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Abstract

Graph neural networks (GNNs) have been successful in learning representations
from graphs. Many popular GNNs follow the pattern of aggregate-transform:
they aggregate the neighbors’ attributes and then transform the results of aggre-
gation with a learnable function. Analyses of these GNNs explain which pairs of
non-identical graphs have different representations. However, we still lack an un-
derstanding of how similar these representations will be. We adopt kernel distance
and propose transform-sum-cat as an alternative to aggregate-transform to reflect
the continuous similarity between the node neighborhoods in the neighborhood ag-
gregation. The idea leads to a simple and efficient graph similarity, which we name
Weisfeiler–Leman similarity (WLS). In contrast to existing graph kernels, WLS is
easy to implement with common deep learning frameworks. In graph classifica-
tion experiments, transform-sum-cat significantly outperforms other neighborhood
aggregation methods from popular GNN models. We also develop a simple and
fast GNN model based on transform-sum-cat, which obtains, in comparison with
widely used GNN models, (1) a higher accuracy in node classification, (2) a lower
absolute error in graph regression, and (3) greater stability in adversarial training
of graph generation.

1 Introduction

Graphs are the most popular mathematical abstractions for relational data structures. One of the
core problems of graph theory is to identify which graphs are identical (i.e. isomorphic). Since its
introduction, the Weisfeiler–Leman (WL) algorithm (Weisfeiler & Leman, 1968) has been extensively
studied as a test of isomorphism between graphs. Although it is easy to find a pair of non-isomorphic
graphs that the WL-algorithm cannot distinguish, many graph similarity measures and graph neural
networks (GNNs) have adopted the WL-algorithm at the core, due to its algorithmic simplicity.

The WL-algorithm boils down to the neighborhood aggregation. One of the most famous GNNs,
GCN (Kipf & Welling, 2017), uses degree-normalized averaging as its aggregation. GraphSAGE
(Hamilton et al. , 2017) applies simple averaging. GIN (Xu et al. , 2019) uses the sum instead of the
average. Other GNN models such as GAT (Veličković et al. , 2018), GatedGCN (Bresson & Laurent,
2017), and MoNet (Monti et al. , 2017) assign different weights to the neighbors depending on their
attributes before aggregation.

All the methods mentioned above follow the pattern of aggregate-transform. Xu et al. (2019) note
that many GNNs based on graph convolution employ the same strategy: aggregate first and then
transform. In this paper, we identify a problematic aspect of aggregate-transform when applied to
graphs with continuous node attributes. Instead, we propose transform-sum-cat, where cat indicates
concatenation with the information from the central node. We justify our proposal by applying the
well-established theory of kernel distance to the WL algorithm. It naturally leads to a simple and fast
graph similarity, which we name Weisfeiler–Leman similarity (WLS).
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Figure 1: Illustration of WL-iterations. (a) We set f(v) = 1 for all v ∈ V (G) initially, if not given
in the data. (b) Each node attribute is updated with the pair of itself and the (multi)set of neighbor
attributes. (c) The attributes are re-labeled for the convenience of further iterations. (d) Steps (b) and
(c) are repeated for a fixed number of iterations. See Section 2.2.

We test the applicability of our proposal in several experiments. First, we compare different aggrega-
tion methods from GNN literature for graph classification where transform-sum-cat outperforms the
rest. Then, we build a simple GNN based on the same idea, which obtains (1) a higher accuracy than
other popular GNNs on node classification, (2) a lower absolute error on graph regression and when
used as a discriminator, (3) enhanced stability of the adversarial training of graph generation. We
summarize our contributions as follows.

• We propose a transform-sum-cat scheme for graph neural networks, as opposed to the pre-
dominantly adopted aggregate-transform operation. We present examples where transform-
sum-cat is better than aggregate-transform for continuous node attributes.

• We define a simple and efficient graph similarity based on transform-sum-cat, which is easy
to implement with deep learning frameworks. The similarity extends the Weisfeiler–Leman
graph isomorphism test.

• We build a simple graph neural network based on transform-sum-cat, which outperforms
widely used graph neural networks in node classification and graph regression. We also
show a promising application of our proposal in one-shot generation of molecular graphs.

The code is available at https://github.com/se-ok/WLsimilarity.

