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Abstract

Deep neural networks have revolutionized many real world applications, due to
their flexibility in data fitting and accurate predictions for unseen data. A line of
research reveals that neural networks can approximate certain classes of functions
with an arbitrary accuracy, while the size of the network scales exponentially with
respect to the data dimension. Empirical results, however, suggest that networks
of moderate size already yield appealing performance. To explain such a gap,
a common belief is that many data sets exhibit low dimensional structures, and
can be modeled as samples near a low dimensional manifold. In this paper, we
prove that neural networks can efficiently approximate functions supported on low
dimensional manifolds. The network size scales exponentially in the approximation
error, with an exponent depending on the intrinsic dimension of the data and the
smoothness of the function. Our result shows that exploiting low dimensional
data structures can greatly enhance the efficiency in function approximation by
neural networks. We also implement a sub-network that assigns input data to their
corresponding local neighborhoods, which may be of independent interest.

1 Introduction

In the past decade, neural networks have made astonishing breakthroughs in many real world
applications, such as computer vision (Krizhevsky et al., 2012; Goodfellow et al., 2014; Long et al.,
2015), natural language processing (Graves et al., 2013; Bahdanau et al., 2014; Young et al., 2018),
healthcare (Miotto et al., 2017; Jiang et al., 2017), robotics (Gu et al., 2017), etc.

Although data sets in these applications are highly complex, neural networks have achieved over-
whelming successes. For image classification, the winner of the 2017 ImageNet challenge retained a
top-5 error rate of 2.25% (Hu et al., 2018), while the data set consists of about 1.2 million labeled
high resolution images in 1000 categories. For speech recognition, Amodei et al. (2016) reported that
deep neural networks outperformed humans with a 5.15% word error rate on the LibriSpeech corpus
constructed from audio books (Panayotov et al., 2015). Such a data set consists of approximately
1000 hours of 16kHz read English speech from 8000 audio books. These empirical results suggest
that neural networks can well approximate complex distributions and functions on data.

A line of research attempts to explain the success of neural networks through the lens of expressivity
— neural networks can effectively approximate various classes of functions. Among existing works,
the most well-known results are the universal approximation theorems, see Irie and Miyake (1988);
Funahashi (1989); Cybenko (1989); Hornik (1991); Chui and Li (1992); Leshno et al. (1993).
Specifically, Cybenko (1989) showed that neural networks with one single hidden layer and continuous
sigmoidal’ activations can approximate continuous functions in a unit cube with arbitrary accuracy.
Later, Hornik (1991) extended the universal approximation theorem to general feed-forward networks

'A function o () is sigmoidal, if o(z) — 0 as 2 — —oo, and o(x) — 1 as x — oo.
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with a single hidden layer, while the width of the network has to be exponentially large. Specific
approximation rates of shallow networks (with one hidden layer) with smooth activation functions
were given in Barron (1993) and Mhaskar (1996). Recently, Lu et al. (2017) proved the universal
approximation theorem for width-bounded deep neural networks, and Hanin (2017) improved the
result with ReLU (Rectified Linear Units) activations, i.e. ReLU(z) = max{0, z}. Yarotsky (2017)
further showed that deep ReLLU networks can uniformly approximate functions in Sobolev spaces,
while the network size scales exponentially in the approximation error with an exponent depending
on the data dimension. Moreover, the network size in Yarotsky (2017) matches its lower bound.

The network size considered in applications, however, is significantly smaller than what is predicted
by the theory above. In the ImageNet challenge, data are RGB images with a resolution of 224 x 224.
The theory above suggests that, to achieve a e uniform approximation error, the number of neurons
has to scale as e~ 224%224x3/2 (Barron, 1993). Setting € = 0.1 already gives rise to 10224%224x3/2
neurons. However, the AlexNet (Krizhevsky et al., 2012) only consists of 650000 neurons and 60
million parameters to beat the state-of-the-art. To boost the performance on the ImageNet, several
more sophisticated network structures were proposed later, such as VGG16 (Simonyan and Zisserman,
2014) which consists of about 138 million parameters. The size of both networks remains extremely
small compared to 10224%224x3/2_ Why is there a tremendous gap between theory and practice?

A common belief is that real world data sets often exhibit low dimensional structures. Many
images consist of projections of 3-dimensional objects followed by some transformations, such as
rotation, translation, and skeleton. Such a generating mechanism induces a small number of intrinsic
parameters. Speech data are composed of words and sentences following the grammar, and therefore
have a small degree of freedom. More broadly, visual, acoustic, textual, and many other types of
data all have low dimensional structures due to rich local regularities, global symmetries, repetitive
patterns, or redundant sampling. It is plausible to model these data as samples near a low dimensional
manifold (Tenenbaum et al., 2000; Roweis and Saul, 2000). Then a natural question is:

Can deep neural networks efficiently approximate functions supported on low dimensional manifolds?

Function approximation on manifolds has been well studied using local polynomials (Bickel et al.,
2007) and wavelets (Coifman and Maggioni, 2006). However, studies using neural networks are
very limited. Two noticeable works are Chui and Mhaskar (2016) and Shaham et al. (2018). In Chui
and Mhaskar (2016), high order differentiable functions on manifolds are approximated by neural
networks with smooth activations, e.g., sigmoid activations and rectified quadratic unit functions
(0(z) = (max{0,z})?). These smooth activations, however, are rarely used in the mainstream
applications such as computer vision (Krizhevsky et al., 2012; Long et al., 2015; Hu et al., 2018).
In Shaham et al. (2018), a 4-layer network with ReLU activations was proposed to approximate
C? functions on low dimensional manifolds that have absolutely summable wavelet coefficients.
However, this theory does not cover arbitrarily smooth functions, and the analysis is built upon
a restrictive assumption — there exists a linear transformation that maps the input data to sparse
coordinates, but such transformation is not explicitly given.

In this paper, we propose a framework to construct deep neural networks with nonsmooth activations
to approximate functions supported on a d-dimensional smooth manifold isometrically embedded
in R”. We prove that, in order to achieve a fixed approximation error, the network size scales
exponentially with respect to the intrinsic dimension d, instead of the ambient dimension D. Our
framework is flexible: 1). It applies to nonsmooth activations, e.g., ReLU and leaky ReL.U activations;
2). It applies to a wide class of functions, such as Sobolev and Holder classes which are typical
examples in nonparametric statistics (Gyorfi et al., 2006); 3). It exploits high order smoothness of
functions for making the approximation as efficient as possible.

