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Abstract

Deep neural networks achieve outstanding results for challenging image classifica-
tion tasks. However, the design of network topologies is a complex task, and the
research community is conducting ongoing efforts to discover top-accuracy topolo-
gies, either manually or by employing expensive architecture searches. We propose
a unique narrow-space architecture search that focuses on delivering low-cost
and rapidly executing networks that respect strict memory and time requirements
typical of Internet-of-Things (IoT) near-sensor computing platforms. Our approach
provides solutions with classification latencies below 10 ms running on a low-cost
device with 1 GB RAM and a peak performance of 5.6 GFLOPS. The narrow-space
search of floating-point models improves the accuracy on CIFAR10 of an estab-
lished IoT model from 70.64% to 74.87% within the same memory constraints. We
further improve the accuracy to 82.07% by including 16-bit half types and obtain
the highest accuracy of 83.45% by extending the search with model-optimized
IEEE 754 reduced types. To the best of our knowledge, this is the first empirical
demonstration of more than 3000 trained models that run with reduced precision
and push the Pareto optimal front by a wide margin. Within a given memory
constraint, accuracy is improved by more than 7% points for half and more than
1% points for the best individual model format.

1 Introduction

Designing an economically viable artificial intelligence system has become a formidable challenge in
view of the increasing number of published methods, data, models, newly available deep-learning
frameworks as well as the hype surrounding special-purpose hardware accelerators as they become
commercially available. The availability of large-scale datasets with known ground truths [12, 42, 13,
51, 28, 10, 33, 54, 9, 5, 34, 37] and the widespread commercial availability of higher computational
performance—usually achieved with graphic-processing units (GPUs)—has driven the current growth
of and strong interest in deep learning and the emergence of related new businesses. Smart homes
[29], smart grids [15] and smart cities [17] trigger a natural demand for the Internet of Things (IoT),
which are products designed to be low in cost and feature low energy consumption and fast reaction
times due to the inherent constraints given by final applications that typically demand autonomy
with long battery lifetimes or fast real-time operation. Experts estimate that there will be some 30
billion IoT devices in use by 2020 [35], many of which serve applications that benefit from artificial
intelligence deployment.

In this context, we propose an automatic way to design deep-learning models that satisfy user-defined
constraints specifically tailored to match typical IoT requirements, such as inference latency bounds.
Additionally, our approach is designed in a modular manner that allows future adaptations and
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specialization for novel network topology extensions to different IoT devices and lower precision
contexts. Our main contributions are the following:

• We propose an end-to-end approach to synthesize models that satisfy IoT application and
hardware constraints.

• We propose a narrow-space architecture search algorithm to leverage knowledge from large
reference models to generate a family of small and efficient models.

• We evaluate reduced precision formats for more than 3000 models.
• We isolate IoT device characteristics and demonstrate how our concepts operate with

analytical network properties and map them to final platform-specific metrics.

The remainder of this paper is organized as follows. Section 2 describes related work, Section 3
introduces the core design procedures, Section 4 details and merges a full synthesis workflow,
Section 5 presents and discusses the obtained results, and Section 6 concludes our findings.

2 Related work

Automated architecture search has the potential to discover better models [31, 52, 53, 55, 56, 6, 4, 49].
However, traditional approaches require a vast amount of computing resources or cause excessive
execution times due to the full training of candidate networks[38]. Early stopping based on learning-
curve predictors [14] or transferring learned wights shortens run-times [48]. A method called Train-
less Accuracy Predictor for Architecture Search (TAPAS) demonstrates how to generalize architecture
search results to new data without having to train during the search process [26]. Architecture
searches face the common challenge of defining the search space. Historically, new networks were
developed independently by expert knowledge that outperforms previously found networks generated
by architectural searches. In such cases, very expensive reconsiderations led to follow-up work to
account correctly for a richer search space [36, 47]. Recent progress in the field, such as MnasNet
[46] and FBNet [50], tailor the search by optimizing a multi-objective function including inference
time on smartphones. MnasNet trains a controller that adjusts to more optimal sample models in
terms of multi-objectivity. FBNet trains a supernet by a differentiable neural architecture search
(DNAS) in a single step and claims to be 420× faster by avoiding additional model training steps.
In contrast to solving a joint optimization problem in one step, our proposed union of narrow-space
searches takes a modular approach that separates the search process of finding architectures that
strictly satisfy constraints from the training of candidate networks. That way, we can analyze 10,000
architectures with no training cost and select only a small subset of suitable candidates for training.