2 Preliminaries

2.1 Notations

Let G be a graph with a set of nodes V (G) or simply V . We assume each node v ∈ V is assigned
an attribute f(v), which is either a categorical variable from a finite set or a vector in Rd. If we
update the attribute on v, the original attribute is written as f0(v) and the successively updated ones
as f1(v), f2(v), etc. The set of nodes adjacent to v is denoted as N (v). The edge that connects u
and v is denoted as uv. We denote the concatenation operator as ⊕. Abusing the common notation,
we shall write a multiset simply as a set.

2.2 Weisfeiler–Leman isomorphism test

The Weisfeiler–Leman (WL) test (Weisfeiler & Leman, 1968) is an algorithmic test of isomorphism
(identity) between graphs, possibly with categorical node attributes. Although the original test is
parameterized by dimension k, we only explain the 1-dimensional version, which is used in most
machine learning applications.

Let G be the path of length 3 depicted in Figure 1 (a). If G has no node attributes we set f(v) = 1
for all v ∈ V (G). Then, we update the node attributes in "stages," once for all nodes at each stage.
The updated attribute is the pair of itself and the set of attributes of its neighbors. In Figure 1 (b), the
middle vertices have two 1’s in the (multi)set notation { }. For further iterations, the new attributes
may be re-labeled via an injective mapping, for example, (1, {1}) → 2 and (1, {1, 1}) → 3, as in
Figure 1 (c). The next iteration is done by analogy, as in Figure 1 (d).

After a fixed number of iterations, we compare the set of resulting attributes to that from another
graph. If two sets differ, then the two graphs are non-isomorphic and are distinguishable by the
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(a) Two graphs on four
nodes, one at the origin con-
nected to three other nodes
on the unit circle. (b) orientation-invariance (c) monotonicity

Figure 2: Illustration of (a): a problem of existing neighborhood aggregation methods, and (b), (c):
desirable properties of neighborhood distance for continuous attributes. The two graphs in (a) have
2D coordinates as the node attributes. The neighborhood aggregation at the central nodes are indis-
tinguishable by common aggregation methods. We claim that a good neighborhood representation
should have an associated distance that is (b) orientation-invariant, and (c) strictly increasing up to
the degree of small rigid transformation. See Section 2.4 for further discussion.

WL-test. Many indistinguishable non-isomorphic pairs of graphs exist. However, asymptotically, the
WL-test uniquely identifies almost all graphs; c.f. Babai et al. (1980); Arvind et al. (2017).

2.3 Vector representation of a set

In this section, we briefly introduce the kernel distance between the point sets, focusing only on what
is required in this paper. To summarize, we represent a set of vectors by the sum of the vectors after
applying a transformation called a feature map. For an excellent introduction to the kernel method,
see Phillips & Venkatasubramanian (2011) or Hein & Bousquet (2004).

Let K : Rd × Rd → R be a function. For example, we may think of the Gaussian kernel exp
(
−

‖x−y‖2
2

)
. Function K is a positive definite kernel (pd kernel) if, for any constants {ci}ni=1 and points

{xi}ni=1 in Rd, we have
∑

i

∑
j cicjK(xi, xj) ≥ 0. A pd kernel K has an associated reproducing

kernel Hilbert space H with feature map φ : Rd → H such that K(x, y) = 〈φ(x), φ(y)〉 for all
x, y ∈ Rd, where 〈, 〉 denotes the inner product onH.

A pd kernel K with feature map φ induces a (pseudo-)distance dK on Rd, which is defined by
d2K(x, y) = ‖φ(x)−φ(y)‖2H = 〈φ(x)−φ(y), φ(x)−φ(y)〉 = K(x, x)− 2K(x, y)+K(y, y). For
sets of points X = {xi}mi=1 and Y = {yj}nj=1, the induced distance DK is similarly defined as

D2
K(X,Y ) =

∑
x∈X

∑
x′∈X

K(x, x′)− 2
∑
x∈X

∑
y∈Y

K(x, y) +
∑
y∈Y

∑
y′∈Y

K(y, y′)

=
∥∥∑

x∈X
φ(x)−

∑
y∈Y

φ(y)
∥∥2.