Theorem (informal). Let M be a d-dimensional compact Riemannian manifold isometrically em-
bedded in R” with d < D. Assume M satisfies some mild regularity conditions. Given any
e € (0,1), there exists a ReLU neural network structure such that, for any C™ (n > 1) function
f+ M — R, if the weight parameters are properly chosen, the network yields a function fsat-
isfying || f — ,]?”oo < e. Such a network has no more than c; (log % + log D) layers, and at most
co (e74™log L + Dlog L + Dlog D) neurons and weight parameters, where c;, co depend on d, ,

f,and M.

Our network size scales like e~%/™ and only weakly depends on the ambient dimension D. This is

consistent with empirical observations, and partially justifies why the networks of moderate size have



achieved a great success on aforementioned learning tasks. Moreover, we show that our network size
matches its lower bound up to a logarithmic factor (see Theorem 2).

Our theory applies to general C™ functions and leverages the benefits of exploiting high order
smoothness. Our result improves Shaham et al. (2018) for C" functions with n > 2. In this case, our
network size scales like e ~%/™, which is significantly smaller than the one in Shaham et al. (2018) in
the order of e~%/2,

Here we state the theorem for C™ functions for simplicity, and similar results hold for Holder
functions (see Theorem 1). Our framework can be easily applied to leaky ReL.U activations, since
leaky ReLU can be implemented by the difference of two ReLU functions.

The high level idea of our framework is to partition the low dimensional manifold into a collection
of open sets, and then use Taylor expansions to approximate the function in each neighborhood. A
new technique is developed to implement a sub-network that assigns the input to its corresponding
neighborhood on the manifold, which may be of independent interest.

Notations: We use bold-faced letters to denote vectors, and normal font letters with a subscript
to denote its coordinate, e.g., X € R? and z, being the k-th coordinate of x. Given a vector

d d d ;
n=[n,...,ng]" €N wedefinen! = [[_, n;! and [n| = Y7, n;. We define x™ = [[;_, 2"
. . . . olnl .
Given a function f : R? — R, we denote its derivative as D™ f = m, and its £, norm as
i - d

| f]l . = maxx |f(x)|. We use o to denote the composition operator.

2 Preliminaries

We briefly review manifolds, partition of unity, and function spaces defined on smooth manifolds.
Details can be found in Tu (2010) and Lee (2006).

Let M be a d-dimensional Riemannian manifold isometrically embedded in R”.

Definition 1 (Chart). A chart for M is a pair (U, ) such that U C M is open and ¢ : U > R%,
where ¢ is a homeomorphism (i.e., bijective, ¢ and ¢! are both continuous).

The open set U is called a coordinate neighborhood, and ¢ is called a coordinate system on U. A
chart essentially defines a local coordinate system on M. We say two charts (U, ¢) and (V1)) on
M are C* compatible if and only if the transition functions, ¢ o 1»~! : (U N'V) + ¢(U N'V) and
Yod~t:p(UNV) (U NV)are both C*. Then we give the definition of an atlas.

Definition 2 (C* Atlas). An atlas for M is a collection {(Uy, ¢o ) }ac.a of pairwise C*¥ compatible
charts such that | J . 4 Us = M.

Definition 3 (Smooth Manifold). A smooth manifold is a manifold M together with a C*° atlas.

Classical examples of smooth manifolds are the Euclidean space R”, the torus, and the unit sphere.
The existence of an atlas on M allows us to define differentiable functions.

Definition 4 (C” Functions on M). Let M be a smooth manifold in R”. A function f : M — R s
C™ if for any chart (U, ¢), the composition f o ¢~1 : ¢(U) ~ R is continuously differentiable up to
order n.

Remark 1. The definition of C™ functions is independent of the choice of the chart (U, ¢). Suppose
(V1) is another chart and V (U # (). Then we have fo =t = (fo¢p=1) o (¢potp™!). Since M
is a smooth manifold, (U, ¢) and (V, ) are C>° compatible. Thus, f o ¢~ is C™ and ¢ o 9p~ ! is
C°, and their composition is C".

We next introduce partition of unity, which plays a crucial role in our construction of neural networks.

Definition 5 (Partition of Unity). A C'°° partition of unity on a manifold M is a collection of
nonnegative C*° functions p, : M — R, for a € A such that 1). the collection of supports,

{supp(pa) Y aea is locally finite?; 2). > p, = 1.

For a smooth manifold, a C'* partition of unity always exisits.

%A collection { A, } is locally finite if every point has a neighborhood that meets only finitely many of A,’s.



Proposition 1 (Existence of a C'* partition of unity). Let {U, }ac.4 be an open cover of a smooth
manifold M. Then there is a C'*° partition of unity {p; }32, with every p; having a compact support
such that supp(p;) C U, for some o € A.

Proposition 1 gives rise to the decomposition f = Zfil fi with f; = fp;. Note that the f;’s have the
same regularity as f, since f;op™1 = (fop™!) x (p; 0 ¢~ 1) for a chart (U, ¢). This decomposition
has the advantage that every f; is only supported in a single chart. Then the approximation of f boils
down to the approximations of the f;’s, which are localized and have the same regularity as f.

To characterize the curvature of a manifold, we adopt the following geometric concept.

Definition 6 (Reach, Definition 2.1 in Aamari et al. (2019)). Denote C(M) = {x ¢ RP : Ip #£q €
M, |lp — x|y, = [l — x|, = infyer |ly — x|, } as the set of points that have at least two nearest
neighbors on M. Then the reach 7 > 0 is defined as 7 = infyc pq yecm) X — Y5 -

Slow Change Rapid Change

M { Small 7

Figure 1: Manifolds with large and small reach.
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Reach has a straightforward geometrical interpretation: At each point x € M, the radius of the
osculating circle is greater or equal to 7. A large reach for M essentially requires the manifold M
not to change “rapidly” as shown in Figure 1.

Reach determines a proper choice of an atlas for M. In Section 4, we choose each chart U,, contained
in a ball of radius less than 7/2. For smooth manifolds with a small 7, we need a large number of
charts. Therefore, the reach of a smooth manifold reflects the difficulty of function approximations

on M.

3 Main Result

We next present how to construct a ReLU network to approximate f : M — R with error ¢, under
certain assumptions on M and f.

Assumption 1. M is a d-dimensional compact Riemannian manifold isometrically embedded in R”.
There exists a constant B such that for any point x € M, we have |z;| < Bforalli =1,...,D.

Assumption 2. The reach of M is 7 > 0.

Assumption 3. f : M — R belongs to the Holder space H™ with a positive integer n and
« € (0,1], in the sense that f € C"™~! and for any chart (U, ¢) and |n| = n, we have

D067 4y = DM 007y | < 16001) = 60025, Vxix0 €T (1)

Assumption 3 says that all n-th order derivatives of f o ¢! are Holder continuous. Here Holder
functions are defined on manifolds. We recover the standard Holder class on Euclidean spaces by
taking ¢ as the identity map. We also note that Assumption 3 does not depend on the choice of charts.

