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Abstract

We study the problem of estimating a nonparametric probability density under a
large family of losses called Besov IPMs, which include, for example, Lp distances,
total variation distance, and generalizations of both Wasserstein and Kolmogorov-
Smirnov distances. For a wide variety of settings, we provide both lower and upper
bounds, identifying precisely how the choice of loss function and assumptions
on the data interact to determine the minimax optimal convergence rate. We also
show that linear distribution estimates, such as the empirical distribution or kernel
density estimator, often fail to converge at the optimal rate. Our bounds generalize,
unify, or improve several recent and classical results. Moreover, IPMs can be used
to formalize a statistical model of generative adversarial networks (GANs). Thus,
we show how our results imply bounds on the statistical error of a GAN, showing,
for example, that GANs can strictly outperform the best linear estimator.

1 Introduction
This paper studies the problem of estimating a nonparametric probability density, using an integral
probability metric as a loss. That is, given a sample space X ⊆ RD, suppose we observe n IID
samples X1, ..., Xn

IID∼ p from a probability density p over X that is unknown but assumed to lie in
a regularity class P . We seek an estimator p̂ : Xn → P of p, with the goal of minimizing a loss

dF (p, p̂(X1, ..., Xn)) := sup
f∈F

∣∣∣∣ E
X∼p

[f(X)]− E
X∼p̂(X1,...,Xn)

[f(X)]

∣∣∣∣ , (∗)

where F , called the discriminator class, is some class of bounded, measurable functions on X .

Metrics of the form (∗) are called integral probability metrics (IPMs), or F -IPMs2, and can capture a
wide variety of metrics on probability distributions by choosing F appropriately [39]. This paper
studies the case where both F and P belong to the family of Besov spaces, a large family of
nonparametric smoothness spaces that include, as examples, Lp, Lipschitz/Hölder, and Hilbert-
Sobolev spaces. The resulting IPMs include, as examples, Lp, total variation, Kolmogorov-Smirnov,
and Wasserstein distances. We have two main motivations for studying this problem:

1. This problem unifies nonparametric density estimation with the central problem of empirical
process theory, namely bounding quantities of the form dF (P, P̂ ) when P̂ is the empirical distribution
Pn = 1

n

∑n
i=1 δXi of the data [43]. Whereas empirical process theory typically avoids restricting

P and fixes the estimator P̂ = Pn, focusing on the discriminator class F , nonparametric density
estimation typically fixes the loss to be an Lp distance, and seeks a good estimator P̂ for a given

∗Now at Google.
2While the name IPM seems most widely used [39, 50, 7, 60], many other names have been used for these

quantities, including adversarial loss [48, 13], MMD [17], and F-distance or neural net distance [5].
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distribution class P . In contrast, we study how constraints on F and P jointly determine convergence
rates of a number of estimates P̂ of P . In particular, since Besov spaces comprise perhaps the largest
commonly-studied family of nonparametric function spaces, this perspective allows us to unify,
generalize, and extend several classical and recent results in distribution estimation (see Section 3).
2. This problem is a theoretical framework for analyzing generative adversarial networks (GANs).
Specifically, given a GAN whose discriminator and generator networks encode functions in F and P ,
respectively, recent work [32, 28, 29, 48] showed that a GAN can be seen as a distribution estimate3

P̂ = argmin
Q∈P

sup
f∈F

∣∣∣∣∣ E
X∼Q

[f(X)]− E
X∼P̃n

[f(X)]

∣∣∣∣∣ = argmin
Q∈P

dF

(
Q, P̃n

)
, (1)

i.e., an estimate which directly minimizes empirical IPM risk with respect to a (regularized) empirical
distribution P̃n. While, in the original GAN model [21], P̃n was the empirical distribution Pn =
1
n

∑n
i=1 δXi of the data, Liang [28] showed that, under smoothness assumptions on the population

distribution, performance is improved by replacing Pn with a regularized version P̃n, equivalent to
the instance noise trick that has become standard in GAN training [49, 35]. We show, in particular,
that, when P̃n is a wavelet-thresholding estimate, a GAN based on sufficiently large fully-connected
neural networks with ReLU activations learns Besov probability distributions at the optimal rate.

2 Set up and Notation
For non-negative real sequences {an}n∈N, {bn}n∈N, an . bn indicates lim supn→∞

an
bn
<∞, and

an � bn indicates an . bn . an. For p ∈ [1,∞], p′ := p
p−1 denotes the Hölder conjugate of p

(with 1′ =∞,∞′ = 1). Lp(RD) (resp. lp) denotes the set of functions f (resp. sequences a) with
‖f‖p :=

(∫
|f(x)|p dx

)1/p
<∞ (resp. ‖a‖lp :=

(∑
n∈N |an|p

)1/p
<∞).

2.1 Multiresolution Approximation and Besov Spaces
We now provide some notation that is necessary to define the family of Besov spaces studied in
this paper. Since the statements and formal justifications behind these definitions are a bit complex,
some technical details are relegated to the Appendix, and several well-known examples from the
rich class of resulting spaces are given in Section 3. The diversity of Besov spaces arises from the
fact that, unlike the Hölder or Sobolev spaces that they generalize, Besov spaces model functions
simultaneously across multiple spatial scales. In particular, they rely on the following notion:
Definition 1. A multiresolution approximation (MRA) of L2(RD) is an increasing sequence {Vj}j∈Z
of closed linear subspaces of L2(RD) with the following properties:

1.
⋂∞
j=−∞ Vj = {0}, and the closure of

⋃∞
j=−∞ Vj = L2(RD).

2. For f ∈ L2(RD), k ∈ ZD, j ∈ Z, f(x) ∈ V0 ⇔ f(x− k) ∈ V0 & f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1.
3. For some “father wavelet” φ ∈ V0, {φ(x−k) : k ∈ ZD} is an orthonormal basis of V0 ⊂ L2(RD).

For intuition, consider the best-known MRA of L2(R), namely the Haar wavelet basis. Let φ(x) =
1{[0,1)} be the Haar father wavelet, let V0 = Span{φ(x− k) : k ∈ Z} be the span of translations of φ
by an integer, and let Vj defined recursively for all j ∈ Z by Vj = {f(2x) : f(x) ∈ Vj−1} be the set
of horizontal scalings of functions in Vj−1 by 1/2. Then, {Vj}j∈Z is an MRA of L2(R).

The importance of an MRA is that it generates an orthonormal basis of L2(RD), via the following:
Lemma 2 ([36], Section 3.9). Let {Vj}j∈Z be an MRA of L2(RD) with father wavelet φ. Then, for
E = {0, 1}D \ (0, . . . , 0), there exist “mother wavelets” {ψε}ε∈E such that {2Dj/2ψε(2jx − k) :
ε ∈ E, k ∈ ZD} ∪ {2Dj/2φ(2jx− k) : k ∈ ZD} is an orthonormal basis of Vj ⊆ L2(RD).

Let Λj = {2−jk + 2−j−1ε : k ∈ ZD, ε ∈ E} ⊆ RD. Then k, ε are uniquely determined for any
λ ∈ Λj . Thus, for all λ ∈ Λ :=

⋃
j∈Z Λj , we can let ψλ(x) = 2Dj/2ψε(2

jx − k). Equipped with
the orthonormal basis {ψλ : λ ∈ Λ} of L2(RD), we are almost ready to define Besov spaces.

For technical reasons (see, e.g., [36, Section 3.9]), we need MRAs of smoother functions than Haar
wavelets, which are called r-regular. Due to space constraints, r-regularity is defined precisely in

3We assume a good optimization algorithm for computing (1), although this is also an active area of research.

2



Appendix A; we note here that standard r-regular MRAs exist, such as the Daubechies wavelet [11].
We assume for the rest of the paper that the wavelets defined above are supported on [−A,A].

Definition 3 (Besov Space). Let 0 ≤ σ < r, and let p, q ∈ [1,∞]. Given an r-regular MRA of
L2(RD) with father and mother wavelets φ, ψ respectively, the Besov space Bσp,q(RD) is defined as
the set of functions f : RD → R such that, the wavelet coefficients

αk :=

∫
RD

f(x)φ(x− k)dx for k ∈ ZD and βλ :=

∫
RD

f(x)ψλ(x)dx for λ ∈ Λ,

satisfy ‖f‖Bσp,q := ‖{αk}k∈ZD‖lp +

∥∥∥∥{2j(σ+D(1/2−1/p))
∥∥{βλ}λ∈Λj

∥∥
lp

}
j∈N

∥∥∥∥
lq
<∞

The quantity ‖f‖Bσp,q is called the Besov norm of f , and, for any L > 0, we write Bσp,q(L) to denote
the closed Besov ball Bσp,q(L) = {f ∈ Bσp,q : ‖f‖Bσp,q ≤ L}. When the constant L is unimportant
(e.g., for rates of convergence), Bσp,q denotes a ball Bσp,q(L) of finite but arbitrary radius L.

2.2 Formal Problem Statement
Having defined Besov spaces, we now formally state the statistical problem we study in this paper.
Fix an r-regular MRA. We observe n IID samples X1, ..., Xn

IID∼ p from an unknown probability
density p lying in a Besov ball Bσgpg,qg (Lg) with σg < r. We want to estimate p, measuring error with
an IPM dBσdpd,qd (Ld). Specifically, for general σd, σg, pd, pg, qd, qg , we seek to bound minimax risk

M
(
Bσdpd,qd , B

σg
pg,qg

)
:= inf

p̂
sup

p∈Bσgpg,qg
E
X1:n

[
dBσdpd,qd

(p, p̂(X1, . . . , Xn))
]

(2)

of estimating densities inFg = B
σg
pg,qg , where the infimum is taken over all estimators p̂(X1, . . . , Xn).