Hence, φ(X) =
∑

i φ(xi) represents set X independently of Y , and the set distance DK can be
computed using the distance between the representation vectors. If points xi and yj are associated
with weights vi and wj in R, then we replace K(xi, yj) with viwjK(xi, yj) and obtain φ(X) =∑

i viφ(xi) and φ(Y ) =
∑

j wjφ(yj) in the same manner. For many known kernels, the explicit
feature maps are unclear or infinite-dimensional. However, we remark that when walking backward,
for an arbitrary map φ : Rd → RD, there is an associated set similarity using the representation map
φ(X) =

∑
x∈X φ(x). Its usefulness depends on specific problems at hand. For instance, in Section

3.2, we define a neural network based on WLS, where φ learns a suitable feature map in a supervised
task.

2.4 Problems of aggregation-first scheme

Many modern GNNs can be analyzed with the Weisfeiler–Leman framework (Xu et al. , 2019). It is
common practice to aggregate the attributes of neighbors first and then transform with a learnable
function. However, we do not yet have a reliable theory that explains this order of operations. Instead,
we present two examples where aggregation-first might be dangerous for continuous node attributes.

Let us consider a graph on four nodes drawn on the Euclidean plane: one node at (0, 0) connected
to three other nodes on the unit circle. See Figure 2 (a) for two different examples. We assign the
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2D coordinates as the node attributes. If we apply the common neighborhood aggregation at the
central nodes (such as average, sum, or various weighted sums), the results of the two graphs are
indistinguishable. However, if we apply the set representation

∑
φ(x) from Section 2.3 with φ from

a polynomial kernel, not only can we distinguish the two graphs but we can also deduce the exact
locations of three neighbors from the set representation. See Appendix B.2 for a detailed explanation.

We target two properties, illustrated in Figure 2, for a good neighborhood representation. We
consider the (dis-)similarity between a set of vectors and another set obtained by applying a rigid
transformation to all elements of the former set. First, orientation-invariance indicates the following:
(1) the similarity from a rotation should be the same as the similarity from the inverse of the rotation.
(2) the similarity from a translation to a direction should be the same as the similarity from the same
amount of translation to another direction. Second, monotonicity indicates that, when we apply a
rotation or a translation, the dissimilarity must be strictly increasing up to a small positive degree of
transformation. Note that the set representation from Section 2.3 with the Gaussian kernel satisfy
both orientation-invariance and monotonicity. However, fast kernels and popular GNN aggregations
have difficulties. For formal definition and discussion, see Appendix B.3.

3 Weisfeiler–Leman similarity

In this section we define Weisfeiler–Leman Similarity (WLS), which describes a diverse range
of graph similarities rather than a single reference implementation. After introducing the general
concept, we provide an implementation of WLS as a graph kernel in Section 3.1. We also present a
similarly designed neural network in Section 3.2.

Recall from Section 2.2 that the core idea of the WL-algorithm is to iteratively update the node
attributes using the neighbors’ information. Our focus is to reflect the similarity between the sets
of neighbors’ attributes into the node-wise updated attributes via the set-representation vector from
Section 2.3. A formal statement is in Algorithm 1.

Algorithm 1: Updating node attributes in Weisfeiler–Leman similarity

Data: Graph G, nodes V , initial attributes f0(v) for v ∈ V , iteration number k, and feature
maps φi for i = 1, 2, . . . , k.

Result: Updated attributes fk(v) for v ∈ V .
for i← 1 to k do

for v ∈ V do
gi(v)← φi(f

i−1(v));
f̂ i(v)←

∑
u∈N (v) g

i(u);

f i(v)← COMBINEi

(
f i−1(v), f̂ i(v)

)
;

end
end

As noted in Section 2.3, feature maps φi can be ones from well-known kernels or problem-specific
functions. If we use the concatenation as COMBINEi in Algorithm 1, because ‖f i(v)− f i(v′)‖2 =

‖f i−1(v) − f i−1(v′)‖2 + ‖f̂ i(v) − f̂ i(v′)‖2, both the similarities between f i−1 and between the
sets of neighbors’ attributes are incorporated into f i(v). The steps in a single iteration correspond to
transform-sum-cat in this case.

After the node-wise update, we keep the set of updated attributes and discard the adjacency. To
compare two graphs G and G′, we measure the distance between {fk(v) : v ∈ V (G)} and {fk(v′) :
v′ ∈ V (G′)} using another kernel of choice. An example is to use the Gaussian kernel between the
sum of node attributes.