We now formally state our main result. Extensions to functions in Sobolev spaces are straightforward.

Theorem 1. Suppose Assumptions 1 and 2 hold. Given any ¢ € (0, 1), there exists a ReLU network
structure such that, for any f : M — R satisfying Assumption 3, if the weight parameters are

properly chosen, the network yields a function f satisfying ||f— flloo < €. Such a network has no

more than ¢4 (log % + log D) layers, and at most cz(e*ﬁ log % + Dlog % + Dlog D) neurons and
weight parameters, where c1, co depend on d, n, f, 7, and the surface area of M.

The network structure identified by Theorem 1 consists of three sub-networks as shown in Figure 2:
o Chart determination sub-network, which assigns the input to its corresponding neighborhoods;

e Taylor approximation sub-network, which approximates f by polynomials in each neighborhood;
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Figure 2: The ReLU network identified by Theorem 1.

o Pairing sub-network, which yields multiplications of the proper pairs of outputs from the chart
determination and the Taylor approximation sub-networks.

Specifically, we partition the manifold as M = UCM U, where the U;’s are open sets contained in a
Euclidean ball of radius less than 7/2. C'»( depends on the reach 7, the surface area of M, and the
dimension d (see Section 4 for an explicit characterization). For each chart, the chart determination
sub-network computes an approximation of the indicator function on U;. The Taylor approximation
sub-network provides a local polynomial approximation of f on U;. Then the pairing sub-network
approximates the product for the proper pairs of outputs in the previous two sub-networks. Finally, f
is obtained by taking a sum over C'y outputs from the pairing sub-network.

The size of our ReLU network matches its lower bound up to a logarithmic factor for the approxima-
tion of functions in Holder spaces. Denote F™¢ as functions defined on [0, 1]¢ in the Hlder space
H™ L1 We state a lower bound due to DeVore et al. (1989).

Theorem 2. Fix d and n. Let W be a positive integer and x : R" s C([0, 1]¢) be any mapping.
Suppose there is a continuous map © : F™? s RW such that ||f — x(O(f))|le < € for any
f € F~9 Then W > ce™ with ¢ depending on n only.

We take R" as the parameter space of a ReLU network, and & as the network structure. Then

to approximate any f € F™%, the ReLU network has at least ce weight parameters. Although
Theorem 2 holds for functions on [0, 1]¢, our network size remains in the same order up to a
logarithmic factor even when the function is supported on a manifold of dimension d.

4 Proof of the Main Result

Due to limited space, we present a sketch of the proof for Theorem 1. Before we proceed, we show
how to approximate the multiplication operation using ReLU networks. This operation is heavily
used in the Taylor approximation sub-network, since Taylor polynomials involve sum of products.
We first show ReLLU networks can approximate quadratic functions.

Lemma 1 (Proposition 2 in Yarotsky (2017)). The function f(z) = 2% with z € [0, 1] can be
approximated by a ReLU network with any error € > 0. The network has depth and the number of
neurons and weight parameters no more than clog(1/¢) with an absolute constant c.

This lemma is proved in Appendix A.1. The idea is to approximate quadratic functions using a
weighted sum of a series of sawtooth functions. Those sawtooth functions are obtained by compositing
the triangular function

g(x) = 2ReLU(z) — 4ReLU(xz — 1/2) 4+ 2ReLU(z — 1),
which can be implemented by a single layer ReLU network.
We then approximate the multiplication operation by invoking the identity ab = % ((a+b)*— (a—b)?)
where the two squares can be approximated by ReL.U networks in Lemma 1.

Corollary 1 (Proposition 3 in Yarotsky (2017)). Given a constant C' > 0 and € € (0,C?), there
is a ReLU network which implements a function X : R? — R such that: 1). For all inputs = and



y satisfying |z| < C and |y| < C, we have |X(z,y) — zy| < e 2). The depth and the weight
parameters of the network is no more than clog %2 with an absolute constant c.

The ReLLU network in Theorem 1 is constructed in the following 5 steps.

Step 1. Construction of an atlas. Denote the open Euclidean ball with center ¢ and radius r in R”
by B(c,r). For any r, the collection {B(x, ) }xeam is an open cover of M. Since M is compact,
there exists a finite collection of points c; for i = 1,..., Cay such that M C |, B(c;, 7).

Now we pick the radius < 7/2 so that U; = M N B(c;, ) is diffeomorphic® to a ball in R? (Niyogi
etal., 2008). Let {(U;, ¢Z)}f:"f be an atlas on M, where ¢; is to be defined in Step 2. The number

of charts C'y¢ is upper bounded by

Cm < {WTJ ;

where SA(M) is the surface area of M, and T}; is the thickness* of the U;’s.

Remark 2. The thickness Ty scales approximately linear in d. As shown in Conway et al. (1987),
there exists covering with # < Ty < dlogd+ dloglogd+ 5d.

Step 2. Projection with rescaling and translation. We denote the tangent space at c; as T, (M) =
span(v;1, ..., Vi), where {v;1,...,v;q} form an orthonormal basis. We obtain the matrix V; =
[Vil, ..., Vi € RP*4 by concatenating v;;’s as column vectors.

Define ¢;(x) = b;(V;" (x — ¢;) +s;) € [0,1]? for any x € U;, where b; € (0,1] is a scaling factor
and s; is a translation vector. Since U; is bounded, we can choose proper b; and s; to guarantee
#i(x) € [0,1]?. We rescale and translate the projection to ease the notation for the development of
local Taylor approximations in Step 4. We also remark that each ¢; is a linear function, and can be
realized by a single-layer linear network.

Step 3. Chart determination. This step is to locate the charts that a given input x belongs to. This
avoids projecting x using unmatched charts (i.e., x € U, for some j) as illustrated in Figure 3.

Proper charts’ can be determined by compositing an indi-
cator function and the squared Euclidean distance d? (x) =

Ix —eilly = 3277 (2 — ei5)? fori = 1,...,Cipq. The
squared distance d?(x) is a sum of univariate quadratic
functions, thus, we can apply Lemma 1 to approximate
d?(x) by ReLU networks. Denote ?qu as an approximation
of the quadratic function 22 on [0, 1] with an approxima-
tion error v. Then we define

Unmatched

bi(x;)

) Figure 3: Projecting x; using a matched
as an approximation of d2(x). The approximation error ~chart (blue) (Uj, ¢;), and an unmatched
is [|d? — d2||oe < 4B%Dv, by the triangle inequality. We chart (green) (Us, ).

next consider an approximation of the indicator function

of an interval as in Figure 4:

1 a<r’—A+4B*mv
Ia(a) = —A_g}Bmea + 72:33322;1": a€r?—A+4B*myv,r? — AB*my] 2)
0 a> 712 —A4B%*my

where A (A > 8B?muv) will be chosen later according to the accuracy e. Note that T can be
implemented exactly by a single layer ReLU network: 1a(a) = mRGLU(*CL +r? -

3 P is diffeomorphic to @ if there is a mapping I' : P — Q@ bijective, C*°, and its inverse also being C'*°.

“Thickness is the average number of U,’s that contain a point on M (Conway et al., 1987).