In the rest of this paper, we suppress dependence of p̂(X1, ..., Xn) on X1, ..., Xn, writing simply p̂.

3 Related Work
The current paper unifies, extends, or improves upon a number of recent and classical results in the
nonparametric density estimation literature. Two areas of prior work are most relevant:

Nonparametric estimation over inhomogeneous smoothness spaces First is the classical study
of estimation over inhomogeneous smoothness spaces under Lp losses. Nemirovski [41] first noticed
that, over classes of regression functions with inhomogeneous (i.e., spatially-varying) smoothness,
many widely-used regression estimators, called “linear” estimators (defined precisely in Section 4.2),
are provably unable to converge at the minimax optimal rate, in L2 loss. Donoho et al. [14] identified
a similar phenomenon for estimating probability densities in a Besov space Bσgpg,qg on R under Lp

′
d

losses with p′d > pg, corresponding to the case σd = 0, D = 1 in our work. [14] also showed that
the wavelet-thresholding estimator we consider in Section 4.1 does converge at the minimax optimal
rate. We generalize these phenomena to many new loss functions; in many cases, linear estimators
continue to be sub-optimal, whereas the wavelet-thresholding estimator continues to be optimal. We
also show that sub-optimality of linear estimators is more pronounced in higher dimensions.

Distribution estimation under IPMs The second, more recent body of results [28, 48, 29] con-
cerns nonparametric distribution estimation under IPM losses. Prior work focused on the case where
F and P are both Sobolev ellipsoids, corresponding to the case pd = qd = pg = qg = 2 in our work.
Notably, over these smaller spaces (of homogeneous smoothness), the linear estimators mentioned
above are minimax rate-optimal. Perhaps the most important finding of these works is that the curse of
dimensionality pervading classical nonparametric statistics is significantly diminished under weaker
loss functions than Lp losses (namely, many IPMs). For example, Singh et al. [48] showed that, when
σd > D/2, one can estimate P at the parametric rate n−1/2 in the loss dBσd2,2

, without any regularity
assumptions whatsoever on the probability distribution P . We generalize this to other losses dBσdpd,qd .

These papers were motivated in part by a desire to understand theoretical properties of GANs, and,
in particular, Liang [28] and Singh et al. [48] helped establish (1) as a valid statistical model of
GANs. In particular, we note that Singh et al. [48] showed that the implicit generative modeling
problem (“sampling”) in terms of which GANs are usually framed, is equivalent, in terms of minimax
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convergence rates, to nonparametric density estmation, justifying our focus on the latter problem in
this paper. We show, in Section 4.3, that, given a sufficiently good optimization algorithm, GANs
based on appropriately constructed deep neural networks can learn Besov densities at the minimax
optimal rate. In this context, our results are among the first to suggest theoretically that GANs can
outperform classical density estimators (namely, linear estimators mentioned above).

Liu et al. [32] provided general sufficient conditions for weak consistency of GANs in a generalization
of the model (1). Since many IPMs, such as Wasserstein distances, metrize weak convergence of
probability measures under mild additional assumptions Villani [54], this implies consistency under
these IPMs. However, Liu et al. [32] did not study rates of convergence.

We end this section with a brief survey of known results for estimating distributions under specific
Besov IPM losses, noting that our results (Equations (3) and (4) below) generalize all these rates:

1. Lp Distances: If Fd = Lp
′

= B0
p′,p′ , then, for distributions P,Q with densities p, q ∈ Lp,

dFd(P,Q) = ‖p−q‖Lp . These are the most well-studied losses in nonparametric statistics, especially
for p ∈ {1, 2,∞} [42, 55, 53]. [14] studied the minimax rate of convergence of density estimation

over Besov spaces under Lp losses, obtaining minimax rates n−
σg

2σg+D + n
−σg+D(1−1/pg−1/pd)

2σg+D(1−2/pg) over

general estimators, and n−
σg

2σg+D + n
− σg−D/pg+D/p′d

2σg+D−2D/pg+2D/p′
d when restricted to linear estimators.

2. Wasserstein Distance: If Fd = C1(1) � B1
∞,∞ is the space of 1-Lipschitz functions, then dFd

is the 1-Wasserstein or Earth mover’s distance (via the Kantorovich dual formulation [24, 54]). A long
line of work has established convergence rates of the empirical distribution to the true distribution
in spaces as general as unbounded metric spaces [56, 26, 47]). In the Euclidean setting, this is
well understood [15, 2, 19], although, to the best of our knowledge, minimax lower bounds have
been proven only recently [47]; this setting intersects with our work in the case σd = 1, σg = 0,
pd =∞, matching our minimax rate of n−1/D + n−1/2. More general p-Wasserstein distances Wp

(p ≥ 1) cannot be expressed exactly as IPMs, but, our results complement recent results of Weed
and Berthet [57], who showed that, for densities p and q that are bounded above and below (i.e.,
0 < m ≤ p, q ≤ M < ∞), the bounds M−1/p′dB1

p′,∞
(p, q) ≤ Wp(p, q) ≤ m−1/p′dB1

p′,1
(p, q)

hold; for such densities, our rates match theirs (n−
1+σg

2σg+D + n−1/2) up to polylogarithmic factors.
Weed and Berthet [57] showed that, without the lower-boundedness assumption (m > 0), minimax
rates under Wp are strictly slower (by a polynomial factor in n).
In machine learning applications, Arora et al. [5] recently used this rate to argue that, for data from
a continuous distribution, Wasserstein GANs [4] cannot generalize at a rate faster than n−1/D (at
least without additional regularization, as we use in Theorem 9). A variant in which Fd ⊂ C1 ∩ L∞
is both uniformly bounded and 1-Lipschitz gives rise to the Dudley metric [16], which has also
been suggested for use in GANs [1]. Finally, we note that the more general distances induced by
Fd = Bσd∞,∞ have been useful for deriving central limit theorems [8, Section 4.8].

3. Kolmogorov-Smirnov Distance: If Fd = BV � B1
1,· is the set of functions of bounded variation,

then, in the 1-dimensional case, dFd is the well-known Kolmogorov-Smirnov metric [10], and so the
famous Dvoretzky–Kiefer–Wolfowitz inequality [34] gives a parametric convergence rate of n−1/2.
4. Sobolev Distances: If Fd = Wσd,2 = Bσ2,2 is a Hilbert-Sobolev space, for σ ∈ R, then dFd =
‖ · − · ‖W−σd,2 is the corresponding negative Sobolev pseudometric [59]. Recent work [28, 48, 29]

established a minimax rate of n−
σg+σd
2σg+1 + n−1/2 when Fg =Wσg,2 is also a Hilbert-Sobolev space.

4 Main Results
The three main technical contributions of this paper are as follows:

1. We prove lower and upper bounds (Theorems 4 and 5, respectively) on minimax convergence
rates of distribution estimation under IPM losses when the distribution class P = B

σg
pg,qg and the

discriminator class F = Bσdpd,qd are Besov spaces; these rates match up to polylogarithmic factors in
the sample size n. Our upper bounds use the wavelet-thresholding estimator proposed in Donoho et al.
[14], which we show converges at the optimal rate for a much wider range of losses than previously
known. Specifically, if M(F ,P) denotes minimax risk (2), we show that for p′d ≥ pg , σg ≥ D/pg ,
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M
(
Bσdpd,qd , B

σg
pg,qg

)
� max

{
n−1/2, n

− σg+σd
2σg+D , n

−σg+σd+D(1−1/pg−1/pd)
2σg+D(1−2/pg)

}
. (3)

2. We show (Theorem 7) that, for p′d ≥ pg and σg ≥ D/pg, no estimator in a large class of
distribution estimators, called “linear estimators”, can converge at a rate faster than

Mlin

(
Bσdpd,qd , B

σg
pg,qg

)
& n

− σg+σd−D/pg+D/p
′
d

2σg+D(1−2/pg)+2D/p′
d . (4)

“Linear estimators” include the empirical distribution, kernel density estimates with uniform band-
width, and the orthogonal series estimators recently used in Liang [28] and Singh et al. [48]). The
lower bound (4) implies that, in many settings (discussed in Section 5), linear estimators converge at
sub-optimal rates. This effect is especially pronounced when the data dimension D is large and the
distribution P has relatively sparse support (e.g., if P is supported near a low-dimensional manifold).
3. We show that the minimax convergence rate can be achieved by a GAN with generator and
discriminator networks of bounded size, after some regularization. As one of the first theoretical
results separating performance of GANs from that of classic nonparametric tools such as kernel
methods, this may help explain GANs’ successes with high-dimensional data such as images.

4.1 Minimax Rates over Besov Spaces
We now present our main lower and upper bounds for estimating densities that live in a Besov space
under a Besov IPM loss. Then, we have the following lower bound on the convergence rate:

Theorem 4. (Lower Bound) Let r > σg ≥ D/pg , then,

M
(
Bσdpd,qd , B

σg
pg,qg

)
& max

n− σg+σd
2σg+D ,

(
log n

n

)σg+σd+D−D/pg−D/pd
2σg+D−2D/pg

 (5)

Before giving a corresponding upper bound, we describe the estimator on which it depends.

