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Here we describe a number of loss terms that have been tried with our method in order to encourage
some behaviour from the generator, but have all resulted in a decrease of performance from the
student. This happens despite finding the optimal scaling for each loss term, denoted here by γ. In
general, we believe that this is due to the generator already achieving the desired behaviours due to
the nature of the adversarial dynamics, and so extra losses simply create an imbalance between the
two adversaries. Extra loss terms added to LG relate to:

1. The entropy of the teacher: LG += γ ×
(
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p log t
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)
where t are the teacher’s

probability outputs on pseudo data xp, and i is the class index. When positive, this encour-
ages the generator to search regions of the input space where the teacher is confident, which
could correlate with regions close to the real data manifold.

2. The entropy of the student: LG += γ ×
(
−
∑

i s
(i)
p log s

(i)
p

)
. This encourages the

generator to take more risks and look for images that the student is confidently wrong about.
3. The consistency of the images generated: LG += γ×DKL(T (xp) || T (A(xp))) where
A is some augmentation operation, such as Gaussian noise or Gaussian blurring. Here the
idea is to constrain the generator to search images for which being augmented does not
change the output of the teacher. Again this is an attempt to drive the search closer to real
data and away from adversarial images.

4. The diversity of the images generated: LG += −γ × φφT , where φ corresponds to the
representation of a batch of images in the penultimate layer of the teacher. Here the loss
encourages each batch to be diverse in the space spanned by the teacher’s last layer. So at
any one time, the generator is penalized if all of its samples look too similar according to
the teacher.
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On CIFAR-10 we observe that the volume each class occupies in the input space of common neural
networks does not seem to be equal. Here, we produce uniform noise by sampling each pixel
xi ∼ U(0, 255) discretely, and normalizing the resulting images by the mean and standard deviations
of CIFAR-10, as used during training time. The distribution of the predictions made by common
neural networks (pretrained on CIFAR-10) are shown in Figure 1. The predictions are mostly birds or
frogs, which suggests that decision boundaries have a higher density close to the real images. Another
way to reason about this is that adding uniform noise to a real image is much more likely to change
its class than adding uniform noise to uniform noise.
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Figure 1: Distribution of predictions across different architectures when given 1000 images of uniform
noise. Interestingly, the predictions are largely focused on two classes.
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