Extensions. If the adjacency is not represented as a binary value but instead a number wuv is
assigned to the edge from u to v, we may reflect the weights by replacing the set representation∑

u∈N (v) g
i(u) with

∑
u∈N (v) wuv · gi(u); see Section 2.3. If an edge uv has an attribute e(u, v)

then instead of set {f i(u) : u ∈ N (v)} we consider set {COMBINEe
i

(
e(u, v), f i(u)

)
: u ∈ N (v)}
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with an edge-combination function COMBINEe
i . That is, we are interested in similarity not merely

between the sets of node attributes, but between the sets of pairs of edge attributes and node attributes.

In practice, the graph size and the node degrees may be too large to handle. We may choose to sample
some of the neighbor attributes, to apply transform-mean then to multiply the node degree, which
simulates the transform-sum operation.

3.1 WLS kernel

To test our idea, we implemented a WLS-based graph kernel. We report its classification accuracy on
the TU datasets (Kersting et al. , 2016) in Section 5.1. Here, we describe which components are built
into our kernel.

Algorithm 1 requires the iteration number k and feature maps φi for all iterations. We set k = 5. For
the feature map φi, we chose the second-order Taylor approximation of the Gaussian kernelK(x, y) =

exp
(
− ‖x−y‖

2

2

)
so that φ(x) has entries 1, xi, and xixj/

√
2 all multiplied by exp(−‖x‖2/2). See

Appendix B.1 for the derivation. For functions COMBINEi we tested two options: (1) the sum
φ(f i−1(v)) + f̂ i(v) and (2) the concatenation f i−1(v) ⊕ f̂ i(v).
Once the node-wise update is done, as noted above, we discard the adjacency and consider the set of
updated node attributes. In Section 5.1, we used the Gaussian kernel between the sum of the final
node attributes to compute the graph similarity.

Dimensionality reduction. As we apply the feature maps iteratively, the dimension quickly sur-
passes the memory limit. For example, PROTEINS_full from the TU datasets (Kersting et al. , 2016)
contains node attributes in R29. As a result, after three iterations with the above φi, it yields more
than five billion numbers for a single node. We must reduce the dimension.

What properties must our dimensionality reduction have? Recall from Section 2.3 that the set
distance between X and Y is computed as ‖

∑
x∈X φ(x) −

∑
y∈Y φ(y)‖, the Euclidean norm of

the difference between set representations. Therefore, we would like to preserve the Euclidean
norm through the reduction as much as possible. Motivated by the Johnson–Lindenstrauss lemma
(Johnson & Lindenstrauss, 1984), we multiply COMBINEi

(
f i−1(v), f̂ i(v)

)
of high dimension D

with a random d×D matrix, say Mi. The entries of Mi are i.i.d. random samples from the normal
distribution, and the column norms of Mi are normalized to 1. We apply this Mi to all nodes at the
i-th iteration. For a detailed explanation and empirical tests of stability, see Appendix C.2. We set
d = 200; hence, after each WL-iteration, all nodes have a vector of dimension 200.

3.2 WLS neural network

Now, we propose a graph neural network based on Weisfeiler–Leman similarity. The node attributes
are updated using Algorithm 1. We set k = 4 to compare the performance with other GNN models
from Dwivedi et al. (2020). Each transformation φi is a three-layer multi-layer perceptron (MLP),
where each layer consists of a linear transformation, 1D batch normalization, ReLU, and dropout in
sequence. If the option residual is turned on, we add the input to the output of MLP after linearly
transforming the input to match the dimension. All hyperparameters are listed in Appendix E.

After applying φi by going through the corresponding MLP, we use another 1D batch normalization.
Then, for each node, we sum up the outputs of neighbors to obtain representation f̂ i(v) of the
neighborhood. Further, we use COMBINEi

(
f i−1(v), f̂ i(v)

)
= φi(f

i−1(v))⊕ f̂ i(v).

Again, following the experimental setup of Dwivedi et al. (2020), we place an MLP classifier with
two hidden layers on top of the output vectors of Algorithm 1 for node classification. For graph
classification, the averages of all node representations are put into the same classifier. We do not use
the edge attributes, even if given, for these two tasks.

In the graph regression experiment, we additionally test an extended model that uses the edge
attributes. The graphs in ZINC dataset has categorical edge attributes from {0, 1, 2}. Thus we assign
each WL-iteration with its own learnable edge embeddings for the attributes. Let us denote tuv
the attribute of edge uv and ei(tuv) the corresponding embedding for the i-th iteration. Instead of
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Table 1: Graph classification results on the TU datasets via WLS kernels with different aggregations.
The numbers are mean test accuracies over ten splits. Bold-faced numbers are the top scores for the
corresponding datasets. The proposed aggregation (WLS) shows strong performance compared with
other aggregations from the literature. See Section 5.1.