Wavelet-Thresholding: Our upper bound uses the wavelet-thresholding estimator proposed by [14]:

p̂n =
∑
k∈Z

α̂kφk +

j0∑
j=0

∑
λ∈Λj

β̂λψλ +

j1∑
j=j0

∑
λ∈Λj

β̃λψλ. (6)

p̂n estimates p via its truncated wavelet expansion, with α̂k = 1
n

∑n
i=1 φk(Xi), β̂λ =

1
n

∑n
i=1 ψλ(Xi), and β̃λ = β̂λ1{β̂λ>

√
j/n} are empirical estimates of respective coefficient of

the wavelet expansion of p. As [14] first showed, attaining optimality over Besov spaces requires
truncating high-resolution terms (of order j ∈ [j0, j1]) when their empirical estimates are too small;
this “nonlinear” part of the estimator distinguishes it from the “linear” estimators we study in the next
section. The hyperparameters j0 and j1 are set to j0 = 1

2σg+D log2 n, j1 = 1
2σg+D−2D/pg

log2 n.

Theorem 5. (Upper Bound) Let r > σg ≥ D/pg and p′d > pg. Then, for a constant C depending
only on p′d, σg , pg , qg , D, Lg , Ld and ‖ψε‖p′d ,

M
(
Bσdpd,qd , B

σg
pg,qg

)
≤ C

(√
log n

(
n
− σg+σd

2σg+D + n
−σg+σd−D/pg+D/p

′
d

2σg+D−2D/pg

)
+ n−1/2

)
(7)

We will comment only briefly on Theorems 4 and 5 here, leaving extended discussion for Section 5.
First, note that the lower bound (5) and upper bound (7) are essentially tight; they differ only by a
polylogarithmic factor in n. Second, both bounds contain two main terms of interest. The simpler

term, n−
σg+σd
2σg+D , matches the rate observed in the Sobolev case by Singh et al. [48]. The other term is

unique to more general Besov spaces. Depending on the values of D,σd, σg, pd, and pg , one of these
two terms dominates, leading to two main regimes of convergence rates, which we call the “Sparse”
regime and the “Dense” regime. Section 5 discusses these and other interesting phenomena in detail.
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4.2 Minimax Rates of Linear Estimators over Besov Spaces
We now show that, for many Besov densities and IPM losses, many widely-used nonparametric
density estimators cannot converge at the optimal rate (5). These estimators are as follows:

Definition 6 (Linear Estimator). Let (Ω,F , P ) be a probability space. An estimate P̂ of P is said to
be linear if there exist functions Ti(Xi, ·) : F → R such that for all measurable A ∈ F ,

P̂ (A) =

n∑
i=1

Ti(Xi, A). (8)

Classic examples of linear estimators include the empirical distribution (Ti(Xi, A) = 1
n1{Xi∈A},

the kernel density estimate (Ti(Xi, A) = 1
n

∫
A
K(Xi, ·) for some bandwidth h > 0 and smoothing

kernel K : X × X → R) and the orthogonal series estimate (Ti(Xi, A) = 1
n

∑J
j=1 gj(Xi)

∫
A
gj for

some cutoff J and orthonormal basis {gj}∞j=1 (e.g., Fourier, wavelet, or polynomial) of L2(Ω)).

Theorem 7 (Minimax rate for Linear Estimators). Suppose r > σg ≥ D/pg ,

Mlin

(
Bσdpd,qd , B

σg
pg,qg

)
:= inf

P̂lin

sup
p∈Fg

E
X1:n

[
dFd

(
µp, P̂

)]
� n− 1

2 + n
− σg+σd−D/pg+D/p

′
d

2σg+D−2D/pg+2D/p′
d + n

− σg+σd
2σg+D

where the inf is over all linear estimates of p ∈ Fg , and µp is the distribution with density p.

One can check that the above error decays no faster than n−
σg+σd+D−D/pg−D/pd

2σg+D−2D/pg . Comparing with
the rate in Theorem 5, this implies that, in certain cases, convergence the rate for linear estimators
is strictly slower than that for general estimators; i.e., linear estimators fail to achieve the minimax
optimal rate over certain Besov space. We defer detailed discussion of this phenomenon to Section 5.

4.3 Upper Bounds on a Generative Adversarial Network
Pioneered by Goodfellow et al. [21] as a mechanism for applying deep neural networks to the problem
of unsupervised image generation, Generative adversarial networks (GANs) have since been widely
applied not only to computer vision [61, 25], but also to such diverse problems and data as machine
translation using natural language data [58], discovering drugs [23] and designing materials [46] using
molecular structure data, inferring expression levels using gene expression data [12], and sharing
patient data under privacy constraints using electronic health records [9]. Besides the Jensen-Shannon
divergence used by [21], many GAN formulations have been proposed based on minimizing other
losses, including the Wasserstein metric [4, 22], total variation distance [31], χ2 divergence [33],
MMD [27], Dudley metric [1], and Sobolev metric [38]. The diversity of data types and losses with
which GANs have been used motivates studying GANs in a very general (nonparametric) setting.
In particular, Besov spaces likely comprise the largest widely-studied family of nonparametric
smoothness class; indeed, most of the losses listed above are Besov IPMs.

GANs are typically described as a two-player minimax game between a generator network Ng and a
discriminator network Nd; we denote by Fd the class of functions that can be implemented by Nd
and by Fg the class of distributions that can be implemented by Ng . A recent line of work has argued
that a natural statistical model for a GAN as a distribution estimator is

P̂ := argmin
Q∈Fg

sup
f∈Fd

E
X∼Q

[f(X)]− E
X∼P̃n

[f(X)] , (9)

where P̃n is an (appropriately regularized) empirical distribution, and that, when Fd and Fg respec-
tively approximate classes F and P well, one can bound the risk, under F-IPM loss, of estimating
distributions in P by (9) [32, 28, 48, 29]. We emphasize, that, as Singh et al. [48] showed, the
minimax risk in this framework is identical to that under the “sampling” (or “implicit generative
modeling” [37]) framework in terms of which GANs are usually cast. 4

In this section, we show such a result for Besov spaces; namely, we show the existence of a particular
GAN (specifically, a sequence of GANs, necessarily growing with the sample size n), that estimates
distributions in a Besov space at the minimax optimal rate (7) under Besov IPM losses. This

4As in these previous works, we assume implicitly that the optimum (9) can be computed; this complex
saddle-point problem is itself the subject of a related but distinct and highly active area of work [40, 3, 30, 20].
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construction uses a standard neural network architecture (a fully-connected neural network with
rectified linear unit (ReLU) activations), and a simple data regularizer P̃n, namely the wavelet-
thresholding estimator described in Section 4.1. Our results extend those of Liang [28] and Singh
et al. [48], for Wasserstein loss over Sobolev spaces, to general Besov IPM losses over Besov spaces.
We begin with a formal definition of the network architectures that we consider:

Definition 8. A fully-connected ReLU network f(A1,...,AH),(b1,...,bH) : RW → R has the form

AHη (AH−1η (· · · η(A1x+ b1) · · · ) + bH−1) + bH ,

where, for each ` ∈ [H − 1], A` ∈ RW×W , and AH ∈ R1×W and the ReLU operation η(x) =
max{x, 0} is applied element-wise to vectors in RW .

The size of f(A1,...,AH),(b1,...,bH)(x) can be measured in terms of the following four (hy-
per)parameters: the depth H , the width W , the sparsity S :=

∑
`∈[H] ‖A`‖0,0 + ‖b`‖0 (i.e., the total

number of non-zero weights), and the maximum weight B := max{‖A`‖∞,∞, ‖b`‖∞ : ` ∈ [H]}.
For given size parametersH,W,S,B we write Φ(H,W,S,B) to denote the set of functions satisfying
the corresponding size constraints.

Our results rely on a recent construction (Lemma 17 in the Appendix), by [51], of a fully-connected
ReLU network that approximates Besov functions. [51] used this approximation to bound the risk of
a neural network for nonparametric regression over Besov spaces, under Lr loss. Here, we use this
approximation result Lemma 17 to bound the risk of a GAN for nonparametric distribution estimation
over Besov spaces, under the much larger class of Besov IPM losses. Our precise result is as follows:

Theorem 9 (Convergence Rate of a Well-Optimized GAN). Fix a Besov density class Bσgpg,qg with
σg > D/pg and discriminator class Bσdpd,qd with σd > D/pd. Then, for any desired approximation
error ε > 0, one can construct a GAN p̂ of the form (9) (with p̃n) with discriminator network
Nd ∈ Φ(Hd,Wd, Sd, Bd) and generator network Ng ∈ Φ(Hg,Wg, Sg, Bg), s.t. for all p ∈ Bσgpg,qg

E
[
dBσdpd,qd

(p̂, p)
]
. ε+ E dBσdpd,qd (p̃n, p)

where Hd, Hg grow logarithmically with 1/ε, Wd, Sd, Bd,Wg, Sg, Bg grow polynomially with 1/ε
and C > 0 is a constant that depends only on Bσdpd,qd and Bσgpg,qg .

This theorem implies that the rate of convergence of the GAN estimate p̂ of the form 9 is the same as
the convergence rate of the estimator p̃n with which the GAN estimate is generated (Here we assume
that all distributions have densities). Therefore, given our upper bound from theorem 5 we have the
following direct consequence.

Corollary 10. For a Besov density class Bσgpg,qg with σg > D/pg and discriminator class Bσdpd,qd
with σd > D/pd there exists an appropriately constructed GAN estimate p̂ s.t.

dFd(p̂, p) ≤
(
n−η(D,σd,pd,σg,pg)

√
log n

)
where η(D,σd, pd, σg, pg) = min

{
1
2 ,

σg+σd
2σg+D ,

σg+σd+D−D/pg−D/p′d
2σg+D(1−2/pg)

}
is the exponent from (7).

In other words there is a GAN estimate that is minimax rate optimal for a smooth class of densities
over an IPM generated by a smooth class of discriminator functions.

5 Discussion of Results
In this section, we discuss some general phenomena that can be gleaned from our technical results.