5Note that an input x can belong to multiple charts. Accordingly, the chart determination sub-network
determines all these charts.



AB*my) — x—ir—ReLU(—a + 12 — A+ 4B%*mv). We use 1 o d? to approximate the indicator
function on Us: if x & Uy, i.e., d2(x) > r2, we have T 0 d2(x) = 0;if x € U; and d2(x) < 72 — A,

we have 15 o gl?(x) =1.

0

\ 4

2 — A+4B%*my  r? —4B*myv

Figure 4: The approximation of the indicator function T in 2).

Step 4. Taylor approximation. In each chart (U;, ¢;), we locally approximate f using Taylor

polynomials of order n. Specifically, we decompose f as f = ZZC:"f fi with f; = fp; where p; is
an element in a C'°* partition of unity on M which is supported inside U;. The existence of such a
partition of unity is guaranteed by Proposition 1. Since M is compact and p; is C'*°, f; preserves the
regularity (smoothness) of f such that f; € H™* fori=1,...,Cx.

Lemma 2. Suppose Assumption 3 holds. For: = 1,..., C, the function f; belongs to H™“: there
exists a Holder coefficient L; depending on d, f;, and ¢; such that for any |n| = n, we have

Dn(fi ° (bi_l)’@(xl) N Dn(fi ° ¢i—1)’¢i(x2)

<L ||¢i(X1) - @(Xz)llS, Vx1,x2 € U;.

Proof Sketch. We provide a sketch here. Details can be found in Appendix B.1. Denote g; = fo (;Sf
and g» = p; o ¢; '. We have D™(f; 0 ¢; ') = D™(g1 x go) = 2 ip|+lal=n (‘Zl)ngqugg, by the
Leibniz rule. Consider each term in the sum: for any x;,x2 € Uj,
|DPg1DYs| 4. (x1) — DPg1DYg2 6, (x,) |
< |DPgy (¢i(x1))]| D24, (x1) — DVG2l6,(x2)| + [DV92(0:(%2)) || DP 1], (x1) — D91l (xa) |
< Aifhia l|¢i(x1) = di(x2)lly + piBia 6i(x1) — di(x2)]l3 -

Here \; and p; are uniform upper bounds on the derivatives of g; and go with order up to n,
respectively. The last inequality above is derived as follows: by the mean value theorem, we have

D929, x1) = DIG2 )| < Vepi | ds(x1) = ¢i(x2)
=Vdpi [|ds(x1) = di(x2) Iy~ 16 (x1) = Pi(xa)l|5 < Vdpa(2r)' = [[gs(x1) — i (x2) |5 ,
where the last inequality is due to the fact that ||¢;(x1) — ¢;(x2)|l, < b; || Vil ||x1 — x2l|, < 2r.
Then we set 6; , = V/du;(2r)'~* and by a similar argument, we set 3; o, = Vd)\;(2r)'~*. We
complete the proof by taking L; = 2" 1v/d\;u; (2r)' . O

Lemma 2 is crucial for the error estimation in the local approximation of f; o qs;l by Taylor
polynomials. This error estimate is given in the following theorem, where some of the proof
techniques are from Theorem 1 in Yarotsky (2017).

Theorem 3. Let f; = fp; as in Step 4. For any § € (0, 1), there exists a ReLU network structure
that, if the weight parameters are properly chosen, the network yields an approximation of f; o
?; ! uniformly with error §. Such a network has no more than ¢ (log% + 1) layers, and at most

o e (]og % + 1) neurons and weight parameters with ¢, ¢’ depending on n, d, f; o ¢i_1.

Proof Sketch. The detailed proof is provided in Appendix B.2. The proof consists of two steps: 1).
Approximate f; o gbi_l using a weighted sum of Taylor polynomials; 2). Implement the weighted sum
of Taylor polynomials using ReLU networks. Specifically, we set up a uniform grid and divide [0, 1]¢



into small cubes, and then approximate f; o gb;l by its n-th order Taylor polynomial in each cube. To

implement such polynomials by ReLU networks, we recursively apply the multiplication X operator
in Corollary 1, since these polynomials are sums of the products of different variables. O

Step 5. Estimating the total error. We have collected all the ingredients to implement the entire
ReLU network to approximate f on M. Recall that the network structure consists of 3 main sub-
networks as demonstrated in Figure 2. Let X be an approximation to the multiplication operator in
the pairing sub-network with error 7. Accordingly, the function given by the whole network is

Cm
F=S % Aaed) with f=fioon
i=1

where ﬁ is the approximation of f; o qﬁ;l using Taylor polynomials in Theorem 3. The total error

can be decomposed to three components according to the following theorem.

Theorem 4. Forany i =1,...,Cuy, we have ||f — f]loo < Zf’;"f (Aiq + A2+ A, 3), where

e(m+1)

< ————"_A for some constant c.
© = r(l-r/T)

Here 1(x € U;) is the indicator function on U;. Theorem 4 is proved in Appendix B.3. In order
to achieve an e total approximation error, i.e., ||f — f|loc < €, we need to control the errors in
the three sub-networks. In other words, we need to decide v for c/l?, A for Ta, ¢ for f;, and n

for X. Note that A; 1 is the error from the pairing sub-network, A; 5 is the approximation error
in the Taylor approximation sub-network, and A; 3 is the error from the chart determination sub-

network. The error bounds on A; ;, A; o are straightforward from the constructions of X and ﬁ The
estimate of A; 3 involves some technical analysis since || T o d? —1(x € U;)||lc = 1. Note that
Tao c/l?(x) —1(x € U;) = 0 whenever ||x — cZ||§ <r?—Aor|x— cZ||§ > r2, so we only need
to prove that | f;(x)| is sufficiently small in the region /C; defined below.

