
A Implementation details324

A.1 Distributed setup325

Our training setup was based on that of [3], with multiple actors and a single learner. The actors326

(which run on CPU) generate training examples, which are then sent to the learner. Weight updates327

made by the learner are propagated asynchronously to the actors. The workflows for each actor and328

for the learner are described below in more detail.329

Actor. A training episode (unroll) is generated and inserted into the actor’s buffer. Reservoir sampling330

is used (see details below) if the buffer has reached its maximum capacity. The actor then samples331

another unroll from the buffer. The new unroll and replay unroll are both fed into a queue of examples332

that are read by the learner. The actor waits until its last example in the queue is read before creating333

another.334

Learner. Each element of a batch is a pair (new unroll, replay unroll) from the queue provided by335

actors. Thus, the number of new unrolls and the number of replay unrolls both equal the entire batch336

size. Depending on the buffer utilization hyperparameter (see Figure 5), the learner uses a balance of337

new and replay examples, taking either the new unroll or the replay unroll from each pair. Thus, no338

actor contributes more than a single example to the batch (reducing the variance of batches).339

A.2 Network340

For our DMLab experiments, we used the same network as in the DMLab experiments of [3].341

We selected the shallower of the models considered there (a network based on [20]), omitting the342

additional LSTM module used for processing textual input since none of the tasks we considered343

included such input. For Atari, we used the same network in Progress & Compress [29] (which is344

also based on [3]), also copying all hyperparameters.345

A.3 Buffers346

Our replay buffer stores all information necessary for the V-Trace algorithm, namely the input347

presented by the environment, the output logits of the network, the value function output by the348

network, the action taken, and the reward obtained. Leveraging the distributed setup, the buffer is349

split among all actors equally, so that, for example, if the total buffer size were one million across350

a hundred actors, then each actor would have buffer capacity of ten thousand. All buffer sizes are351

measured in environment frames (not in numbers of unrolls), in keeping with the x-axis of our352

training plots. For baseline experiments, no buffer was used, while all other parameters and the353

network remained constant.354

Unless otherwise specified, the replay buffer was capped at half the number of environment frames355

on which the network is trained. This is by design – to show that even past the buffer capacity, replay356

continues to prevent catastrophic forgetting. When the buffer fills up, then new unrolls are added by357

reservoir sampling, so that the buffer at any given point contains a uniformly random sample of all358

unrolls up until the present time. Reservoir sampling is implemented as in [10] by having each unroll359

associated with a random number between 0 and 1. A threshold is initialized to 0 and rises with time360

so that the number of unrolls above the threshold is fixed at the capacity of the buffer. Each unroll is361

either stored or abandoned in its entirety; no unroll is partially stored, as this would preclude training.362

A.4 Training363

Training was conducted using V-Trace, with hyperparameters on DMLab/Atari tasks set as in [3].364

Behavioral cloning loss functions Lpolicy-cloning and Lvalue-cloning were added in some experiments with365

weights of 0.01 and 0.005, respectively. The established loss functions Lpolicy-gradient, Lvalue, and366

Lentropy were applied with weights of 1, 0.5, and ≈0.005, in keeping with [3]. No significant effort367

was made to optimize fully the hyperparameters for CLEAR.368

A.5 Evaluation369

We evaluate each network during training on all tasks, not simply that task on which it is currently370

being trained. Evaluation is performed by pools of testing actors, with a separate pool for each task371

11



in question. Each pool of testing actors asynchronously updates its weights to match those of the372

learner, similarly to the standard (training) actors used in our distributed learning setup. The key373

differences are that each testing actor (i) has no replay buffer, (ii) does not feed examples to the374

learner for training, (iii) runs on its designated task regardless of whether this task is the one currently375

in use by training actors.376

A.6 Experiments377

In many of our experiments, we consider tasks that change after a specified number of learning378

episodes. The total number of episodes is monitored by the learner, and all actors switch between379

tasks simultaneously at the designated point, henceforward feeding examples to the learner based on380

experiences on the new task (as well as replay examples). Each experiment was run independently381

three times; figures plot the mean performance across runs, with error bars showing the standard382

deviation.383

B Figures replotted according to cumulative sum384

In this section, we replot the results of our main experiments, so that the y-axis shows the mean385

cumulative reward obtained on each task during training; that is, the reward shown for time t is the386

average (1/t)
∑
s<t rs. This makes it easier to compare performance between models, though it387

smoothes out the individual periods of catastrophic forgetting so they are no longer visible. Figures 3388

and 7 in the main body of the paper tabulate the final cumulative rewards at the end of training.389

Figure 8: Alternative plot of the experiments shown in Figure 1, showing the difference in cumulative
performance between training on tasks separately, simultaneously, and sequentially (without using
CLEAR). The marked decrease in performance for sequential training is due to catastrophic forgetting.
As in our earlier plots, thicker line segments are used to denote times at which the network is gaining
new experience on a given task.

Figure 9: Alternative plot of the experiments shown in Figure 2, showing how applying CLEAR
when training on sequentially presented tasks gives almost the same results as training on all tasks
simultaneously (compare to sequential and simultaneous training in Figure 8 above). Applying
CLEAR without behavioral cloning also yields decent results.

12



Figure 10: Alternative plot of the experiments shown in Figure 5, comparing performance between
using CLEAR with 75-25 new-replay experience, 50-50 new-replay experience, and 100% replay
experience. An equal balance of new and replay experience seems to represent a good tradeoff
between stability and plasticity, while 100% replay reduces forgetting but lowers performance overall.

Figure 11: Alternative plot of the experiments shown in Figure 6, showing that reduced-size buffers
still allow CLEAR to achieve essentially the same performance.

Figure 12: Alternative plot of the experiments shown in Figure 7, showing that CLEAR attains
comparable or better performance than the more complicated methods Progress & Compress (P&C)
and Elastic Weight Consolidation (EWC), which also require information about task boundaries,
unlike CLEAR.

13


	Implementation details
	Distributed setup
	Network
	Buffers
	Training
	Evaluation
	Experiments

	Figures replotted according to cumulative sum

