
A Additional details of the method

A.1 Image transformations and their gradients

In this section we give an overview over the transformations used in this paper. For each of the
transformations, we list parametrized form of the transformation, then Jacobian of the transforma-
tion function (with respect to both inputs and parameters) and finally the inverse function of the
transformation.

Spatial transformations Here we list the equations for spatial transformations.

Rotation:

Rφ(x, y) =

(
cosφ − sinφ
sinφ cosφ

)(
x
y

)
∂x,yRφ(x, y) =

(
cosφ sinφ
− sinφ cosφ

)
∂φRφ(x, y) =

(
−x sinφ− y cosφ
x cosφ− y sinφ

)
R−1φ (x, y) =

(
cosφ sinφ
− sinφ cosφ

)(
x
y

)
Translation:

Tv1,v2(x, y) =

(
x+ v1
y + v2

)
∂x,yTv1,v2(x, y) =

(
1 0
0 1

)
∂v1,v2Tv1,v2(x, y) =

(
1 0
0 1

)
T−1v1,v2(x, y) =

(
x− v1
y − v2

)
Scaling:

Scλ1,λ2
(x, y) =

(
λ1 0
0 λ2

)(
x
y

)
∂x,yScλ1,λ2

(x, y) =

(
λ1 0
0 λ2

)
∂λ1,λ2Scλ1,λ2(x, y) =

(
x 0
0 y

)
Sc−1λ1,λ2

(x, y) =

(1
λ1

0

0 1
λ2

)(
x
y

)
Shearing:

Shm =

(
1 m
0 1

)(
x
y

)
∂x,yShm(x, y) =

(
1 m
0 1

)
∂mShm(x, y) =

(
y
0

)
Sh−1m =

(
1 −m
0 1

)(
x
y

)

12

Interpolation

Ii,j(x, y) =
1

4

∑
v∈{i,i+2}
w∈{j,j+2}

pv,w(2− |v − x|)(2− |w − y|)

I(x, y) =

{
Ii,j(x, y) if (x, y) ∈ Di,j .

∂xI
i,j(x, y) =

pi+2,j − pi,j
2

+
(y − ŷ)

4
Ai,j

∂yI
i,j(x, y) =

pi,j+2 − pi,j
2

+
(x− x̂)

4
Ai,j

where Ai,j = pi,j − pi,j+2 − pi+2,j + pi+2,j+2. Furthermore, the bilinear interpolation I is a
polynomial of degree 2, which can be seen by performing the rewrite:

Ii,j(x, y) =
pi,j
4 (i+ 2− x)(j + 2− y) + pi+2,j

4 (x− i)(j + 2− y)
+

pi+2,j

4 (i+ 2− x)(y − j) + pi+2,j+2

4 (x− i)(y − j)

Brightness and contrast

Pα,β(v) = αv + β

∂vPα,β(v) = α

∇α,βPα,β(v) = (v, 0)T

A.2 Computing an upper bound on the gradient

Here we explain how to compute an upper bound on the true gradient of the transformation. For the
Lipschitz optimization in our running example, we want to calculate the upper bound on the gradient
for I ◦ Rφ(5, 1) − a′l − c′lφ on the interval φ ∈ [0, π4]. Calculating this upper bound amounts to
interval propagation on the analytic gradient:

(∂1I, ∂2I)|D · (∂φRφ)|φ′ − c′l
The abstraction for the area D is

D = R[0,π4](5, 1) =

(
[2
√
2, 5]

[1√
2
, 1 + 5√

2
]

)
.

We need to calculate the interval of partial derivatives of I for every Ii,j separately and join the
intervals in the end. The area D has non empty intersection with {Ai,j} where (i, j) ∈ {1, 3} ×
{−1, 1, 3}. The estimate on M3,1 = D ∩A3,1 using the concrete pixel values (Fig. 5e), the incline
of the linear constraint w′l = −0.90 (§4) and φ ∈ [0, π4] we get

([0.23, 0.47], [−0.83,−0.24]) ·
(

[−4.53,−0.71]
[2.82,5]

)
− 0.90

= [−7.18,−1.74].
Similar computation can be performed for the other interpolation areas. The resulting intervals from
all interpolation areas are joined to make up the final result.