First, we note that, perhaps surprisingly, qd and qg do not appear in our bounds. Tao [52] suggests
that qd and qg may have only logarithmic effects (contrasted with the polynomial effects of σd, pd,
σg, and pg). Thus, a more fine-grained analysis to close the polylogarithmic gap between our lower
and upper bounds for general estimators (Theorems 4 and 5) might require incorporating qd and qg .

On the other hand, the parameters σd, pd, σg, and pg each play a significant role in determining
minimax convergence rates, in both the linear and general cases. We first discuss each of these
parameters independently, and then discuss some interactions between them.
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Figure 1: Minimax convergence rates as functions of discriminator smoothness σd and distri-
bution function smoothness σg, for (a) general and (b) linear estimators, in the case D = 4,
pd = 1.2, pg = 2. Color shows exponent of minimax convergence rate (i.e., α(σd, σg) such

that M
(
Bσd1.2,qd

(RD), B
σg
2,qg

(RD)
)
� n−α(σd,σg)), ignoring polylogarithmic factors.

Roles of the smoothness orders σd and σg As a visual aid for understanding our results, Figure 1
show phase diagrams of minimax convergence rates, as functions of discriminator smoothness σd and
distribution smoothness σg , in the illustrative caseD = 4, pd = 1.2, pg = 2. When 1/pg+1/pd > 1,
a minimum total smoothness σd+σg ≥ D(1/pd+1/pg−1) is needed for consistent estimation to be
possible – this fails in the “Infeasible” region of the phase diagrams. Intuitively, this occurs because
Fd is not contained in the topological dual F ′g of Fg . For linear estimators, even greater smoothness
σd+σg ≥ D(1/pd+1/pg) is needed. At the other extreme, for highly smooth discriminator functions,
both linear and nonlinear estimators converge at the parametric rate O

(
n−1/2

)
, corresponding to the

“Parametric” region. In between, rates for linear estimators vary smoothly with σd and σg , while rates
for nonlinear estimators exhibit another phase transition on the line σg + 3σd = D; to the left lies the
“Sparse” case, in which estimation error is dominated by a small number of large errors at locations
where the distribution exhibits high local variation; to the right lies the “Dense” case, where error is
relatively uniform on the sample space.

The left boundary σd = 0 corresponds to the classical results of Donoho et al. [14], who consequently
identified the “Infeasible”, “Sparse”, and “Dense” phases, but not the “Parametric” phase. When
restricting to linear estimators, the “Infeasible” region grows and the “Parametric” region shrinks.

Role of the powers pd and pg At one extreme (pd = ∞) lie L1 or total variation loss (σd = 0),
Wasserstein loss (σd = 1), and its higher-order generalizations, for which we showed the rate

M
(
Bσd∞,qd , B

σg
pg,qg

)
� n−

σg+σd
2σg+D + n−1/2,

generalizing the rate first shown by Singh et al. [48] for Hilbert-Sobolev classes to other distribution
classes, such as Fg = BV. Because discriminator functions in this class exhibit homogeneous
smoothness, these losses effectively weight the sample space relatively uniformly in importance, the
“Sparse” region in Figure (1a) vanishes, and linear estimators can perform optimally.

At the other extreme (pd = 1) lie L∞ loss (σd = 0), Kolmogorov-Smirnov loss (σd = 1), and its
higher-order generalizations, for which we have shown that the rate is always

M
(
Bσd1,qd

, Bσgpg,qg

)
� n−

σg+σd+D(1−1/pd−1/pg)

2σg+D(1−2/pg) + n−1/2;

except in the parametric regime (D ≤ 2σd), this rate differs from that of Singh et al. [48]. Because
discriminator functions can have inhomogeneous smoothness, and hence weight some portions of the
sample space much more heavily than others, the “Dense” region in Figure 1a vanishes, and linear
estimators are always sub-optimal. We note that Sadhanala et al. [45] recently proposed using these
higher-order distances (integer σd > 1) in a fast two-sample test that generalizes the well-known
Kolmogorov-Smirnov test, improving sensitivity to the tails of distributions; our results may provide
a step towards understanding theoretical properties of this test.

Comparison of linear and general rates Letting σ′g := σg −D(1/pg + 1/pd), one can write the
sparse term of the linear minimax rate in the same form as the Dense rate, replacing σg with σ′g:

8



Mlin

(
Bσdpd,qd , B

σg
pg,qg

)
� n

−
σ′g+σd
2σ′g+D . (10)

This is not a coincidence; Morrey’s inequality [18, Section 5.6.2] in functional analysis tells us that
for general σg > D(1/pg+1/pd), σ′g := σg−D(1/pg+1/pd) is largest possible value such that the

embedding Bσgpg,pg ⊆ B
σ′g
pd,pd holds. In the extreme case pd =∞ (corresponding to generalizations

of total variation loss), one can interpret the rate (10) as saying that linear estimators benefit only
from homogeneous (e.g., Hölder) smoothness, and not from weaker inhomogeneous (e.g., Besov)
smoothness. For general pd, linear estimator can still benefit from inhomogeneous smoothness, but
to a lesser extent than general minimax optimal estimators.

Conclusions We have shown, up to log factors, unified minimax convergence rates for a large
class of pairs of Fd-IPM losses and distribution classes Fg. By doing so, we have generalized
several phenomena that had observed in special cases previously. First, under sufficiently weak loss
functions, distribution estimation is possible at the parametric rate O(n−1/2) even over very large
nonparametric distribution classes. Second, in many cases, optimal estimation requires estimators
that adapt to inhomogeneous smoothness conditions; many commonly used distribution estimators
fail to do this, and hence converge at sub-optimal rates, or even fail to converge. Finally, GANs with
sufficiently large fully-connected ReLU neural networks using wavelet-thresholding regularization
perform statistically minimax rate-optimal distribution estimation over inhomogeneous nonparametric
smoothness classes (assuming the GAN optimization problem can be solved accurately). Importantly,
since GANs optimize IPM losses much weaker than traditional Lp losses, they may be able to learn
reasonable approximations of even high-dimensional distributions with tractable sample complexity,
perhaps explaining why they excel in the case of image data. Thus, our results suggest that the curse
of dimensionality may be less severe than indicated by classical nonparametric lower bounds.

A Technical Definitions and Notation

As noted in the main text, we need a multiresolution approximation (MRA) satisfying an r-regularity
condition, defined as follows:

Definition 11. Given a non-negative integer r, an MRA is called r-regular if the function φ can
be chosen in such a way that, for every m ∈ N and multi-index α = (α1, . . . , αD) ∈ ND
satisfying |α| ≤ r, for some constant Cα,m, |∂αφ(x)| ≤ Cα,m(1 + |x|)−m. Here, ∂α =

(∂/∂x1)α1 · · · (∂/∂xD)αD is the mixed derivative of index α, |α| =
∑D
j=1 αj and |x| is any of

the equivalent norms on a finite dimensional Euclidean space. That is, all derivatives of φ of order up
to r are bounded and decay at a rate faster than any polynomial.

While constructing an r-regular MRA is nontrivial, it suffices for our purpose to note that r-regular
MRAs exist; the most famous example is the Daubechies wavelet [11, 36].

We also note the following result showing that for any function in Vj (i.e., at a certain “level” in the
MRA) its Lp norm is equivalent to the lp sequence norm of its coefficients in the wavelet basis; this
helps motivate the sequence-based definition of the Besov norm.

Proposition 12 (Meyer [36], Section 6.10, Proposition 7). There exist positive constants C,C ′ s.t.
for every 1 ≤ p ≤ ∞, j ∈ Z and {αk} ∈ lp, f(x) =

∑
ak2Dj/2ψε(2

jx− k), ε ∈ E, k ∈ ZD,

C ‖f‖p ≤ 2Dj(1/2−1/p)
(∑

|ak|p
)1/p

≤ C ′ ‖f‖p .

Appendix A.1 of Donoho et al. [14] offers a more extended background of Besov spaces, including
how the sequence-based definition corresponds to more conventional smoothness measures (moduli
of continuity), as well as some direct connections between Besov spaces and minimax theory for
linear estimators.
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B Upper Bound - Linear Case

For any density function p let

αpk =

∫
φk(x)p(x)dx

βpλ =

∫
ψλ(x)p(x)dx

We first show that Besov IPMs essentially measure the distance in co-efficient space between
compactly supported densities.
Lemma 13. For any compactly supported probability densities p, q ∈ Lp′d where Fd = Bσdpd,qd

dFd(p, q) = sup
f∈Fd

∣∣∣∣∣∣
∑
k∈Z

αfk (αpk − α
q
k) +

∑
j≥0

∑
λ∈Λ

βfλ (βpλ − β
q
λ)

∣∣∣∣∣∣
where for f ∈ Fd

f =
∑
k∈Z

αfkφk +
∑
j≥0

∑
λ∈Λj

βfλψλ

Proof. We notice that the convergence to f above is in the L∞ norm. So for probability measures
P,Q we have,

dFd(p, q) = sup
f∈Fd

|EX∼p[f(X)]− EX∼q[f(X)]|

= sup
f∈Fd

∣∣∣∣∫
X
f(x)p(x)dx− f(x)q(x)dx

∣∣∣∣
= sup
f∈Fd

∣∣∣∣∣∣
∫
X

∑
k∈Z

αfkφk(x) +
∑
j≥0

∑
λ∈Λj

βfλψλ(x)

 (p(x)− q(x)) dx

∣∣∣∣∣∣
If p, q are compactly supported on [−B,B] then we can assume WLOG that f is compactly supported
on [−B,B] so convergence of fn to f in L∞ norm implies convergence in L1 norm. Therefore,

dFd(P,Q) = sup
f∈Fd

∣∣∣∣∣∣
∑
k∈Z

∫
X
αfkφk (dP (x)− dQ(x)) +

∑
j≥0

∑
λ∈Λj

∫
X
βfλψλ (dP (x)− dQ(x))

∣∣∣∣∣∣
= sup
f∈Fd

∣∣∣∣∣∣
∑
k∈Z

αfk (αpk − α
q
k) +

∑
j≥0

∑
λ∈Λ

βfλ (βpλ − β
q
λ)

∣∣∣∣∣∣
We will need the following inequalities to estimate the error of the wavelet estimator under the IPM
loss.