Lemma 3. Foranyi = 1,...,Cp, denote K; = {x € M : 1?2 = A < ||x—ci||§ < r?}. Then
there exists a constant ¢ depending on f;’s and ¢;’s such that

(x e(m+1)
e

Proof Sketch. The detailed proof is in Appendix B.4. The function f; o ¢; ! is defined on ¢;(U;) C
[0,1]9. We extend f; o ¢; " to [0, 1]¢ by letting f; 0 ¢; ' (x) = 0 for x € [0, 1]%\ ¢;(U;). It is easy to
verify that such an extension preserves the regularity of f; o ¢i_1, since supp( f;) is a compact subset
of U;. By the mean value theorem, for any x,y € K;, there exists z = 8¢;(x) + (1 — 8)¢;(y) for
some § € (0,1) such that

fi(x) = fi3)] < [V fi 0 67 (2)lI2]|9i(x) — i)z < IV fi 0 67 ' (2)[l20il|Vill2]1x — yll.

We pick y € 9U; (the boundary of U;) so that f;(y) = 0. Since f; € H™* and M is compact,
|V fio <j)4_1(z)||2 b; ||Vi|l, < cfor some ¢ > 0. To bound | f;(x)], the key is to estimate ||x — y|l,.

?

We next prove that, for any x € Ky, there exists y € 9U; satisfying [|x — y|l, < ;7= A

The idea is to consider a geodesic® v(t) parameterized by the arc length from x to AU; in Figure
5. Denote y = 9U; () ~. Without loss of generality, we shift the center c¢; to 0 in the following
analysis. To utilize polar coordinates, we define two auxiliary quantities: () = v(t) "5(t)/ |7 ()|,
and £(t) = ||y(t)||5, where + denotes the derivative of ~.

8A geodesic is the shortest path between two points on the manifold. We refer readers to Chapter 6 in Lee
(2006) for a formal introduction.



We show that there exists a geodesic () satisfying inf, /(t) > 1;_:/17 > 0. This implies that the

geodesic continuously moves away from the center. Denote T such that y(7") = y. By the definition

of geodesic, T is the arc length of v(t) between x and y. We have T inf; £(t) < ¢(T) — £(0) <

r—vVr—A< %, Therefore, |x — y||, <T < anAé(t) < r(fj}/r)A' O

Given Theorem 4, we choose
1 —
SN Cath0 (3 3)
3Cm 36(71' + 1)CM
so that the approximation error is bounded by €. Moreover,
we choose v = 163% to guarantee A > 8B2Dv so that the
definition of iA is valid.

n=2a

Finally we quantify the size of the ReLU network. Recall that
the chart determination sub-network has c; log % layers, the

Taylor approximation sub-network has ¢y log % layers, and the
pairing sub-network has c3 log % layers. Here co depends on

d,n, f, and c1, c3 are absolute constants. Combining these with
(3) yields the depth in Theorem 1. By a similar argument, we o ]
can obtain the number of neurons and weight parameters. A Figure 5: A geometric illustration
detailed analysis is given in Appendix B.5. of § and ¢.

5 Discussions

ReLU activations. We consider neural networks with ReLU activations for a practical concern
— ReLU activations are widely used in deep networks. Moreover, ReLU networks are easier to
train compared with sigmoid or hyperbolic tangent activations, which are known for their notorious
vanishing gradient problem (Goodfellow et al., 2016; Glorot et al., 2011).

Low Dimensional Manifolds. The low dimensional manifold model plays a vital role to reduce the
network size. As shown in Theorem 2, to approximate functions in ™ with accuracy ¢, the minimal
number of weight parameters is O (e~ = ). This lower bound is huge, and can not be improved without
low dimensional structures of data.

Existence vs. Learnability and Generalization. Our Theorem | shows the existence of a ReLU
network structure that gives efficient approximations of functions on low dimensional manifolds, if
the weight parameters are properly chosen. In practice, it is observed that larger neural networks
are easier to train and yield better generalization performances (Li et al., 2018; Zhang et al., 2016;
Arora et al., 2018). This is referred to as overparameterization. Establishing the connection between
learnability and generalization is an important future direction.

Convolutional Filters. Convolutional neural networks (CNNs, Krizhevsky et al. (2012)) are widely
used in computer vision, language modeling, etc. Empirical results reveal that different convolutional
filters can capture various patterns in images, e.g., edge detection filters. An interesting question is
whether convolutional filters serve as charts in our framework.

Equivalent Networks. The ReL.U network identified in Theorem 1 is sparsely connected. Several
other network structures can yield the same function as our ReLU network. It is interesting to
investigate whether these network structures also possess the universal approximation property.
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Supplementary Material for Efficient Approximation
of Deep Neural Networks

A Proofs of Preliminary Results in Section 4

A.1 Proof of Lemma 1

Proof. We partition the interval [0, 1] uniformly into 2V subintervals I, = [, EX2] for k =
0,...,2V — 1. We approximate f(z) = 2% on these subintervals by a linear interpolation

~ 2k+1 k k2

fu= 9N (J;— 2N> —|—227N, for x € I,.

It is straightforward to check that ﬁ meets f at the endpoints QLN, % of Ij.

We evaluate the approximation error of fk on the interval [j:

f(a:)—fk(:c)zmax 2k 41 k2+k’

x
zel;,

max .’1,'2

x€l}

oN 92N

2k+1\> 1
TN ] TN

= Imax
el

1
:2417N'

Note that this approximation error does not depend on k. Thus, in order to achieve an € approximation
error, we only need

1

€

1 log

1 N_j o~ )
Let N = [loi <7 and denote fy = Ei:o ! fxl{z € I }. We compute the increment from fx_1 to
[ forz € [5xr, 45 ] as follows,

k2 2k+1 k k2 4k+1 k k_ 2k+1
f ~ = 22(N=T) + 2N—t1 (x_ oN— ) — aN=1) 2; ( - 2N—1)7 HAS [21\771» 21-17_ )
N-1 N = k2 2k+1 (. k \_ (2k+1)*  4k+3 (.. 2k+1 2k+1  k+1
N—D T aN-T (z 2N—1) 22N 2N (z 2N ). x€ [ 2N 72N—1)
1 k k 2k+1
o {21\71' — 32N-1: T e [QN—la 21—5 )
= 1 k+1 2k+1 k41 -
_QTx + 221-\"7_—1 ) HARS [ 2;\1‘_ 9 2N+—1)
We observe that fy_; — fy is a triangular function on [QN—’“_“ 2’3\%11] The maximum is 22%

independent of k attained at x = % The minimum is 0 attained at the endpoints L , 2’3%11 To
implement fp, we consider a triangular function representable by a one-layer ReLU network:
g(x) = 20(x) — 4o(x — 0.5) + 20(z — 1).