A.3 Proof of theorem 1

Proof. Notice that Ln is essentially a pointwise Monte Carlo estimate of the integral in L. Thus, For a
fixed (w, b) ∈W from the law of large numbers we know that for ε > 0, Pr(|LN (w, b)−L(w, b)| <
ε) tends to 0 as N tends to infinity.

Next, consider a finite number of pairs (w1, b1), . . . , (wk, bk). One could apply union bound on
the above observation and show that Pr(∃i; |LN (wi, bi)− L(wi, bi)| > ε) tends to 0 as N tends to
infinity.

13

Finally, one could choose equidistant subdivision of W such that along each dimension of W we
make cuts of width δ. Using this subdivision we obtain finite number of (w1, b1), ..., (wk, bk). Note
that for each (w, b) ∈ W there exists i such that |w −wi| < δ and |b − bi| < δ. Then, from the
definition of Ln we can obtain, using triangle and Cauchy-Schwarz inequality:

|Ln(w, b)− Ln(wi, bi)| = |(bi − b)− (wi −w)T
1

N

N∑
j=1

κj |

< |(bi − b)|+ |(wi −w)|∞|
1

N

N∑
j=1

κj |1

< δ + δ ·R = δ(1 +R)

Here we denote by R maximum L1 norm of the element in the parameter space (which exists because
parameter space is bounded). Analogously, one can obtain that: |L(w, b)− L(wi, bi)| < δ(1 +R).
One could choose width δ small enough such that δ(1 +R) < ε, i.e., δ < ε

1+R .

First, notice that LN is a pointwise Monte Carlo estimate of the integral in L. Thus, due to the law of
large numbers for a fixed (w, b) ∈ W and any ε > 0, Pr(|LN (w, b)− L(w, b)| ≥ ε) tends to 0 as
N tends to infinity. Next, consider a finite number of weight-bias pairs (w1, b1), . . . , (wk, bk) ∈W .
Using union bound on the above probability we know that:

Pr(∃i ∈ {1, 2, ..., k}, |LN (wi, bi|)− L(wi, bi)| > ε) ≤
k∑
j=1

Pr(|LN (wj , bj |)− L(wj , bj)| > ε).

As each summand on the right goes to 0 as we increase N to the infinity, we can conclude that with
high probability our estimate LN is ε-close to true function L on all of the k weight-bias pairs.

Finally, we want to prove that our estimate LN (w, b) is ε-close to the function L(w, b), with high
probability (so far we have proved this only for finitely many (w, b)). In order to show this, we choose
equidistant subdivision of W such that along each dimension of W we make cuts of width δ. Using
this subdivision we obtain finite number of (w1, b1), ..., (wk, bk). Note that for each (w, b) ∈ W
there exists i such that |w − wi| < δ and |b − bi| < δ. Then, from the definition of LN we can
obtain, using triangle and Cauchy-Schwarz inequality:

|LN (w, b)− LN (wi, bi)| = |(bi − b)− (wi −w)T
1

N

N∑
j=1

κj |

< |(bi − b)|+ |(wi −w)|∞|
1

N

N∑
j=1

κj |1

< δ + δ ·R
= δ(1 +R)

Here R denotes the maximum L1 norm of the element in the parameter space (which exists because
parameter space is bounded). Analogously, one can obtain that: |L(w, b)− L(wi, bi)| < δ(1 +R).
We can choose width δ small enough such that δ(1 +R) < ε, i.e., δ < ε

1+R .

Then:

|LN (w, b)− L(w, b)|
≤ |LN (w, b)− Ln(wi, bi)|+ |LN (wi, bi)− L(wi, bi)|+ |L(wi, bi)− L(w, b)|
< ε+ ε+ ε

< 3ε.

