)‖ and

ψ̇(x0)T η̇(x0) =2f̄(x0)η̇(x0)T η̇(x0) = ‖η̇(x0)‖‖ψ̇(x0)‖.�

Lemma 5 [6] For any distribution function G, constant a, and constant b > 0, we have∫ ∞
−∞

{
G(−bu− a)− 1

{
u < 0

}}
du = −1

b

{
a+

∫ ∞
−∞

tdG(t)
}
,∫ ∞

−∞
u
{
G(−bu− a)− 1

{
u < 0

}}
du

=
1

b2
{1

2
a2 +

1

2

∫ ∞
−∞

t2dG(t) + a

∫ ∞
−∞

tdG(t)
}
.�

Lemma 6 [6] Given αi = i1+2/d − (i− 1)1+2/d, we have

(1 +
2

d
)(i− 1)

2
d ≤ αi ≤ (1 +

2

d
)i

2
d , (S.36)

k∑
j=1

α2
j =

(d+ 2)2

d(d+ 4)
k1+4/d

{
1 +O(

1

k
)
}
.� (S.37)
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