Denote by g,, = go go --- o g the composition of totally m functions g. Observe that g,, is a

sawtooth function with 2™ ~! peaks at 251 for k = 0,...,2™~! — 1, and we have g,,, (%) =1
fork=0,...,2™ ! — 1. Then we have fy_; — fv = ﬁgN. By induction, we have
1
In=In-1— gxoN

1 1
= fN-—2— 227N9N - 221\77—291\7—1

N

1
:$*227k9k-

k=1
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1
Therefore, fy can be implemented by a ReLU network of depth [10%] < clog % for an absolute
constant c. Each layer consists of at most 3 neurons, hence, the total number of neurons and weight
parameters is no more than ¢’ log % O

A.2 Proof of Corollary 1

Proof. Let f5 be an approximation of the quadratic function on [0, 1] with error § € (0,1). We set

- (1(5) - (52))-

Now we determine §. We bound the error of X

= ~(lr+y z+y? o~ (lz—vy z—yl?
| X (2,y) — 2y| = ‘5(| 2C |) - 402‘ f5(| 2C |)+| 4C2|
2 2
cc2|m =yl > (lz—yl\ |z-
=C f5< 5C e | T ae 1C2
<2025,

Thus, we pick § = CQ to ensure | X (x,y) — a:y| < e for any inputs x and y. As shown in Lemma

1, we can 1mplement f§ using a ReL.U network of depth at most ¢ log = =c log €% with absolute
constants ¢/, c. The proof is complete. O

B Proofs of Construction of Neural Networks in Section 4

B.1 Proof of Lemma 2

Proof. We rewrite f; o ¢, Las

(fod; ") x(piod;!). 4)
—— N——
g1 g2

By the definition of the partition of unity, we know g, is C'*°. This implies that go is (n + 1)
continuously differentiable. Since supp(p;) is compact, the k-th derivative of g is uniformly bounded
by A i forany k <mn + 1. Let \; = maxy<n11 Ai k. We have for any |n| < n and x1,x3 € U,,

|D”g2(¢i(x1)) — D g2(i(x2))| < VA; [|pi(x1) — di(x2)l,
< VAN [|x1 — Xl [ldi(x1) — ¢i(x2)]l5 -

The last inequality follows from ¢;(x) = b;(V;" (x — ¢;) +s;) and ||V;||, = 1. Observe that U is
bounded, hence, we have ||x; — xQ||§_°[ < (2r)1==. Absorbing ||x; — xz||;_a into v/d\;b; ~“,
we have the derivative of g, is Holder continuous. We denote 3; , = \/E)\ib}*a(%)l_o‘ <

\/E)\i(Qr)l_“. Similarly, g; is C™~! by Assumption 3. Then there exists a constant y; such
that the k-th derivative of g; is uniformly bounded by p; for any £ < n — 1. These derivatives are
also Holder continuous with coefficient §; , < \/gui(%)l_a.

By the Leibniz rule, for any |n| = n, we expand the n-th derivative of f; o gbi_l as

n
D™(g1xg2)= Y, <|p|>Dp91Dq92-

[pl+lal=n
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Consider each summand in the above right-hand side. For any x;, x5 € U;, we derive

| DP g1 (¢i(x1)) Dga(¢i(x1)) — DPga(¢i(x2)) Dlga(i(x2))|
:|Dp91(¢i(X1))Dq92(¢i(X1)) — DPg1(¢i(x1))D%g2(¢i(x2))
+ DPg1(¢i(x1)) Dga(hi(x2)) — DPg1(¢i(x2)) Dg2(i(x2))|
<|DPg1(i(x1))|[DYga(i(x1)) — Dq92(¢z(x )
+ |D%g2(¢i(x2))[|DP g1(¢i(x1)) — DPg1(¢i(x2))|
Spibia ||¢i(x1) — di(x2) |5 + XiBia \I¢¢(X1) di(x2)3
<2Vdpi i (2r) ' || (x1) — pi(xa)[5 -

Observe that there are totally 2" summands in the right hand side of (4). Therefore, for any
x1,Xg € U; and |n| = n, we have

D™(f0 07 g,y = D10 07 | 277V u(x1) = 912

B.2 Proof of Theorem 3

Proof. The proof consists of two steps. We first approximate f; o qSi_l by a Taylor polynomial, and
then implement the Taylor polynomial using a ReLLU network. To ease the analysis we extend
fi 0 ¢; " to the whole cube [0, 1]¢ by assigning f; o ¢; ' (x) = 0 for ¢;(x) € [0,1]%\ ¢;(U;). Itis
straightforward to check that this extension preserves the regularity of f; o qbi_ , since f; vanishes on
the complement of the compact set supp(p;) C U;. For notational simplicity, we denote ff = fio¢;1
with the extension.

Step 1. We define a trapezoid function

1 lz] <1
YE)=<2—|z|] 1<|z]<2.
0 |z > 2

Note that we have ||| ., = 1. Let N be a positive integer, we form a uniform grid on [0, 1]¢ by
dividing each coordinate into /V subintervals. We then consider a partition of unity on these grid
defined by

d
m
)= [Tv (3 (- 77))-
k=1
We can check that ) | (m(x) = 1 as in Figure 6.

VEN (= B)) b (N (- )

N PN

My it 1 .
N N Tk

Figure 6: Ilustration of the construction of (;, on the k-th coordinate.

We also observe that supp((m) = {x : |2k — <0k ..,d}. Now we construct a Taylor

m.

my
N
aN.

polynomial of degree n for approximating ff

n r®
Pm(X): Z b fl o



Define ﬁ = ZmE{O LN} CmPm- We bound the approximation error ’ f. —

f. — ¢ ‘:
s |Fio) — 7o) = max

Y dm(x) (Pm(x) = f{(x))

< max Z ‘Pm(x) - fi‘b(x)‘

x
mzlzk—Lj\,’c |§%

< max 24 max P(x) — ff(x)‘
* o mife R sy
B n p—
< max 2:!111 <Jif> 2N\ (2r) 1 M x :
< Vdpghi(2r) 2d+n+:;!in+ai/2 (]if) e .

Here y is the linear interpolation of 3+ and x, determined by the Taylor remainder. The
second last inequality is obtained by the Holder continuity in Lemma 2. By setting

1
_ d+n+1 nta/2 + s l—agd+n+2 gnt+ao/2\ nta
Vidpiri(2r) e F === () < S we get N > (ﬂﬂl/\l(w) = ‘ ) - Ac-

n! n!

cordingly, the approximation error is bounded by || f; — ff’||oo < g.

Step 2. We next implement ﬁ by a ReLU network that approximates f; up to an error g. We denote

Pn() = 3 aman (x= 7).

In|<n
Dn o R
where am n = = . Then we rewrite f; as
x:%
= Y Y w0 (x- 1) )
' N

me{0,...,N}4 |n|<n

Note that (5) is a linear combination of products (u, ( - %) Each product involves at most d + n
n

univariate terms: d terms for (,, and n terms for (x — —) We recursively apply Corollary 1 to

implement the product. Specifically, let X be the approximation of the product operator in Corollary
1 with error €, which will be chosen later. Consider the following chain application of X.:

fm)n(x) = X, (w(Sle —3my), X ( ce Qe(w(SNdxd —mg), Qe(xl — %7)))) .