Now, we know that for finite subdivision of weights our estimate Ln is ε-close to L, with high
probability. From the above, we get that if our subdivision is fine enough (δ small enough) then Ln is
ε-close to L on the entire weights space W . This way we obtain that:

Pr(∃(w, b) ∈W ; |LN (w, b)− L(w, b)| > ε)
N→∞→ 0.

14

Now we obtained that forN large enough LN is ε-close to L pointwise, with high probability. Finally,
let (w′, b′) and (w∗, b∗) be minimums of LN and L, respectively. We find that:

L(w′, b′)− L(w∗, b∗)
= (L(w′, b′)− LN (w′, b′)) + (LN (w′, b′)− LN (w∗, b∗)) + (LN (w∗, b∗)− L(w∗, b∗))
< ε+ 0 + ε

= 2ε.

A.4 Computation of interval pixel bounds

This section generalizes [9] to arbitrary combinations of simple geometric transformations. To
compute interval bounds for each pixel in the transformed image with respect to a hyperrectangle of
parameters

(α, β,µ) ∈ h := [a1, b1]× · · · × [an, bn] ⊂ Rn,

the algorithm first partitions the parameter space into s splits {hk}k∈[s]. Then, for each split hk, it
computes the interval bounds for every pixel value p̃x,y as follows ((x, y) fixed):

Step 1 Partition the current split hk into r refined splits {hkl}l∈[r] so to increase accuracy of
approximation.

Step 2 For every l ∈ [r], calculate a pair of intervals D(l) = [d1, d
′
1] × [d2, d

′
2] ⊂ R2 which

approximate the reachable coordinates induced by {T −1µ (x, y) | ∀(α, β,µ) ∈ hkl}. To accomplish
this, we use the fact we can easily obtain the closed form of the inverse of the transformations we
consider (Appendix A.1). For example, for rotations, R−φ = R−1φ . We can then propagate the
interval bounds through this inverse.

Step 3 Calculate the interval approximation ιkl for every D(l). This is done by propagating the pair
of intervals D(l) through P[a1,b1],[a2,b2] ◦ I , that is

ιkl = P[a1,b1],[a2,b2] ◦ I(D(l))

= P[a1,b1],[a2,b2]

⋃
i,j

Ii,j(M
(l)
i,j)

 .

Here we have that M (l)
i,j := D(l) ∩ Ai,j , that is, we intersect the approximation of the reachable

coordinates D(l) with the interpolation region Ai,j .

(a) Original image

3 5

1

3

A1,1

A1,3

A3,1

A3,3

A5,1

A5,3

D(1)

D(2)

(b) Interpolation

3 5

1

3

M
(1)
3,−1

M
(1)
3,1

M
(2)
1,1

M
(2)
1,3 M

(2)
3,3

M
(2)
3,1

(c) Intersected re-
gions

(d) Rotated image

5 0 0 0.35
3 0.36 0.83 0.97
1 0.99 0.99 0.99
-1 0.99 0.99 0.99

1 3 5

(e) Original pixel val-
ues

Figure 5: Image rotation by −π4 degrees. Here, (a) shows the original image, while (b) and (c) show
an excerpt of (a) focusing on particular interpolation regions. They also include regions computed by
the interval analysis. Finally, (d) shows the transformed rotated image.

15

Step 4 Finally, we combine (join) all interval approximations ιkl into a single interval ιk = ∪l∈[r]ιkl,
capturing the possible values p̃x,y = Iα,β,µ(x, y) that pixel (x, y) can take on for the split hk.

As we show later, the interval range ιk computed for each of the resulting splits hk can then be used
for certification or for adversarial example generation.