Aggregation BZR COX2 DHFR ENZYMES PROTEINS Synthie

GAT 83.21±4.52 79.26±3.54 67.74±4.00 58.83±6.85 74.02±5.72 46.00±3.69
GCN 80.49±3.22 78.60±1.52 67.74±4.91 60.67±7.98 73.04±4.70 45.72±3.72

GraphSAGE 77.53±3.73 79.01±2.42 67.61±3.48 58.83±6.85 74.47±5.59 46.00±3.69
WWL 79.02±2.04 78.79±1.27 67.49±6.05 58.83±6.85 73.04±4.70 46.00±3.69

WLSLin 79.99±3.04 77.93±2.42 68.26±2.59 58.83±6.85 74.39±3.14 55.00±7.22
WLS 83.45±6.49 77.95±3.48 77.92±4.78 68.00±3.99 75.38±4.26 86.79±5.82

∑
u∈N (v) φi(f

i−1(u)) as the neighborhood representation for node v, we use
∑

u∈N (v) φi(ei(tuv)⊕
f i−1(u)). The rest are the same as in the WLS classification network.

4 Related work

Graph kernels Most of the graph kernels inspired by the Weisfeiler–Leman test act only on graphs
with discrete (categorical) attributes. Morris et al. (2016) extend discrete WL kernels to continuous
attributes; however, its use of hashing functions cannot reflect the continuous change in attributes
smoothly. Propagation kernel (Neumann et al. , 2016) is another instance of hashing continuous
attributes, which shares the same problem. WWL (Togninalli et al. , 2019) is a smooth kernel;
however, the Wasserstein distance at its core makes it difficult to scale.

The kernels based on matching or random walks (Feragen et al. , 2013; Orsini et al. , 2015; Kashima
et al. , 2003) are better suited for continuous attributes. Their speed can be drastically increased with
explicit feature maps (Kriege et al. , 2019). However their construction often requires large auxiliary
graphs, resulting again in scalability issues.

The deep graph kernels Yanardag & Vishwanathan (2015) are interesting approach to learn the simi-
larity using Noise Contrastive Estimation Gutmann & Hyvärinen (2010). They collect substructures
with specific co-occurence definitions and train their embeddings analogously to Word2Vec Mikolov
et al. (2013). The pre-training stage and slow sampling of substructures makes its use cases different
from our focus.

In comparison with fast kernels, the WLS kernel smoothly reflects the continuous change in attributes.
Its simple structure combined with locality makes it easy-to-scale and easy-to-implement with existing
deep learning frameworks. For further details on graph kernels, we redirect to two excellent surveys
(Kriege et al. , 2020; Nikolentzos et al. , 2019).

Graph neural networks. The proposed GNN fits into the MPNN (Gilmer et al. , 2017) frame-
work. Many MPNN-type GNNs can be analyzed upon the WL-framework, as shown by Xu et al.
(2019). Transform-sum-cat is an instance of the WL-framework where transform-sum corresponds to
AGGREGATE and cat to COMBINE. The notable differences of WLS-GNN from GIN and other
popular GNN models are the order of operations and the usage of concatenation to distinguish the
central node from its neighbors.

Although one of the earliest studies (Gori et al. , 2005; Scarselli et al. , 2009) applied transformation
before aggregation, many modern GNNs follow the aggregation-first scheme, as noted by Xu et al.
(2019). Furthermore, the theoretical analyses of such GNNs (Dehmamy et al. , 2019; Magner

et al. , 2020; Morris et al. , 2019) focus on the distinguishing power of GNNs. However, we lack a
discussion from the perspective of how similar the representations from different graphs are. Xu et al.
(2019) called for future works extending their analysis to the continuous regime. This article can be

a step toward an answer.
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Table 2: Node classification results for Stochastic Block Model (SBM) datasets. The test accuracy
and training time are averaged across four runs with random seeds 1, 10, 100, and 1000. WLS obtains
the highest accuracy and is close to the best speed. See Section 5.2.