Compression, quantization and pruning techniques reduce heavy computational needs based on the
inherent error resilience of deep neural networks [39]. Mobile nets [22] or low-rank expansions
[27] change the topology into layers that require fewer weights and reduce workloads. Quantization
studies the effect of using reduced precision floating-point or fixed-point formats [21, 30], whereas
compression attempts to reduce the binary footprint of activation and weight maps [7]. Pruning
approaches avoid computation by enforcing sparsity [3]. We use floatx, an IEEE 754-compliant
reduced precision library [16], to assess data format-specific aspects of networks. The novelty of our
work is that we jointly evaluate network topologies in combination with reduced precision.

3 Core design procedures

3.1 Architecture search

It is challenging to define a space S that produces enough variation and simultaneously reduces
the probability of sampling suboptimal networks. We propose narrow-space architecture searches,
where results are obtained by aggregating n independent searches S =

⋃n
i=1 Si. As a good search

space should satisfy Sr ⊂ S, where Sr = {M1, ...,Mn} is a set of reference models, we construct S
by designing narrow spaces that obey Mi ∈ Si in order to guarantee Sr ⊂ S. Instead of considering
one large space, we have specialized search spaces that produce simple sequence structures with
residual bypass operations (ResNets [19]) to even high fan-out and convergent structures such as they
occur in the Inception module [44] or DenseNets [24]. Aggregation allows results to be extended
easily with a tailored narrow-space search for new reference architectures. Next, we define a set
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Figure 1: Left: Three-layer architecture. Middle: Default configuration of search space with restricted
sampling laws. Right: Statistics of number of parameters obtained by sampling up to one million
networks from the base configuration space and 1000 networks from the restricted sampling laws.

of distribution law configurations L1(Si), ...,Lk(Si) that allow samples to be drawn in a biased way
such that models satisfy the properties of interest. Figure 1 illustrates the advantages over a uniform
distribution among valid networks. Consider a space of three-layer networks with allowed variations
in kernel shapes in {1,3,5,7} and output channels in [1,128] leading to |S|= 46 ∗1283 = 8.6∗109

network configurations.

Figure 1 shows the statistics for up to 106 samples compared with sampling only 1000 samples using
restricted samplers L1,L2 and L3. Restricted random laws efficiently generate networks of interest,
in contrast to a uniform sampler that fails to deliver high sampling densities in certain regions. For
example, only 132 out of 106 networks have fewer than 1000 parameters.

We define each narrow-space architecture search and its sampling laws according to the following
design goals: First, only valid models are generated with a topology that resembles and includes
the original model. Second, the main model-specific parameters are varied, and efficient models
are obtained mainly by lowering channel widths in convolutional layers and reducing the number
of topological replications. Third, all random laws are defined following a uniform distribution
over available options, where the lower and upper limits were used as a way to bias the models to
span several orders of magnitude targeting the range of parameters and flop counts relevant for IoT
applications.

3.2 Precision analysis

Precision analysis evaluates model accuracies for models having reduced precision representations.
Following general methodology, we perform precision analyses on the backend device that has
different execution capabilities than current or future targeted IoT devices. This methodology
enforces emulated computation throughout the analysis to assess accuracy independent of the target
hardware. Low precision can be applied to model parameters, to the computations performed by the
models and to the activation maps that are passed between operators. Here we follow the extrinsic
quantization approach [30], where we enforce a precision caused by the reduced type Tw,t of storage
width 1+w+ t to be applied to all model parameters and all activation maps that are passed between
operations. Our analysis follows the IEEE 754 standard [57], which defines storage encoding, special
cases (Nan, Inf), and rounding behavior of floating-point data. A sign s, an exponent e and the
significand m represent a number v = (−1)s ∗2e ∗m, where the exponent field width w and the trailing
significant field width t limit dynamic range and precision. Types T5,10 and T8,23 correspond to
standard formats half and float. Our experiments are based on a PyTorch [1] integration of the GPU
quantization kernel based on the high-performance floatx library [16], which implements the type
Tw,t . A fast precision analysis allows us to evaluate more than 3,000 models with a full grid search of
184 types (w ∈ [1,8], t ∈ [1,23]) of the entire validation data.
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Figure 2: Left: High correlations between two analytical properties of network architectures. Right:
Runtime-dependent latency is best correlated with the workload when different search space-specific
characteristics are present.