Running example To illustrate the above steps on our example, consider again pixel (5, 1) and
the angle range φ ∈ [−π2 , 0]. This range corresponds, using R−φ = R−1φ , to φ ∈ [0, π2]. For s = 2,
we obtain splits [0, π4] (the small red arch in Fig. 2a which is zoomed in in Fig. 2b) and [π4 ,

π
2]. As

discussed above, the interval approximations are produced independently for both splits. Let us
consider the split [0, π4] and refine it by splitting it again in half (r = 2). The approximation D(1) for
the first refined split h11 := [0, π8] is

D(1) = R[0,π/8](5, 1) =
(

cos(h11) − sin(h11)
sin(h11) cos(h11)

)
(51)

=
(

[cos π8 ,1] [− sin π
8 ,0]

[0,sin π
8] [cos π8 ,1]

)
(51) =

(
[5 cos π8−sin

π
8 ,5]

[cos π8 ,1+5 sin π
8]

)
.

Similarly, one obtains D(2). The green rectangles shown in Fig. 2b capture the values of D(1) and
D(2). Here, D(1) intersects the interpolation regions A3,−1 and A3,1, shown in Fig. 5c. The interval
approximations for the values on M (1)

3,−1 = D(1) ∩A3,−1 using Eq. (1) are

I3,−1
(
M

(1)
3,−1

)
= I([5 cos

π

8
− sin

π

8
, 5], [cos

π

8
, 1])

≈ [0.58, 1],

where the upper bound of the interval was cut back to 1. Similarly, we obtain I3,1
(
M

(1)
3,1

)
≈

[0.02, 1]. Thus, the interval approximation for pixel (5, 1) on the first refinement split φ ∈ [0, π8] is
[0.58, 1] ∪ [0.02, 1] = [0.02, 1].

The approximation of the second refined split D(2) intersects four interpolation regions: A1,1, A1,3,
A3,1 and A3,3. This intersection is also shown in Fig. 5c. Via similar calculations as above we obtain

I1,1
(
M

(2)
1,1

)
≈ [0.61, 1] , I1,3

(
M

(2)
1,3

)
≈ [0.20, 0.87] ,

I3,1
(
M

(2)
3,1

)
≈ [0.25, 1], I3,3

(
M

(2)
3,3

)
≈ [0.08, 1] .

Thus, the interval approximation for the second refinement split φ ∈ [π8 ,
π
4] is [0.08, 1].

In the final step 4, the two intervals [0.08, 1] and [0.02, 1] are combined to obtain the range [0.02, 1]
for the split [0, π4] corresponding to 0.02 ≤ I[−π4 ,0](5, 1) ≤ 1.

In the next section, we show how to improve the precision of the interval overapproximation [cl, cu],
corresponding to cl ≤ Iα,β,µ(x, y) ≤ cu, by using linear upper and lower constraints to capture the
correlation between pixel values and parameters (α, β,µ).

A.5 Lipschitz optimization with bound refinement

Here we provide more details of our algorithm for Lipschitz optimization. In order to obtain a
sound linear constraint, we need to find sound overapproximation of maximum of the function
f(κ) = b′l +w

′T
l κ− Iκ(x, y) on a hyperrectangle domain. The result is an interval [fmax, fmax + ε]

which contains true maximal value f? of function f .

Lipschitz continuity A function f : D ⊂ Rn → R is Lipschitz continuous with a Lipschitz
constant L ∈ R≥0 if ‖f(y)− f(x)‖ ≤ L‖y − x‖ for all x,y ∈ D.

If D is compact, the Lipschitz constant of a smooth function f is equal to maxx∈D‖∇f |x‖. We
also use this equation for the (non-smooth) bilinear interpolation I . As mentioned in Section 3, I is
smooth on every interior of Ai,j . Further, I|Ai,j can be extended smoothly at the boundary of Ai,j by
Ii,j . This allows us to approximate the Lipschitz constant L of I over some compact region D ⊂ R2,

16

using the approximated gradient∇DI =
⋃
i,j ∇Ii,j(D∩Ai,j), by ‖∇DI‖, where the approximation

can be computed using any overapproximation based analysis (we use intervals, but one can plug in
other approximations such as zonotope).

