A Universally Optimal Multistage Accelerated Stochastic Gradient Method

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental

Authors

Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, Asuman Ozdaglar

Abstract

We study the problem of minimizing a strongly convex, smooth function when we have noisy estimates of its gradient. We propose a novel multistage accelerated algorithm that is universally optimal in the sense that it achieves the optimal rate both in the deterministic and stochastic case and operates without knowledge of noise characteristics. The algorithm consists of stages that use a stochastic version of Nesterov's method with a specific restart and parameters selected to achieve the fastest reduction in the bias-variance terms in the convergence rate bounds.