3.3 Deployment on hardware and performance characterization

To evaluate model execution performance on the IoT target device, we perform a calibration to assess
the execution speed of the models of interest. Despite many choices of deep-learning frameworks,
ways of optimizing code depending on compilation or software version and even several hardware
platforms that accelerate deep learning models, we formulate the performance characterization
in a general manner and as decoupled as possible from the topology architecture search and the
precision analysis to facilitate subsequent extensions. Performance measurements on the IoT device
are affected by explicit and implicit settings. We demonstrate our search algorithm with performance
measurements featuring the fewest assumptions and requirements regarding runtime. To that end,
we selected Raspberry-Pi 3(B+) as a representative low-cost IoT device. It features a Broadcom
BCM2837B0, quad-core ARMv8 Cortex-A53 running at 1.4 GHz. The board is equipped with 1 GB
LPDDR2 memory [2]. The Raspberry-Pi 3(B+) belongs to the general-purpose device category that
is shipped with peripherals (WiFi, LAN, Bluetooth, and USB, HDMI) and a full operating system
(Raspbian, a Linux distribution). It is available for about $35 [32].

Throughout this work, we measure the model inference latency on the target device by averaging over
ten repetitions. We used a batch size of one to minimize latency and internal memory requirements.
The latency study covers many relevant use cases, for example the classification of sporadically
arriving data within a short time to prolong battery lifetime or frame processing a video stream, where
the classification must be completed before the next frame arrives.

For each model, we consider two analytical properties, the number of trainable parameters and the
workload measured as the number of floating-point operations required for inference. The calibration
step relates analytical properties with execution performance and allows us to separate runtime
metrics. Figure 2 shows high correlations between the number of parameters, the workload and
the measured latency on the Raspberry-Pi 3(B+) device. Workload and parameters follow a similar
scaling over five orders of magnitude with homogeneous variations. The dynamic range of the latency
spans more than two orders of magnitude with higher variations for larger models. However, owing
to the compute-bound nature of the kernels, the workload is a better indicator of latency time than the
number of parameters.

4 Fast cognitive design algorithms

In this section, we leverage the architecture search, the precision analysis, and the hardware calibration
steps to synthesize case-specific solutions that satisfy given constraints. We address two tasks: First,
the constraint search solves for the model that best satisfies given constraints. Second, the Pareto
front elaboration provides insights into tradeoffs over the entire solution space. The two tasks are
related. Solving the first task on a grid of constraints provides solutions to the second task, whereas
filtering the latter based on the given constraints yields the former. Both tasks are solved by manually
and automatically by defining the sampling law configurations on the same set of narrow-search
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trained. Third, models are trained to achieve accuracy. As training is the most expensive task, it is
essential to limit the number of trained models to candidates of interest only.
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Figure 4: Left: Manually defined restricted sampling laws cover the entire space. Right: Automatic
search finds sampling law configurations without human interaction and the distribution covers a
higher dynamic range than sampling uniformly in the entire space.

spaces as shown in Figure 3. In the manual task, collected statistics of analytical network properties
provide quick feedback to adapt the settings to cover the range of interest. For a fair comparison
of the manual and automatic workflows, we assume throughout our experiments that the expert has
no further feedback knowledge about model accuracy. Additionally, network runtime performance
metrics can be measured on the target device or estimated from calibration measurements. Next,
depending on the task type, either a few candidate networks that satisfy constraints or a full wave of
networks are selected for training. Large-scale training takes the most time—as each training job is
of complexity O(ntrainCmodelE)—proportional to the amount of training data, model complexity and
the number of epochs for which the model is trained.

We designed a genetic and clustering-based algorithm to automatize the design of sampling laws.
We define the valid space with a list of variables with absolute minimal and maximal ratings.
A sampling law L(Si) is defined as an ordered set of uniform sampling laws L = (Ux[lx,hx], ...)
with lower and upper limits lx and hx per variable x. The genetic algorithm automatically learns
the search space-specific sampling law limits [lx,hx]. The cost function is defined in a two-step
approach. First, the statistic (µm,σm) := En

m(L) is estimated by computing means and standard
deviations over the metric m extracted from the n generated topologies. Second, cost is computed
as c((µm,σm),(τ1,τ2)) := |µm−σm− τ1|+ |µm +σm− τ2| in order that the high density range of
the estimated distribution coincides with a given interval (τ1,τ2). We avoided definitions based on
single-sided constraints such as µ < τ because such formulations might be satisfied trivially (using the
smallest network) or by undesirable laws having wide or narrow variations. We used the tournament
selection variant of genetic algorithms [18] and defined mutations by randomly adapting the sampling
law of hyper-parameters lx and hx. We used an initial population of ninit = 100 and ran the algorithm
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for nsteps = 900 steps while using neval = 10 samples to estimate mean and standard deviations per
configuration. This way, one search considers (ninit +nsteps)∗neval = 10,000 networks. As the final
population might contain different sampling laws of similar quality, we performed spectral clustering
[43] to find k = 10 clusters with similar sampling laws. We assembled a list of the most different
top-k laws by taking the best-fit law per cluster.