The first lemma is the standard upper bound on the mth moment of a sum of IID random variables
with bounded variance. The second is a standard concentration inequality used to bound large
deviations in our error estimate.
Lemma 14. (Rosenthal’s Inequality ([44])) Let m ∈ R and Y1, . . . , Yn be IID random variables
with E[Yi] = 0, E[Y 2

i ] ≤ σ2. Then there is a constant cm that depends only on m s.t.

E

[∣∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣∣
m]
≤ cm

(
σm

nm/2
+

E |Y1|m

nm−1

)
for 2 < m <∞,

E

[∣∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣∣
m]
≤ σmn−m/2 for 1 ≤ m ≤ 2.
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Lemma 15. (Bernstein’s Inequality ([6])) If Y1, . . . , Yn are IID random variables such that E[Yi] =
0, E[Y 2

i ] = σ2 and |Yi| ≤ ‖Y ‖∞ <∞, then

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣∣ > λ

)
≤ 2 exp

(
− nλ2

2(σ2 + ‖Y ‖∞ λ/3)

)
where ‖Y ‖∞ = ess supY .

Given discriminator and generator classes as

Fd = {f : ‖f‖σdpd,qd ≤ Ld}
Fg = {p : ‖p‖σgpg,qg ≤ Lg} ∩ P
P = {p : p ≥ 0, ‖p‖L1 = 1, supp(p) ⊆ [−T, T ]},

we decompose f ∈ Fd as

f =
∑
k∈Z

αkφk +
∑
j≥0

∑
λ∈Λj

βλψλ.

We use the linear wavelet estimator to demonstrate the upper bound. Let X1, . . . , Xn be IID with
density p ∈ Fg and consider the wavelet estimator of p i.e.

p =
∑
k∈Z

αpkφk +
∑
j≥0

∑
λ∈Λj

βpλψλ

p̂n =
∑
k∈Z

α̂kφk +

j0∑
j=0

∑
λ∈Λj

β̂λψλ

where

αpk = E
X∼p

[φk(X)]

βpλ = E
X∼p

[ψλ(X)]

α̂k =
1

n

n∑
i=1

φk(Xi)

β̂λ =
1

n

n∑
i=1

ψλ(Xi)

Then applying lemma 13, we bound

dFd(p, p̂n) ≤ sup
f∈Fd

∑
k∈Z

αk (αpk − α̂k) + sup
f∈Fd

j0∑
j=0

∑
λ∈Λj

βλ

(
βpλ − β̂λ

)
+ sup
f∈Fd

∑
j≥j1

∑
λ∈Λj

βλβ
p
λ

where the first two terms constitute the stochastic error and the last term is the bias. We bound
these separately below. We first prove a few lemmas that will be used repeatedly to upper bound the
different terms.

Lemma 16. Let n1, n2 ∈ N ∪ {∞} and η be any sequence of numbers. Then

E
X1,...,Xn

sup
f∈Fd

n2∑
j=n1

∑
λ∈Λj

γληλ ≤ LD
n2∑
j=n1

2−j(σd+D/2−D/pd)

 E
X1,...,Xn

∑
λ∈Λj

|ηλ|p
′
d

1/p′d

Note that if the above is true also if γ = αf and n1 = n2 = 0.

11



Proof. Since f ∈ Fd, applying Hölder’s inequality twice we get,

E
X1,...,Xn

sup
f∈Fd

n2∑
j=n1

∑
λ∈Λj

γληλ ≤ E
X1,...,Xn

sup
f∈Fd

n2∑
j=n1

‖γ‖pd ‖η‖p′d

≤ E
X1,...,Xn

sup
f∈Fd

 n2∑
j=n1

(
2j(σd+D/2−D/pd) ‖γ‖pd

)qd1/qd

×
n2∑
j=n1

2−j(σd+D/2−D/pd) ‖η‖p′d (l1 ⊆ lq
′
d)

≤ LD
n2∑
j=n1

2−j(σd+D/2−D/pd) E
X1,...,Xn

‖η‖p′d

≤ LD
n2∑
j=n1

2−j(σd+D/2−D/pd)

 E
X1,...,Xn

∑
λ∈Λj

|ηλ|p
′
d

1/p′d

where p′d is the conjugate of pd i.e. 1
pd

+ 1
p′d

= 1 and we applied Jensen’s to get the last inequality.

Lemma 17. Let f ∈ Bσgpg,qg where σg > D/pg then

‖f‖∞ ≤ 4A ‖ψ‖∞ Lg(1− 2(σg−D/pg)q′g )−1/q′g

This implies that sufficiently smooth Besov spaces Bσgpg,qq are uniformly bounded.

Proof. We have that
∑
k∈ZD αkφk +

∑
j≥0

∑
λ∈Λj

βλψλ converges to f in L∞. So, using the fact
that lpd ⊆ l∞ and proposition 12,

‖f‖∞ ≤ 2A ‖ψ‖∞

‖{αk}k∈ZD‖∞ +
∑
j≥0

2Dj/2
∥∥{βλ}λ∈Λj

∥∥
∞)

 .

We can upper bound, by Hölder’s inequality,∑
j≥0

2Dj/2
∥∥{βλ}λ∈Λj

∥∥
∞ ≤

∑
j≥0

1

2j(σg−D/pg)
× 2j(σg+D/2−D/pg)

∥∥{βλ}λ∈Λj

∥∥
∞

≤

∑
j≥0

1

2j(σg−D/pg)q′g

1/q′g
∑
j≥0

2jqg(σg+D/2−D/pg)
∥∥{βλ}λ∈Λj

∥∥qg
∞

1/qg

≤
(

1

1− 2−(σg−D/pg)q′g

)1/q′g

∑
j≥0

2jqg(σg+D/2−D/pg)
∥∥{βλ}λ∈Λj

∥∥qg
pg

1/qg

≤
(

1− 2−(σg−D/pg)q′g

)−1/q′g
‖f‖σgpgqg

≤
(

1− 2−(σg−D/pg)q′g

)−1/q′g
Lg.

Putting the above together we obtain the required upper bound.

We also need a few preliminary results namely, the moments of error of linear estimates of the wavelet
coefficients are essentially bounded by 1/

√
n and the probability that this error is large is negligibly

small. In particular,
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Lemma 18. (Moment Bounds) Let X1, . . . , Xn ∼ p, m ≥ 1 s.t. there is a constant c with
Ep |ψλ(X)|m ≤ c2Dj(m/2−1). Let

γpλ = E[ψλ(X)],

γ̂λ =
1

n

n∑
i=1

ψλ(Xi),

Then for all j s.t. 2Dj ∈ O(n),

E[|γ̂jk − γjk|m] ≤ cn−m/2.

where c = cm
(
Ep |ψλ(X)|2

)m/2
is a constant.

Proof. Since ψλ is bounded for every λ, let

Yi = ψλ(Xi)− E[ψλ(X)]

then for all m ≥ 1, applying Jensen’s inequality repeatedly we get

E[|Yi|m] ≤ E[(|ψλ(Xi)|+ |E[ψλ(Xi)]|)m] (triangle inequality)

≤ 2m−1 (E[|ψλ(Xi)|m] + |E[ψλ(Xi)]|m) (Jensen’s)
≤ 2m E[|ψλ(Xi)|m]. (Jensen’s)

Therefore, by Rosenthal’s inequality we have,

E[|γpλ − γ̂λ|
m] ≤ cm

((
E
p
|ψλ(X)|2

)m/2
+ c

(
2Dj

n

)(m/2−1)+
)
n−m/2

where cm is a constant that only depends on m. Therefore,

E[|γpλ − γ̂λ|
m] ≤ cm

(
E
p
|ψλ(X)|2

)m/2
n−m/2

Note that we have from above 2Dj1 ≤ n so this bound holds for any j ≤ j1.
Lemma 19. (Large Deviations) Let X1, . . . , Xn ∼ p such that for a constant c, Ep |ψλ(X)|2 ≤ c.
Let

γpλ = E[ψλ(X)],

γ̂λ =
1

n

n∑
i=1

ψλ(Xi),

Let l =
√
j/n and γ > 0, then, for all j s.t. 2Dj ∈ o(n), we have,

Pr(|γ̂λ − γλ| > (K/2)l) ≤ 2× 2−γnl
2

where K large enough such that

K2

8(c+ ‖ψε‖∞ (K/3))
> log 2γ

Proof. Applying Bernstein’s inequality we have

Pr(|γ̂λ − γλ| > (K/2)l) ≤ 2 exp

(
− n(K/2)2l2

2(c+ 2Dj/2 ‖ψε‖∞ (K/3)l)

)
≤ 2 exp

(
− K2nl2

8(Lg + ‖ψε‖∞ (K/3))

)
This implies for K satisfying the above condition,

Pr(|γ̂λ − γλ| > (K/2)l) ≤ 2× 2(−γnl2)
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Now for every j ≤ j1, l satisfies the requirements of the above lemma. So if nl2(= j) → ∞ as
n→∞ the probability of large deviation goes to zero.
Lemma 20. (Variance) Let X1, . . . , Xn ∼ p where p is compactly supported, such that for a
constant c, Ep |ψλ(X)|m ≤ c2Dj(m/2−1). Let Fd = Bσdpd,qd , then the variance of a linear wavelet
estimator p̂ with j0 terms i.e.

p̂n =
∑
k∈Z

α̂kφk +

j0∑
j=0

∑
λ∈Λj

β̂λψλ

is bounded by

dFd(p̂n,E[p̂n]) ≤ c
(

1√
n

+
2j0(D/2−σd)

√
n

)
where c = cp′d

(
Ep |ψλ(X)|2

)1/2
is a constant.