Lipschitz optimization with iteratively refined bounds The objective we aim to solve is find-
ing the ε optimal value fmax of the Lipschitz continuous function f over a hyperrectangle
h =

∏n
i=1[ai, bi] ⊂ Rn.

To address this problem, we adapt a branch-and-bound algorithm for solving constrained (multidi-
mensional) optimization tasks [38] to piecewise differentiable Lipschitz continuous functions. In
particular, we show how to leverage any overapproximation based analysis (e.g., interval analysis)
to soundly approximate local gradients (Lipschitz constants). This process is repeated at every step,
thus obtaining more refined bounds for the local gradients at every iteration. Overall, this method
leads to significantly fewer iterations of the optimization algorithm, improves convergence speed at
flat areas, and removes the need to know the global Lipschitz constant in advance.

The inputs to the algorithm (Algorithm 1) are a Lipschitz continuous function f , the hyperrectangle
h over which we optimize and the number of cuts k ∈ N≥2 in which a hyperrectangle will be split to
gain precision. The idea is to constrain the range of the true maximum value f? by increasing its
lower bound fmax (lower bound on all of h) while decreasing all of its upper bounds f bound

h′ on the
subrectangles h′ that need to be considered.

We use a priority queue q to store pairs of the form (h′, f bound
h′), where h′ corresponds to a subrectangle

of h, potentially containing the true maximal value f?, and f bound
h′ corresponds to an upper bound

(Eq. (9) or Eq. (10)) of f in h′. The queue is ordered by the upper bounds. To improve our bounds on
f?, we pop the top of the queue (h′, f bound

h′) and split h′ into k splits h′1, . . . , h
′
k according to Eq. (11)

or Eq. (12). The lower bound fmax is updated to f evaluated at a center of h′i, if this would increase
fmax. The new pairs (h′i, f

bound
h′
i

) are added to the queue as long as the new bound f bound
h′
i

is larger
than fmax + ε, and thus may help to increase fmax by more than ε. The algorithm terminates if the
largest upper bound f bound

h′
i

and the lower bound fmax are ε-close.

Bounds The function f on the hyperrectangle h′ = [a′1, b
′
1]× · · · × [a′n, b

′
n] can be bounded using

the (commonly used) Cauchy-Schwarz bound or the triangle bound

f cs-bound
h (h,∇f) = f(ch) +

L

2

√√√√ n∑
i=1

(bi − ai)2 (9)

f t-bound
h (h,∇f) = f(ch) +

1

2

n∑
i=1

vi(bi − ai) (10)

where we compute the approximation (e.g., interval or zonotope) of the gradient∇hf on h to calculate
L as the upper bound of the approximation ‖∇hf‖ and vi is the upper bound of the approximation
‖∂hi f‖. We use the triangle bound as it is tighter.

Triangle bound Let f : D → R be a smooth function and D be a convex set. Using the mean
value theorem, we know that for all x,y ∈ D there exists a z ∈ D such that

f(y)− f(x) = ∇f(z)T (x− y) =
∑
i

∂if(z)(x
(i) − y(i))

≤
∑
i

max
z∈D
|∂if(z)||x(i) − y(i)|

which results into
f(y) ≤ f(x) +

∑
i

max
z∈D
|∂if(z)||x(i) − y(i)|.

We note, that in our case f = I as in Section 3, the inequality still holds: The points where f is not
differentiable can be handled by applying the inequality piecewise.

17

Table 5: Hyperparameters used in our experiments. Splits denotes number of domain splits per
dimension (same for Interval and DEEPG). k is number of refinements per dimension used for
Interval baseline. Last two columns show number of samples n used to solve LP and ε in Lipschitz
optimization in DEEPG.