Model
SBM_PATTERN SBM_CLUSTER

# Parameters
Accuracy Time (h) Accuracy Time (h)

GAT 95.63±0.26 12.9 59.17±0.52 7.5 109936
GatedGCN 98.89±0.07 5.9 60.20±0.48 4.3 104003

GCN 80.00±1.01 4.5 55.23±1.07 2.3 100923
GIN 99.03±0.04 0.5 58.55±0.17 0.4 100884

GraphSage 89.34±1.49 5.1 58.36±0.18 2.5 98607
MoNet 98.94±0.05 29.5 58.42±0.36 19.0 103775

WLS(ours) 99.08±0.02 0.6 60.49±0.41 0.5 78452

5 Experiments

We present three sets of experiments to show the efficacy of our proposal. In Section 5.1, we test
the transform-sum-cat against several aggregation operations from GNN literature, comparing their
performances in graph classification. In Section 5.2, we show that a simple GNN based on transform-
sum-cat can outperform popular GNN models in node classification and graph regression. In Section
5.3, we present a successful application of WLS in adversarial learning of graph generation with
enhanced stability.

In all experiments, except for graph generation, we use the experimental protocols from the bench-
marking framework1 (Dwivedi et al. , 2020). For a fair comparison, the benchmark includes the
datasets with fixed splits as well as reference implementations of popular GNN models, including
GAT (Veličković et al. , 2018), GatedGCN (Bresson & Laurent, 2017), GCN (Kipf & Welling, 2017),
GIN (Xu et al. , 2019), GraphSAGE (Hamilton et al. , 2017), and MoNet (Monti et al. , 2017).

5.1 Graph classification via graph kernels

In this subsection, we test the proposed transform-sum-cat against other neighborhood aggregation
methods from GNN research. All models in Table 1 have the same structure and experimental settings
as the WLS kernel (Section 3.1), except for the neighborhood aggregation. For comparison, we chose
simple averaging of GraphSAGE (Hamilton et al. , 2017), degree-normalized averaging of GCN
(Kipf & Welling, 2017), attention-based weighted averaging of GAT (Veličković et al. , 2018), and a
customized aggregation from WWL (Togninalli et al. , 2019). To isolate the effect of transformation,
we also report the WLS kernel performance with the identity feature map as WLSLin (sum-cat instead
of transform-sum-cat). We input the obtained graph representations into the C-regularized Support
Vector Classifier with Gaussian kernel in Scikit-learn (Pedregosa et al. , 2011).

Table 1 reports mean test accuracies across 10 splits given by the benchmarking framework, where
the hyperparameters (including the number of iterations) are chosen based on the mean validation
accuracy across the splits. Appendix E.1 lists the details of aggregations and hyperparameter ranges.
On all datasets except for COX2, the WLS kernel outperforms other aggregations. Due to the
stochasticity introduced by the dimensionality reduction in the WLS kernel, we run WLS experiments
four times with random seeds 1, 10, 100, and 1000. The result showing the stability of the WLS
kernel is in Appendix D.2.

We remark that the objective of this experiment is to show the relative strength of transform-sum-cat
as an aggregation method without parameter learning, but not to show the strength of WLS kernel as
a graph classification model. In fact, the classification performance by graph neural networks, Table
3, shows better accuracy on the same datasets.

1The experiments in this paper are compared against Benchmark v1. However, the framework has been
substantially updated after this paper was submitted.
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Table 3: Graph classification on TU datasets via graph neural networks. ENZ. for ENZYMES, PRO.
for PROTEINS_full, Synth. for Synthie. The numbers in the second sets of columns are mean test
accuracies over ten splits, averaged over four runs with random seeds 1, 10, 100, and 1000. MRR
stands for Mean Reciprocal Rank and Time indicates the accumulated time for single run across all
six datasets. Bold-faced numbers indicate the best score for each column. See Section 5.2.