Proof. Since Fd = Bσdpd,qd and p is compactly supported we can, by lemma 13 upper bound

EX1,...,Xn sup
f∈Fd

∑
k∈Z

αfk (αpk − α̂k) + EX1,...,Xn sup
f∈Fd

j0∑
j=0

∑
λ∈Λj

βfλ

(
βpλ − β̂λ

)
Since, for a constant c, Ep |ψλ(X)|m ≤ c2Dj(m/2−1) we can apply the moment bound below. For
the first term we have, (taking γ = α and n1 = n2 = 0 in lemma 16 above)

EX1,...,Xn sup
f∈Fd

∑
k∈Z

αfk (αpk − α̂k)

≤ LD

(∑
k

EX1,...,Xn |α
p
k − α̂k|

p′d

)1/p′d

(finitely many terms)

≤ cLD ‖p‖∞
(

(T +A)n−p
′
d/2
)1/p′d

(moment bound)

≤ cn−1/2

where we use the fact only finitely many of the αs are non-zero because of the compactness of the
support of the densities we consider and the compactness of the wavelets. Similarly taking γ = β,
n1 = 0, n2 = j0 in lemms 16 we have, using the moment bound as above,

EX1,...,Xn sup
f∈Fd

j0∑
j=0

∑
λ∈Λj

βfλ

(
βpλ − β̂λ

)

≤ c ‖p‖∞ LD

j0∑
j=0

2−j(σd+D/2−D/pd)
(

2Dj(T +A)n−p
′
d/2
)1/p′d

≤ LD
j0∑
j=0

2−j(σd+D/2−D/pd)2Dj/p
′
dn−1/2

≤ cLD ‖p‖∞
j0∑
j=0

2j(D/2−σd)n−1/2

≤ c ‖p‖∞

{
2j0(D/2−σd)n−1/2 σd ≤ D/2
n−1/2 σd > D/2

Lemma 21. (Bias) Let X1, . . . , Xn ∼ p where p ∈ Bσgpg,qg is compactly supported and σg ≥ D/pg ,
Fd = Bσdpd,qd . Then the bias of a linear wavelet estimator p̂ with j0 terms is bounded by

dFd(p,E
p
[p̂n]) ≤ c2−j0(σd+σg−(D/pg−D/p′d)+)

where c is a constant that depends on pd and ‖ψ‖m.
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Proof. Since p is compactly supported, by lemma 13 we need to upper bound

sup
β∈Fd

∑
j≥j1

∑
λ∈Λ

βfλβ
p
λ

Using lemma 16 and the fact that σg ≥ D/pg

sup
β∈Fd

∑
j≥j0

∑
λ∈Λ

βfλβ
p
λ

≤ LD
∑
j≥j0

2−j(σd+D/2−D/pd) ‖βp‖p′d

= LD
∑
j≥j0

2j(σg+D/2−D/pg)

2j(σd+σg+D−D/pd−D/pg)
2j(D/p

′
d−D/pg)+ ‖βp‖pg

≤ LD
∑
j≥j0

2j(D/p
′
d−D/pg)+

2j(σd+σg+D/p′d−D/pg)
sup
j≥j0

2j(σg+D/2−D/pg) ‖βp‖pg

≤ 2−j0(σd+σg−(D/pg−D/p′d)+) ‖p‖σgpgqg (σg ≥ D/pg)

≤ c2−j0(σd+σg−(D/pg−D/p′d)+)

Using lemmas 21 and 20 we get the following upper bound on the bias and variance of the linear
wavelet estimator.

c
(
n−1/2 + n−1/22j0(D/2−σd) + 2−j0(σg+σd−D/pg+D−D/pd)

)
which when minimized for j0 gives,

2j0 = n1/(2σg+D+2D/p′d−2D/pg)

which implies an upper bound of

. n−1/2 + n
−σg+σd−D/pg+D−D/pd

2σg+D+2D/p′
d
−2D/pg

as desired.

C Proof of the Lower Bound

In this section we prove our main lower bound i.e. Theorem 4 using Fano’s lemma and the Varshamov
Gilbert bound as summarized below.
Lemma 22. (Fano’s Lemma; Simplified Form of Theorem 2.5 of [53])

Fix a family P of distributions over a sample space X and fix a pseudo-metric ρ : P × P → [0,∞]
over P . Suppose there exists a set T ⊆ P such that there is a p0 ∈ T with p� p0 ∀p ∈ T and

s := inf
p,p′∈T

ρ(p, p′) > 0 , sup
p∈T

DKL(p, p0) ≤ log |T |
16

,

where DKL : P × P → [0,∞] denotes Kullback-Leibler divergence. Then,

inf
p̂

sup
p∈P

E [ρ(p, p̂)] ≥ s

16

where the inf is taken over all estimators p̂.
Lemma 23. (Varshamov-Gilbert bound ([53])) Let Ω = {0, 1}m where m ≥ 8. Then there exists a
subset {w0, . . . , wM} of Ω such that w0 = (0, . . . , 0) and

ω(wj , wk) ≥ m

8
∀0 ≤ j, k ≤M

where M ≥ 2m/8, where ω(wj , wk) =
∑m
i=1 1{wji 6=wki }

is the Hamming distance.
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Proof. (of Theorem 4) We follow the method in Donoho et. al. [14] and separate our proof into
“sparse” and “dense” cases. As is standard procedure, for both cases we pick a finite subset of densities
from Fg over which estimation is difficult. Since any function in a Besov space can be defined by its
wavelet coefficients we pick a set of densities by an appropriate choice of wavelet coefficients.

Here we also need to pick a subset of functions from Fd so as to estimate dFd . Following the method
in [47] we pick from Fd, functions that are analogous to the ones we pick from Fg so that we measure
the difference in the densities along the chosen perturbations.

We now fill in the details. We first let g0 be a density function supported on an interval that contains
[−A,A]D such that ‖g0‖σgpgqg ≤ LG/2 and g0 = c > 0 on [−A,A]D.

At a particular resolution j, we choose 2Dj wavelets with disjoint supports; pick ψλ =
2Dj/2ψε1(2Djx− k) indexed by λ = 2−jk + 2−(j+1)ε1 s.t. k ∈ Kj where

Kj = {−(2j − 1)A+ 2lA, l = 0, . . . , (2j − 1)}D

and ε1 = (1, 0, . . . , 0) (i.e. we pick the first wavelet). Note here that if λ 6= λ′ then ψλ and ψλ′ have
disjoint support.

We now describe our choice of densities based on the set of coefficients ζ ⊆ {τ ∈ Z|Kj | : |τλ| ≤ 1}
i.e.

Ωg := {g0 + cg
∑
λ

τλψλ : τ ∈ ζ, λ = 2−jk + 2−j−1ε1, k ∈ Kj}.

If we pick cg to be small enough, every p in Ωg is a density function and is lower bounded on
[−A,A]D. Specifically if cg s.t.

cg ≤
c

2 ‖ψ‖∞
2−Dj/2

then
∫
g0 + cg

∑
λ τλψλ = 1 (since

∫
ψλ = 0) and,

‖g0 − p‖∞ = cg2
Dj/2 ‖ψ‖∞ ≤ c/2

so that p is lower bounded on the domain of ψλ by c/2 for every λ. This also implies that p is always
positive.

Now the following lemma states that if you have a small perturbation of a density s.t. the density is
lower bounded on the support of the perturbation then the KL divergence between the perturbed and
the original density is upper bounded by the L2 norm of the perturbation.

Lemma 24. Let g = g0 + h, g0 be density functions such that h ≤ g0. If S = supp(h) ⊆ supp(g)
and c ≤ g on S, where c is a constant. Then

DKL(gn, gn0 ) ≤ cn‖g0 − g‖2L2

Proof. Since g ≤ 2g0 we have,
g0 − g
g
≥ −1

2

so using the fact that − log(1 + x) ≤ x2 − x for all x ≥ −1/2 we get

DKL(gn, gn0 ) = nDKL(g, g0)

= n

∫
S

g(x) log
g(x)

g0(x)
dx

= −n
∫
S

g(x) log

(
1 +

g0(x)− g(x)

g(x)

)
dx

≤ n
∫
S

g(x)

((
g0(x)− g(x)

g(x)

)2

− g0(x)− g(x)

g(x)

)
dx

= n

∫
S

(g0(x)− g(x))
2

g(x)
dx

which, since g ≥ c on S, is smaller than cn
∫
S

(g0(x)− g(x))
2 as desired.
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Using this fact we conclude that for any pτ ∈ Ωg ,

KL(pτ , g0) ≤ nc2gc

∥∥∥∥∥∑
λ

τλψλ

∥∥∥∥∥
2

L2

= cnc2g ‖τ‖
2
2

Following the technique in [48] we also pick an analogous set of functions that live in Fd so that we
can lower bound dFD . In particular let

Ωd := {cd
∑
λ

τλψλ : τ ∈ ζ, λ = 2−jk + 2−j−1ε1, k ∈ Kj}

It now, only remains to choose appropriate sets ζ for the wavelet coefficients in each of the sparse
and dense cases. In the remainder let c be a constant not necessarily the same.