Now we estimate the error of the above approximation. Note that we have [¢)(3Nxzj, — 3my)| < 1
and |zx — % | < 1forallk € {1,...,d} and x € [0, 1]%. We then have

o) =G (= )| = [0 3. ol = ) = (= )
< |Xe (¥(3Nz1 — 3my), §€(¢(3N:c2 —3ma),...))
— (3N — 3m1) X (Y(BNz2 — 3ma), ... )|
+ | (BNzy —myq)] |><6(1/J(3Nx2 —3my),...) — p(3Nzy — 3ma) Xc(. .. )|

+ ...
< (d+n)é.

Moreover, we have fun(X) = Cm (x — 2)" =0, if x & supp((m). Now we define

ﬁ = Z Z am,nfm,n~

me{0,...,N}4 |n|<n
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The approximation error is bounded by

d+n+1 my»
12 R nax Z ’fmn - m(xfi)

m:x€supp(Cm) Inl<n

< max \; i
xX

< N2 (d 4 n)e.

/\deJrandn(dJrn), so that || f; — fi|lsc < 2. Thus, we eventually have ||ﬁ—ff\|oo <

We choose € =

0. Now we compute the depth and computational units for implement ﬁ ﬁ can be implemented
by a collection of parallel sub-networks that compute each fmyn. The total number of parallel
sub-networks is bounded by d” (N + 1)¢. For each sub-network, we observe that ¢ can be exactly
implemented by a single layer ReLU network, i.e., ¥(z) = ReLU(z + 2) — ReLU(z + 1) —
ReLU(z — 1) + ReLU(z — 2). Corollary 1 shows that X can be implemented by a depth ¢, log L

ReLU network. Therefore, the whole network for implementing fz has no more than ¢ (log + 1)

layers and ¢} d" (N + 1)¢ (1og + 1) neurons and weight parameters. With € = + T 2d+n+2dn(d+n)

\ (omyl—agdtnt2 nta/2\ nia .
and N = R”“\Z(%) 52”. d ) wh -‘ , we obtain that the whole network has no more than

c1 log 5 layers, and at most o0~ e (log 5+ 1) neurons and weight parameters, for constants ¢y, co
depending on d, n, and f; o qbl_ . O

B.3 Proof of Theorem 4

Proof. We expand the estimation error as

o0

Cm
<ZHx<ft,iAocE>—fzx<mcE | #||fx Aaod) —fix Aaod)
1=1
A1 A2
—i—’fzx (Taod) - fi x I(x € Uy)




By Lemma 3, we have maxxex, | fi(x)] < rﬁ’:f}l) A for a constant ¢ depending on f;. Then we

bound A; 3 as

< max | fi(x)] < 27T

fox (a0 df) — fix 1ex e V)| < max i)l < 7=

Ajz = ‘

B.4 Proof of Lemma 3

Proof. We extend f; o qbi_l to the whole cube [0, 1]¢ as in the proof of Theorem 3. We also have
fi(x) = 0 for ||x — c;||, = r. By the first order Taylor expansion, we have for any x,y € U;

1fi(x) = fi(y)| = | fio 67 H(i(x)) — fio b7 (i(y))|
<[V (fio oy (@), 6:(x) — ¢:(¥)ll,
< ||V (fio o7 (@), i IVilly I =yl »

where z is a linear interpolation of ¢;(x) and ¢;(y) satisfying the mean value theorem. Since
fio¢; tis C™in [0,1], the first derivative is uniformly bounded, i.e., ||V f; o ¢;1(Z)H2 < q for
any z € [0,1]%. Lety € U; satisfying f;(y) = 0. In order to bound the function value for any
x € K;, we only need to bound the Euclidean distance between x and y. More specifically, for
any x € K;, we need to show that there exists y € U; satisfying f;(y) = 0, such that ||x — y||, is
sufficiently small.

Before continuing with the proof, we introduce some notations. Let (¢) be a geodesic on M
parameterized by the curve length. In the following context, we use < and + to denote the first and
second derivatives of v with respect to ¢. By the definition of geodesic, we have ||§(t)||, = 1 (unit
speed) and 5(t) L A(¢).

Without loss of generality, we shift c; to 0. We consider a geodesic starting from x with initial
“velocity” 4(0) = v in the tangent space of M at x. To utilize polar coordinate, we define two

auxiliary quantities: £(t) = ||y(t)||, and 6(t) = arccos ’Yﬁf/)(z;ﬂ(t) € [0, 7]. As can be seen in Figure
2

5, £ and 6 have clear geometrical interpretations: ¢ is the radial distance from the center c;, and 6 is
the angle between the velocity and (t).

Figure 7: Illustration of ¢ and 6 along a parametric curve .

Suppose y = ~(T'), we need to upper bound 7'. Note that £(T) — £(0) < r — V72— A < A/r.
Moreover, observe that the derivative of ¢ is £(¢) = cos 0(t), since + has unit speed. It suffices to find

a lower bound on £(t) = cos #(t) so that T’ < Tianm) .
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We immediately have the second derivative of £ as £(t) = —sin6(t)0(t). Meanwhile, using the
equation £(t) = /v(t) T~(t), we also have

FO T + 50 T®) VAOTHE — (1O T5(®) VAT
(@) Ty (t) '

Note that by definition, we have %(¢)"%(¢) = 1 and v(¢) "4(t) = cos0(t)\/v(t) T~(t). Plugging
into (6), we can derive

it =

(6)

o AT —eos?01) _ sin® 1) + ()T (0)
(®) = 0 - 0]

Now we find a lower bound on #(¢) T v(t). Specifically, by Cauchy-Schwarz inequality, we have
H(6) () = = 15O Iy (@)l leos £ (3(E), v (2))]
r .
> L Jeos £ (3(1), 9(0)].

The last inequality follows from [|5(t)|l, < % (Niyogi et al., 2008) and ||v(t)||l, < r. We now
need to bound Z(5(t),~(t)), given £ (v(t),4(t)) = 6(¢) and 5(¢) L +(t). Consider the following
optimization problem,

)

min aTa:, (8)
subjectto z'x =1,
bz =0.

By assigning a = Ltt) and b = #, the optimal objective value is exactly the minimum
[RIOIE [RIOIA

of cos Z (%(t),7). Additionally, we can find the maximum of cos Z (¥(t),~) by replacing the
minimization in (8) by maximization. We solve (8) by the Lagrangian method. More precisely, let

Lz, \p)=—a'z+Nz'z—1)+ pb ).