Model BZR COX2 DHFR ENZ. PRO. Synth. MRR Time
(hr) #Params

Is
ot

ro
pi

c

GCN 84.63 77.08 76.06 62.38 75.24 93.03 0.200 4.9 78019
GIN 83.49 79.01 76.62 65.67 65.58 93.05 0.202 4.0 77875

GraphSage 81.61 76.89 74.80 68.58 75.85 97.70 0.291 5.2 81171
MLP 82.98 76.82 73.01 54.88 74.37 48.43 0.135 1.2 60483

WLS(ours) 84.64 79.07 76.95 70.42 63.07 98.87 0.576 3.9 64751

A
ni

so
tr

op
ic GAT 85.31 78.52 76.39 66.63 75.62 95.08 0.358 38.4 78531

GatedGCN 84.39 80.21 76.86 68.92 75.65 96.31 0.458 12.2 87395

MoNet 83.64 79.64 78.22 57.63 76.92 91.46 0.498 10.3 82275

5.2 Graph neural network

In this subsection, we report the performance of the proposed GNN model (WLS) based on transform-
sum-cat (Section 3.2). We used the implementation and hyperparameters for all models other than
WLS as provided by the benchmarking framework2 (Dwivedi et al. , 2020). All reported numbers
are averaged across four different runs with random seeds 1, 10, 100, and 1000. The details of the
experiments are in Appendix E.2.

Node classification. The benchmarking framework provides two community detection datasets for
node classification: SBM_PATTERN and SBM_CLUSTER. Both are generated by the stochastic
block model (SBM); see Abbe (2018). Graphs in SBM_PATTERN have six communities, where the
task is binary classification: separating one specific community from the others. The communities
differ by internal and external edge density. The node attributes are randomly assigned from {0, 1, 2}.
Graphs in SBM_CLUSTER also have six communities, and the task is to classify each node as
belonging to one of the six communities. Only one node for each community is assigned a community
index from 1 to 6 as the node attribute, and all other nodes have attribute 0.

Table 2 shows the test accuracies and training times of all models on SBM_PATTERN and
SBM_CLUSTER. WLS obtains the highest accuracy on both, being the second-fastest model.

Graph classification. As in graph kernel experiment, we test our WLS-based neural network on
classification task of TU datasets BZR, COX2, DHFR, ENZYMES, PROTEINS_full and Synthie.
The reported numbers in Table 3 are the average of mean test accuracy across the ten splits given by
Dwivedi et al. (2020), over four different random seeds 1, 10, 100 and 1000.

Although the variances are quite large (c.f. Appendix D.3), WLS reports the highest mean accuracy
on all datasets but PROTEINS among isotropic GNNs, while beating anisotropic ones on two datasets.
As a measure of overall rankings we also report the Mean Reciprocal Rank for which WLS achieves
the highest score.

Graph regression. The benchmarking framework provides one dataset extracted from ZINC
(Sterling & Irwin, 2015) for graph regression. The graphs in ZINC are small molecules, whose node
attributes are atomic numbers, and edge attributes are one of three bond types. The target labels are
the constrained solubility (Jin et al. , 2018). Table 4 reports the mean absolute error (MAE) between
the label and the predicted number for the provided test set. WLS already significantly outperforms
the other models, and WLS-E, an extension using the edge attributes, lowers the error further.

5.3 Neural graph generation

2https://github.com/graphdeeplearning/benchmarking-gnns
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Figure 3: Percentage of valid molecules (y-axis) out of 13,317 generated molecules, plotted over
the number of generator iterations (x-axis). Dashed curves correspond to 4 different runs with the
original R-GCN-based discriminator. Solid curves correspond to the WLS discriminator. While
R-GCN discriminator collapses to 0 valid molecules after approximately 20 mostly-valid generations,
the generations from the WLS discriminator continue to be valid. See Section 5.3.

Table 4: Graph regression on ZINC
dataset via graph neural networks. The
numbers are the mean absolute er-
ror (MAE) on the test set of 1,000
molecules. The suffix "-E" indicates
that the model uses edge attributes. See
Section 5.2.

Model MAE

GAT 0.462±0.010
GatedGCN-E 0.362±0.001

GCN 0.469±0.014
GIN 0.429±0.036

GraphSAGE 0.422±0.006
MoNet 0.416±0.014

WLS(ours) 0.332±0.007
WLS-E(ours) 0.315±0.003

Generating molecules is the most popular application of
neural graph generation because of its huge economic value.
However, previous works generating a whole molecular
graph at once (De Cao & Kipf, 2018; Simonovsky & Ko-
modakis, 2018) suffer from low chemical validity of gen-
erated molecules. Hence, most studies either generate a
string representation or devise iterative generation meth-
ods; c.f. Elton et al. (2019). Here, we present a case where
a simple adoption of WLS greatly enhances the stability of
one-shot generation.