To elaborate the entire search space with a Pareto optimal front, we split each decade into three
intervals [τ,2τ,5τ,10τ] and define a grid for τ = 103,104,105,106 spanning five orders of magnitude.
We ran the genetic search algorithm several times by setting the target bounds (τ1,τ2) in a sliding-
window manner over consecutive values from the defined grid. Finally, we accumulated results
from twelve genetic searches, each of which found ten sampling laws, where we sampled each law
nval = 100 times to obtain the statistic of 12,000 network architectures per narrow-space search.
Figure 4 shows results for manually and automatically sampled networks. Even though the manual
search covers the region of interest nicely, human expertise is required to define the parameters
of the laws L1 to L6 correctly. The naive sampling approach in the entire search space produces a
narrow distribution and is strongly skewed towards larger networks. In contrast, the genetic algorithm
equalizes the distribution and provides samples that cover much higher dynamic ranges, extending
the scale especially for smaller networks without manually restricting the architecture.

5 Results

To study our algorithm, we ran full design-space explorations on the well-established CIFAR-10
[28] classification task and compared our results with those obtained with established reference
models. Figure 5 shows the tradeoff between model size and accuracy, including manually and
automatically generated results of the aggregate search spaces. The Pareto optimal front follows a
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Figure 7: Final result showing the achievable tradeoffs between the IoT device measured model
latency and model accuracy. Our search is able to deliver models that run below 10 ms on a Raspberry
Pi 3(B+), which we took as a representative low-cost IoT device.

smooth curve that saturates towards the best accuracy obtainable for large models. The number of
parameters is logarithmic and the accuracy scales linearly. Even very small models with fewer than
1000 parameters can achieve accuracies of greater than 45%. The accuracy increase per decade of
added parameters is on the order of 30%, 15%, 3% and < 2% points and then decreases very quickly.
This effect allows us to construct models having several orders of magnitude fewer parameters. It
also provides economically interesting solutions for IoT devices that are powerful enough to process
data in real time. We compare our results with three sources of reference models: (a) traditional
reference models, (b) ProbeNets [40] that are designed to be small and fast and (c) models designed
to run on the parallel ultra-low power (PULP) platform [11]. Traditional models include 30 reference
topologies including variants of VGG [41], ResNets [20], GoogleNet [45], MobileNets [23] dual-path
nets (DPNs) [8] and DenseNets [25], where most of them (28/30) exceed 1 M parameters. ProbeNets
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Figure 8: We demonstrate the scalability of our approach by applying our search to three constraints
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were originally introduced to characterize the classification difficulty and are considerably smaller by
design [40]. They act as reference points for manually designed networks that cover the relevant lower
tail in terms of parameters. In the IoT-relevant domain (<10 M parameters), our search outperforms
all the listed reference models.

The top three fronts in Figure 5 show the results of our precision analysis. For each trained model, we
evaluated the effect of running models with all configurations of type Tw,t and plot the Pareto-optimal
front. We considered three cases: (1) running all models with half-precision, (2) running all models
with the type T43 , which is the best choice for types that are 8 bits long, and (3) running each model
with its individual best tradeoff type Tw,t . We demonstrate empirically that reduced precision pushes
the Pareto optimal front. Under a given memory constraint, accuracy improves by more than 7%
points for half and by another 1% points or more for the model individual format.

Figure 6 shows details of manual and automatic searches, both of which yield very similar results.
The right-hand graphs show results obtained for one narrow-space search, where manually defined
sampling laws led to clusters. The automatic search covered a similar range homogeneously. Figure 7
shows inference times when the same set of models is executed on a Raspberry Pi 3(B+). Similarly,
providing additional latency time for small models results in dominant accuracy gains, however, large
models only slightly improve accuracy even when using more complex models that require long
evaluation times.

Figure 8 demonstrates the scalability of our approach. We applied our search for three constraints
τ = 103,104,105 on thirteen datasets [40], where we spent a training effort of ten architectures per
dataset and constraint. The lines connect the best per constraint and dataset performing architectures.

6 Conclusion

We studied the synthesis of deep neural networks that are eligible candidates to run efficiently on
IoT devices. We propose a narrow-space search approach that leverages knowledge quickly from
existing architectures and that is modular enough to be adapted to new design patterns. Manually
and automatically designed sampling laws allow various models to be generated having sufficiently
numerous parameters to cover multiple orders of magnitude. We demonstrate that reduced precision
improves top-1 accuracy by over 8% points for constraint weight memory in the IoT-relevant domain.
A strong correlation between model size and latency enables us to create small enough models that
provide superior inference response latencies below 10 ms on an edge device costing only about $35.
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