Sparse or low-smoothness case:

For the sparse/lower smoothness case we choose worst case densities to be perturbations along only a
specific scaling of the wavelet at a time. In particular, let

ζ = {τ : τλ = 1, τλ′ = 0, λ′ 6= λ = 2−jk + 2−(j+1)ε1, k ∈ Kj}

We know from above that for any cg ≤ c2−Dj/2, every p ∈ Ωg is a density such that DKL(pn, gn0 ) ≤
cnc2g ‖τ‖2. Now, we need

‖g0 + cgψλ‖σgpgqg ≤ ‖g0‖σgpgqg + 2j(σg+D/2−D/pg)cg ≤ Lg

so that Ωg ⊆ Fg. Since σg ≥ D/pg the choice of cg = c2−j(σg+D/2−D/pg) suffices. Similarly,
cd = Ld2

−j(σd+D/2−D/pd) implies Ωd ⊆ Fd.

Then we pick j large enough such that the KL divergence between any pτ and g0 is small. This
enables us to apply Fano’s lemma from above and get a lower bound.

So we need cnc2g ≤
log |ζ|

16 =
log |Kj |

16 i.e.

n ≤ cj/c2g ⇐⇒ n ≤ 22j(σg+D/2−D/pg)j

for the KL divergence to be small. Given such a j we have,

dFd(pλ, pλ′) ≥ sup
f∈Ωd

∣∣∣∣∫ cg(f(x)(ψλ − ψλ′)dx
∣∣∣∣ = ‖ψ‖2L2 cgcd

(since, ‖ψλ‖2L2 = ‖ψ‖2L2 ). So, if 2j = (n/ log n)
1

2σg+D−2D/pg we have,

M(Fg,Fd) &
(

log n

n

)σg+σd+D−D/pg−D/pd
2σg+D−2D/pg

Dense or higher smoothness case:

In the dense case, we choose our set of densities by perturbing g0 along every scaling of the wavelet
simultaneously i.e. let

ζ = {τ : τλ ∈ {−1,+1}}
Now, we need ∥∥∥∥∥g0 + cg

∑
λ

τλψλ

∥∥∥∥∥
σg

pgqg

≤ ‖g0‖σgpgqg + 2j(σg+D/2)cg ≤ Lg

so that Ωg ⊆ Fg. The choice of cg = c2−j(σg+D/2) suffices. Similarly, cd = Ld2
−j(σd+D/2)

implies Ωd ⊆ Fd.
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Now the Varshamov-Gilbert bound from above implies we can pick a subset of ΩG with size at least
2|Kj |/8 such that ω(τλ, τk′) ≥ |Kj |/8 which gives,

dFd(pλ, pλ′) = sup
f∈Ωd

∣∣∣∣∫ cg(f(x)(ψλ − ψλ′)dx
∣∣∣∣

= cgcdω(τλ, τλ′) ≥ cgcd
2Dj

4

We pick j large enough such that the KL divergence between any pτ and g0 is small. This enables
us to apply Fano’s lemma from above and get a lower bound. In particular we need, for any
pτ ∈ Ωg , DKL(pnτ , g

n
0 ) ≤ cnc2g ‖τ‖2 = cnc2g|Kj | to be at most log |ζ|

16 =
|Kj |
16 which is equivalent to

n ≤ 2j(2σg+D). Then by Fano’s lemma the lower bound in the dense case is

n
− σg+σd

2σg+D

We combine the above two cases to get the following lower bound on the rate

& max (n
− σg+σd

2σg+D , n
−σg+σd+D−D/pg−D/pd

2σg+D−2D/pg )

D Proof of the Upper Bound

We use the wavelet thresholding estimate as introduced in [14] to get an upper bound on our minimax
rate.

Proof. (of theorem 5) We first upper bound our error by three terms namely, the stochastic error, the
bias and the non-linear terms. The stochastic error is bounded above as usual by the above moment
bound. The bias is bounded above by virtue of our density belonging to the besov space Bσgpg,qg .
The non-linear terms are more delicate. We follow the procedure in [14] and split them into four
groups the first two of which are shown to be negligible as the probability of large deviations falls
exponentially rapidly from Bernstein’s inequality above. We simplify the upper bounds on the other
two terms considerably by paying a penalty on the rate by the factor that is logarithmic in the sample
size. We now fill in the details of the proof.

We first let our discriminator and generator classes be

Fd = {f : ‖f‖σdpd,qd ≤ Ld}
Fg = {p : ‖p‖σgpg,qg ≤ Lg} ∩ P
P = {p : p ≥ 0, ‖p‖L1 = 1, supp(p) ⊆ [−T, T ]}

Given X1, . . . , Xn be IID with density p ∈ Fg and the thresholded wavelet estimator of p i.e.

p =
∑
k∈Z

αpkφk +
∑
j≥0

∑
λ∈Λj

βpλψλ

p̂n =
∑
k∈Z

α̂kφk +

j0∑
j=0

∑
λ∈Λj

β̂λψλ +

j1∑
j=j0

∑
λ∈Λj

β̃λψλ

where

αpk = E
X∼p

[φk(X)]

βpλ = E
X∼p

[ψλ(X)]

α̂k =
1

n

n∑
i=1

φk(Xi)

β̂λ =
1

n

n∑
i=1

ψλ(Xi)

β̃λ = β̂λ1{β̂λ>t}

18



with t = K
√
j/n, where K is a constant to be specified later, and

2j0 = n
1

2σg+D

2j1 = n
1

2σg+D−2D/pg

we can upper bound the error as,

dFd(p, p̂n) ≤ sup
f∈Fd

∑
k∈Z

αfk (αpk − α̂k) + sup
f∈Fd

j0∑
j=0

∑
λ∈Λj

βfλ

(
βpλ − β̂λ

)

+ sup
f∈Fd

j1∑
j≥j0

∑
λ∈Λj

βfλ

(
βpλ − β̃λ

)
+ sup
f∈Fd

∑
j≥j1

∑
λ∈Λj

βfλβ
p
λ

where the first three terms constitute the stochastic error (the non-linear terms or thresholded terms
are also called ‘detail’ terms [14]) and the last term is the bias. In particular:

1. The first term in our upper bound of the risk is the stochastic error or the variance of a linear
wavelet estimator with j0 terms. Note that since σg ≥ D/pg p ∈ Fg implies by lemma 17
that ‖p‖∞ <∞. Then by substitution

E
p
|ψλ(X)|p

′
d ≤ 2−Dj(p

′
d/2−1)

Therefore by lemma 20 we have an upper bound here of

cn−1/2(2j0(D/2−σd) + 1) . n
− σg+σd

2σg+D + n−1/2

2. The third term is the bias of a linear wavelet estimator with j1 terms which by lemma 21 for
p′d ≥ pg is bounded above by

c2−j1(σd+σg−D/pg+D/p′d) . n
−σg+σd+D−D/pg−D/pd

2σg+D−2D/pg

3. For the second term we have, by lemmas 13 and 16

E sup
f∈Fd

∑
j≥j0

∑
λ∈Λ

βfλ

(
βpλ − β̃λ

)
≤ LD

j1∑
j=j0

2−j(σd+D/2−D/pd)

E
∑
λ∈Λj

|βpλ − β̃λ|
p′d1A

1/p′d

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd)

∑
λ∈Λj

E |βpλ − β̃λ|
p′d1A

1/p′d

where we are only summing over finitely many terms. The set A is given by the following
cases:

(For the upper bounds of the first two cases we have chosen γ (which in turn determines the
value of K) to be large enough so that the exponent of 2j is negative and thus we can upper
bound the geometric series by a constant multiple of the first term.)

(a) Let A be the set of k s.t. β̂λ > t and βpλ < t/2 and r ≥ 1/p′d then

LD

j1∑
j=j0

2−j(σd+D/2−D/pd)

∑
λ∈Λj

E |βpλ − β̃λ|
p′d1A

1/p′d

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd)

∑
λ∈Λj

(E |βpλ − β̃λ|
p′dr)1/r Pr(A)1/r′

1/p′d
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Using the large deviation and moment bound

Pr(A) ≤ Pr
(
|β̂λ − βpλ| ≥ t/2

)
≤ c2−γj

we get,

≤ c
j1∑
j=j0

2−j(σd+D/2−D/pd)
(

2Djn−p
′
d/22−jγ/r

′
)1/p′d

≤ c
j1∑
j=j0

2−j(σd+D/2−D/pd−D/p′d)n−1/22−γj/p
′
dr
′

≤ cn−1/2

j1∑
j=j0

2−j(σd−D/2+γ/p′dr
′)

≤ cn−1/22−j0(σd−D/2+γ/p′dr
′)

. n
−σg+σd+γ/p

′
dr
′

2σg+D ,

which is negligible compared to the linear term.

(b) Let B be the set of k s.t. β̂λ < t and βpλ > 2t then same as above

E sup
f∈Fd

j1∑
j=j0

∑
λ∈Λj

βfλβ
p
λ1B ≤ LD

j1∑
j=j0

2−j(σd+D/2−D/pd) ‖βpλ‖p′d (Pr(B))1/p′d

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd) ‖βpλ‖p′d 2−γj/p
′
d

≤ LD
j1∑
j=j0

2−j(σd+σ′g+γ/p′d) sup
j0≤j≤j1

2j(σ
′
g+D/2−D/p′d) ‖βλ‖p′d

≤ LDLG
j1∑
j=j0

2−j(σd+σ′g+γ/p′d)

≤ LDLGC2−j0(σd+σ′g+γ/p′d)

. n
−
σd+σ

′
g+γ

2σg+D

which is negligible compared to the bias term.