MolGAN (De Cao & Kipf, 2018) uses WGAN-GP (Gulra-
jani et al. , 2017) framework to generate small molecules.
We started from a re-implementation3 of MolGAN in Py-
Torch, replacing the original discriminator based on R-
GCN (Schlichtkrull et al. , 2018) with the WLS discrim-
inator. Figure 3 reports the percentage of valid molecules
out of 13,317 generated ones after each generator iteration.
For validity tests, we used RDKit (Landrum, 2019) func-
tion SanitizeMol. According to our results, the generation
validity with the WLS discriminator is much more stable
than that with the R-GCN based discriminator. See Appendix E.3 for details.

6 Conclusion

Deep learning on graphs naturally calls for the study of graphs with continuous attributes. Previous
analyses of GNNs identified the cases when non-identical graphs had the same learned representations.
However, it has been unclear how similarities between input graphs could be reflected in the distance
between GNN representations. Moreover, in the field of graph kernels, a dichotomy exists. On
the one hand, we have fast and efficient kernels, which cannot reflect a smooth change in the node
attributes. On the other hand, we have smooth matching-based kernels, which are slow and costly.

In this paper, we present an approach that reflects the similarity in GNN architecture. The resulting
simple GNN model shows strong empirical performance and efficiency. Using the same idea, we
introduce a graph kernel that smoothly reflects a continuous change in attributes, while also being
simple and fast. We believe that this study demonstrates that starting from the perspective of continuity
can help to improve GNN architectures.

3https://github.com/yongqyu/MolGAN-pytorch
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Broader impact

This article mainly discusses two topics: how to measure similarity between graphs, and how to learn
from graphs. One of the most important subjects in both fields is the molecular graph. A chemically
meaningful similarity between molecules helps find new drugs and invent new materials of great
value. Many chemical search engines support similarity search based on fingerprints, which indicate
the existence of certain substructures. The fingerprints have been useful to find molecules of interest,
but they are inherently limited to local properties. The proposed graph similarity is simple, fast
and efficient. The proposed graph neural network reports particular strength in molecular property
prediction and molecular graph generation, albeit not studied extensively. It is possible that the
proposed algorithms provide another, global perspective to molecular similarity.

Another task for which the proposed neural network showed strength is the node classification. The
node classification is mostly used to automatically categorize articles, devices, people, and other
entities in interconnected networks at large scale. Some related examples include identifying false
accounts in social network services, classifying a person for a recommendation system based on its
friends’ interest, and detecting malicious edge-devices in Internet of Things or mobile networks. As
with every machine learning applications, assessing and understanding the data is crucial in such
cases. Especially in graph-structured data, we believe that the characteristic of data is the most
important factor in deciding which graph learning algorithm to use. It is necessary to understand the
principle and limitation of an algorithm to prevent failure. For example, our method has two caveats.
First, it uses sum to collect information from the neighbors, and hence more suitable when the counts
indeed matter and not just the distributions. Second, our method decides the similarity between two
graphs using the local information. Hence when the "global" graph properties such as hamiltonicity,
treewidth, and chromatic number are the deciding factor, our algorithm might not be the best choice.

Graph learning in general are being applied to more and more tasks and applications. Some of the
examples include recommendation systems, transportation analysis, and credit assignments. However,
the study of risks regarding graph learning, such as adversarial attack, privacy protection, ethics and
biases are still at an early stage. In practice, we should be warned about such risks and devise testing
and monitoring framework from the start to avoid undesirable outcomes.
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Veličković, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Liò, Pietro, & Bengio, Yoshua.
2018. Graph attention networks. Sixth International Conference on Learning Representations (ICLR 2018).

Weisfeiler, Boris Y., & Leman, Andrei A. 1968. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, Series 2, 9. English translation by G. Ryabov
available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

Xu, Keyulu, Hu, Weihua, Leskovec, Jure, & Jegelka, Stefanie. 2019. How powerful are graph neural networks?
Seventh International Conference on Learning Representations (ICLR 2019).

Yanardag, Pinar, & Vishwanathan, S.V.N. 2015. Deep graph kernels. Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2015.

12

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

	Introduction
	Preliminaries
	Notations
	Weisfeiler–Leman isomorphism test
	Vector representation of a set
	Problems of aggregation-first scheme

	Weisfeiler–Leman similarity
	WLS kernel
	WLS neural network

	Related work
	Experiments
	Graph classification via graph kernels
	Graph neural network
	Neural graph generation

	Conclusion