We have the optimal solution z* satisfying V,£ = 0, which implies 2* = 51 (a — p*b) with

p* and \* being the optimal dual variable. By the primal feasibility, we have ;* = a'b and

A* = —14/1— (aTb)2. Therefore, the optimal objective value is —+/1 — (aTb)2. Similarly, the
maximum is \/1 — (a7 b)2. Note that a " b = cos #(t), we then get

() Ty (1) = = sinb(2).

Substituting into (7), we have the following lower bound

s sin 02(t) + 4(t) Ty(t) 1 /.5 T
Lt) = o) > 0] (sm o(t) — —sin 9(t)) .
Now combining with /() = — sin 6(¢)0(t), we can derive
. 1 . r
o0 <~ (sme(t) - ;) . )

Inequality (9) has an important implication: When sin §(t) > T, as t increasing, () is monotone
decreasing until sinf(t') = L for some t' = t. Thus, we distinguish two cases depending on
the value of #(0). Indeed, we only need to consider 6(0) € [0,7/2]. The reason behind is that if
6(0) € (w/2, ], we only need to set the initial velocity in the opposite direction.

Case 1: 6(0) € [0, arcsin Z]. We claim that 6(¢) € [0, arcsin Z| for all ¢ < T In fact, suppose
there exists some ¢; < T such that 6(t;) > arcsin £ By the continuity of 6, there exists tg < t1,
such that 0(to) = arcsin £ and 6(t) > arcsin = for ¢ € [to, ¢1]. This already gives us a contradiction:

B(to) < 0(t1) = B(to) + /tl 6(t)dt < O(to).

to

<0
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Therefore, we have é(t) > cosarcsin = = /1 — %, and thus T < —.
r 1—:—2

Case 2: 6(0) € (arcsin Z, 7 /2]. It is enough to show that 6(0) can be bounded sufficiently away
from 7/2. Let ¢ x C M be a geodesic from c; to x. We analogously define 6. x and ¢ x as for the
geodesic from x to y. Let T;. /o = sup {t : £c x(t) <7/2 — A/r}, and denote z = ¢ x(T7./2). We
must have Oc x (1;./2) € [0,7/2] and le x(T/2) = /2 — A/r, otherwise there exists T}/ , > T}/
satisfying EC,X(TT’/Q) < r/2. Denote T satisfying x = ¢ x(Tx). We bound 6, x (T) as follows,

Tx .
Ocx(Tx) = Ocx(T})2) + / Ocx(t)dt
T,/o
™ T 1
<= . _r
2 /7:7“/2 gc’x(t) (bln 0C7X( ) ) dt

If there exists some ¢ € (7}./2, Tx] such that sin ¢ «(t) < Z, by the previous reasoning, we have
sin 0 x(Tx) < Z. Thus, we only need to handle the case when sin ¢ x(t) > = forall t € (T} /o, Tx].
In this case, 0 x(t) is monotone decreasing, hence we further have

_ /Tx gci(ﬁ (Sin Ocx(Tx) — ;) dt

o
2 T2
1
S g - (Tx - Tr/Q); (Sin ec,x(Tx) - i)
o
2

-
— % (sin@cyx(Tx) — ;) .

ec,x (Tx) <

<

The last inequality follows from Ty — 7. 22T /2. Using the fact, sinz > %x, we can derive

1/2 T
T a *echx -
2(71' ( ) T)

T+r/T
T+1 )’
We can then set 0(0) = 0¢ x(Tx), and thus

T4 r/T ™ 1—r/7T
> — = _ —
cos@(O)cos(2 p—— > cos(2 (1 p— ))
_Sin(wl—rﬁ')

2 m+1
>1—7’/7'.
- or+1

ec x(Tx) <

)

— ec,x (Tx) <

NN o

Therefore, we haveT < CosAe(o) = T‘(l ’/T)

Tz < T / . Hence, combining case 1 and case 2, we conclude

A. By the choice of r < 7/2, we immediately have

T+ 1

T< ——A
~r(l—r/7)
Therefore, the function value f(x) on K, is bounded by o (1’”;1/ )A. It suffices to let ¢ =
max; a;b; | V|5, and we complete the proof. O

B.5 Characterization of the Size of the ReLU Network

Proof. We evenly split the error € into 3 parts for A; 1, A; 2, and A; 3, respectively. We pick
17 = z5— so that Z A;1 < 5. The same argument yields 6 = L Analogously, we can

3
choose A = % Finally, we pick v = 5 so that 832Dy < A

1GB2

Now we compute the number of layers, and the number of neurons and weight parameters in the
ReLU network identified by Theorem 1.
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1. For the chart determination sub-network, 1 A can be implemented by a single layer ReLU
network. The approximation of the distance function cff can be implemented by a network

of depth O (log %) and the number of neurons and weight parameters is at most O (log %)

Plugging in our choice of v, we have the depth is no greater than c; (log % + log D) with

c1 depending on d, f, 7, and the surface area of M. The number of neurons and weight

parameters is also ¢} (log % + log D) except for a different constant. Note that there are D

parallel networks computing c/l? fori =1,...,Cx. Hence, the total number of neurons
and weight parameters is ¢ Cpg D (1og % + log D) with ¢} depending on d, f, 7, and the
surface area of M.

2. For the Taylor polynomial sub-network, ¢; can be implemented by a linear network with
at most Dd weight parameters. To implement each ﬁ-, we need a ReLLU network of depth
cq log %. The number of neurons and weight parameters is ¢ ~wta log %. Here ¢4, ¢}
depend on n,d, f; o ¢i_1. Substituting § = ﬁ, we get the depth is ¢ log% and the
number of neurons and weight parameters is cée_n%a log % There are totally C'y4 parallel
ﬁ’s, hence the total number of neurons and weight parameters is ¢4C'a ¢ wta log % with
¢}, depending on d, n, f; o ¢i_1, 7, and the surface area of M.

3. For the product sub-network, the analysis is similar to the chart determination sub-network.
The depth is O (log %) , and the number of neurons and weight parameters is O <log %)

The choice of 7 yields the depth is c3 log % and the number of neurons and weight parameters

is ¢4 log % There are Cnq parallel pairs of outputs from the chart determination and
the Taylor polynomial sub-networks. Hence, the total number of weight parameters is
sCplog 2 with ¢} depending on d, 7, and the surface area of M.

Combining these 3 sub-networks, we see the depth of the full network is ¢ (log% + log D) for
some constant ¢ depending on d, n, f, 7, and the surface area of M. The total number of neurons

and weight parameters is ¢’ (e_n% log % + Dlog % + Dlog D) for some constant ¢’ depending on
d,n, f, 7, and the surface area of M. O
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