(c) Let C be the set of k s.t. β̂λ > t and βpλ > t/2 then:
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E sup
f∈Fd

j1∑
j=j0

∑
λ∈Λj

βfλ

(
βpλ − β̃λ

)
1C

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd)

(∑
k∈C

E |βpλ − β̃λ|
p′d

)1/p′d

≤ LD
j1∑
j=j0

Cn−1/22−j(σd+D/2−D/pd)

(∑
k∈C

(
2βpλ

√
n/j

K

)pg)1/p′d

≤ LD
j1∑
j=j0

Cn−1/2(
√
n/j)pg/p

′
d2−j(σd+D/2−D/pd) ‖βp‖pg/p

′
d

pg

≤ LD
j1∑
j=j0

Cn−1/2(
√
n/j)pg/p

′
d2−j(σd+D/2−D/pd)2−j(σg+D/2−D/pg)pg/p

′
d

sup
j0≤j≤j1

‖β‖pg 2j(σg+D/2−D/pg)

≤ CLDLGn1/2(pg/p
′
d−1)

j1∑
j=j0

2−j((σg+D/2)pg/p
′
d+σd−D/2)j−pg/2p

′
d

≤ CLDLGn1/2(pg/p
′
d−1)2−jm((σg+D/2)pg/p

′
d+σd−D/2)

where

jm =

{
j0 (2σg +D)pg ≥ (D − 2σd)p

′
d

j1 (2σg +D)pg ≤ (D − 2σd)p
′
d

In the first case we have an upper bound of

. n
− σg+σd

2σg+D

and in the second case we have an upper bound of

. n
−σg+σd+D−D/pd−D/pg

2σg+D−2D/pg

(d) Let E be the set of k s.t. β̂λ < t and βpλ < 2t then:

E sup
f∈Fd

j1∑
j=j0

∑
λ∈Λj

βfλβ
p
λ1D

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd)

∑
λ∈Λj

|βpλ|
p′d

1/p′d

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd)

∑
λ∈Λj

|βpλ|
pg (2t)p

′
d−pg

1/p′d

p′d ≥ pg

= LD

j1∑
j=j0

2−j(σd+D/2−D/pd)(2t)1−pg/p′d ‖β‖pg/p
′
d

≤ LD
j1∑
j=j0

2−j(σd+D/2−D/pd)(2
√
j/n)1−pg/p′d2−j(σg+D/2−D/pg)pg/p

′
dLg

≤ c
√
j1n

1/2(pg/p
′
d−1)

j1∑
j=j0

2−j((σg+D/2)pg/p
′
d+σd−D/2)j−pg/2p

′
d

.

(
n
− σg+σd

2σg+D + n
−σg+σd+D−D/pd−D/pg

2σg+D−2D/pg

)√
log n
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E Proof of Theorem 7

Lower Bound

Proof. Just as in the proof of the lower bound above we let j ≥ 0 and

Ωg := {g0 ± cgψλ : λ = 2−jk + 2−j−1ε1, k ∈ Kj}

where ε1 = (1, 0, . . . , 0). Here we let g0 = 2Djc on at least [−A,A]D and

cg = min

(
c

2 ‖ψ‖∞
2−Dj/2,

Lg
2

2−j(σg+D/2−D/pg)

)
such that Ωg ⊆ Fg . We also let

Ωd := {cd
∑
λ

τλψλ : λ = 2−jk + 2−j−1ε1, k ∈ Kj , ‖τ‖ ≤ Ld}

s.t.

cd ≤ Ld2−j(σd+D/2−1/pd)

i.e. Ωd ⊆ Fd.

Then for any linear estimate P̂ with α̂λ =
∫
ψλ(x)dP̂ (x),

sup
P∈Fg

E
P

sup
f∈Fd

∣∣∣∣∫ f(x)(dP (x)− dP̂ (x))

∣∣∣∣
≥ sup
p∈Ωg

E
P

sup
f∈Ωd

∣∣∣∣∫ f(x)(p(x)dx− dP̂ (x))

∣∣∣∣
= sup
λ:k∈Kj

cd
2

E
g0+cgψλ

 sup
τ :‖τ‖pd≤Ld

∑
λ′ 6=λ

|τλ′ α̂λ′ |+ |τλ||cg − α̂λ|


+ E
g0−cgψλ

 sup
τ :‖τ‖pd≤Ld

∑
λ′ 6=λ

|τλ′ α̂λ′ |+ |τλ||cg − α̂λ|


≥ sup
λ:k∈Kj

cd
2

sup
τ :‖τ‖pd≤Ld

∑
λ′ 6=λ

E
g0+cgψλ

|τλ′ ||α̂λ′ |+ E
g0−cgψλ

|τλ′ ||α̂λ′ |+ E
g0+cgψλ

|τλ||cg − α̂λ|+ E
g0−cgψλ

|τλ||cg − α̂λ|


= sup
λ:k∈Kj

cd
2∑

λ′ 6=λ

( E
g0+cgψλ

|α̂λ′ |)p
′
d + ( E

g0−cgψλ
|α̂λ′ |)p

′
d + ( E

g0+cgψλ
|cg − α̂λ|)p

′
d + ( E

g0−cgψλ
|cg − α̂λ|)p

′
d

1/p′d

≥ cd

 1

2Dj

∑
λ′ 6=λ

( E
g0+cgψλ

|α̂λ′ |)p
′
d + ( E

g0−cgψλ
|α̂λ′ |)p

′
d + ( E

g0+cgψλ
|cg − α̂λ|)p

′
d + ( E

g0−cgψλ
|cg − α̂λ|)p

′
d

1/p′d

Now the expression inside the brackets is bounded below in [14] appendix A.3 by n−1/22jD/p
′
d

where 2j = n
1

2σg−2D/pg+2D/p′
d
+D which implies a lower bound in our case of

c2−j(σd+D/2−D/pd)n−1/22Dj/p
′
d

= c2j(D/2−σd)n−1/2
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which gives us a lower bound of

& n
− σd+σg−D/pg+D/p

′
d

2σg−2D/pg+2D/p′
d
+D

as desired.

F Proof of Theorem 9

Here, we prove the following theorem, which upper bounds the risk of an appropriately constructed
GAN for learning Besov distributions:
Theorem 25 (Convergence Rate of a Well-Optimized GAN). Fix a Besov density class Bσgpg,qg with
σg > D/pg and discriminator class Bσdpd,qd with σd > D/pd. Then, for any desired approximation
error ε > 0, one can construct a GAN p̂ of the form (9) (with p̃n) with discriminator network
Nd ∈ Φ(Hd,Wd, Sd, Bd) and generator network Ng ∈ Φ(Hg,Wg, Sg, Bg), s.t. for all p ∈ Bσgpg,qg

E
[
dBσdpd,qd

(p̂, p)
]
. ε+ E dBσdpd,qd (p̃n, p)

where Hd, Hg grow logarithmically with 1/ε, Wd, Sd, Bd,Wg, Sg, Bg grow polynomially with 1/ε
and C > 0 is a constant that depends only on Bσdpd,qd and Bσgpg,qg .

Our statistical guarantees rely on a recent construction, by Suzuki [51], of a fully-connected ReLU
network that approximates Besov functions. Specifically, we leverage the following result:
Lemma 26 (Proposition 1 of Suzuki [51]). Suppose that p, q, r ∈ (0,∞] and σ > δ := D(1/p −
1/r)+ and let ν = (σ− δ)/(2δ). Then, for sufficiently small ε ∈ (0, 1), there exists a constant C > 0,
depending only on D, p, q, r, σ, such that, for some

H ≤ C log(1/ε), W ≤ Cε−D/σ, S ≤ Cε−D/σ log(1/ε), B ≤ Cε−(D/ν+1)(1∨(D/p−σ)+)/σ,

Φ(H,W,S,B) ⊆ Bσp,q(1) and Φ(H,W,S,B) approximates Bσp,q(1) to accuracy ε in Lr; i.e.,
sup

f∈Bσp,q(1)

inf
f∈Φ(H,W,S,B)

‖f − f̃‖Lr ≤ Cε.

Proof. Liang [28, Inequality 2.2] showed that we can decompose the error, for densities p̂, p,
dFd (p̂, p) ≤ inf

q∈Φ(Hg,Wg,Sg,Bg)
dFd (p, q)

+ 2 sup
f∈Fd

inf
g∈Φ(Hd,Wd,Sd,Bd)

‖f − g‖∞

+ dΦ(Hd,Wd,Sd,Bd) (p, p̃n) + dFd (p, p̃n) ,

where the 3 summands above correspond respectively the error of approximating Fg
by Φ(Lg,Wg, Sg, Bg) (generator approximation error), the error of approximating Fd by
Φ(Ld,Wd, Sd, Bd) (discriminator approximation error), and statistical error.

To bound the first term, note also that, since we assumed σd > D/pd, we have the embedding
Bσdpd,qd ⊆ L

∞, and, in particular, M := supf∈Bσdpd,qd
‖f‖L∞ <∞. Thus, by Hölder’s inequality, the

assumption that densities in P are supported only on [−T, T ], and Lemma 26 (with r =∞),
inf
q∈Fg

dFd (p, q) ≤ inf
q∈Fg

(p, q) sup
f∈FD

‖f‖L1([−T,T ])‖p− q‖L∞ ≤ 2MTε.

To bound the second term, simply observe that, by Lemma 26 (with r =∞),
sup
f∈Fd

inf
g∈φ(Lg,Wg,Sg,Bg)

‖f − g‖∞ ≤ ε.

Since, by Lemma 26, Φ(Ld,Wd, Sd, Bd) ⊆ Bσdpd,qd , the last term is immediately bounded (in
expectation) by dFd(p̃n, p). Combining the bounds on these three terms gives

dFd (p̂, p) ≤ 2(MT + 1)ε+ 2dFd(p̃n, p).
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