Splits k (Interval) n (DEEPG) ε (DEEPG)

MNIST
R(30◦) 10 10 000 1 000 0.0001
T(2,2) 11 150 2 000 0.00001
Sh(2), R(2◦), Sc(2), B(2, 0.001) 1 12 1 000 0.006

FashionMNIST
Sc(20) 10 10 000 1 000 0.0001
R(10), B(2, 0.01) 4 25 2 000 0.002
Sc(3), R(3), Sh(2) 2 35 1 000 0.001

CIFAR-10 R(10◦) 20 10 000 1 000 0.00001
R(2), Sh(2) 2 50 1 000 0.0001
Sc(1), R(1◦), B(1, 0.001) 2 12 1 000 0.001

Partitioning The hyperrectangle h can be split into k hyperrectangles of equal size by cutting one
of its edges l into k equal parts. The common choice for l is to use the longest edge. We refine this by
weighing the edge length with gradient information

l = argmax
l

(b′l − a′l) largest edge (11)

l = argmax
l

vl(b
′
l − a′l) largest weighted edge (12)

B Additional details for experimental evaluation

In this section we list additional details which are necessary to reproduce our experimental results.

B.1 Polyhedra transformers

Here we describe Polyhedra transformers used in our experiments. Note that all geometric transfor-
mations are linear which is why polyhedra approximation for the transformation itself does not lose
precision. After the transformation is applied, we obtain exact linear expression for new position of
every pixel. Next operation in the sequence is bilinear interpolation which is polynomial of degree 2
and involves multiplication between two linear expressions (addition which is part of the polynomial
is again exact in polyhedra). Multiplication cannot be captured exactly and we need to decide how
to lose precision. We choose standard solution of concretizing one of the polyhedra expressions to
interval (we concretize one which produces interval with smaller width).

Finally, we need to join polyhedra constraints over all interpolation regions. This amounts to
computing lower and upper convex hull of polyhedra constraints. This is challenging problem,
however for the case of 1-dimensional transformations there is relatively easy solution. If parameter
of the transformation is in the interval [l, u] we intersect polyhedra constraints with lines y = l and
y = u and choose smallest (largest) intercept with each of the vertical lines and join the intercepts,
thus forming a new linear lower bound.

B.2 Parameter configurations for experiments

Table 7 shows architectures used for our experiments on MNIST, Fashion-MNIST and CIFAR-10
datasets. In Table 5 we show parameter configurations for all of our experiments. As noted before,
parameters are chosen in such a way that runtime of both DEEPG and interval analysis are roughly
the same. We did not observe a significant difference in performance when changing the parameters.
We report runtime for our experiments in Table 6.

MNIST In the experiments on MNIST, in all of the training methods we consider, the network is
trained for 100 epochs using batch size 128. We use Adam optimizer and with initial learning rate
0.001 which we decay by 0.5 every 10 epochs. For the experiments which use PGD training, we

18

Table 6: For every experiment, breakdown of runtime between time taken to compute the constraints
using DEEPG and time taken to certify the network using DeepPoly.

Runtime (seconds)

Constraint generation (DEEPG) Certification (DeepPoly)

MNIST

R(30) 10 25
T(2, 2) 206 57
Sc(5), R(5), B(5, 0.01) 162 14
Sh(2), R(2), Sc(2), B(2, 0.001) 50 1

Fashion-MNIST
Sc(20) 9 6
R(10), B(2, 0.01) 174 47
Sc(3), R(3), Sh(2) 95 6

CIFAR-10
R(10) 49 68
R(2), Sh(2) 13 14
Sc(1), R(1), B(1, 0.001) 179 60

Table 7: Architectures used in experimental evaluation.

MNIST FashionMNIST CIFAR-10

CONV 32 4×4 + 2 CONV 32 4×4 + 1 CONV 32 4×4 + 1
CONV 64 4×4 + 2 CONV 32 4×4 + 2 CONV 32 4×4 + 2

FC 200 CONV 64 4×4 + 2 CONV 64 4×4 + 2
FC 10 FC 150 FC 150

FC 10 FC 10

train with ε = 0.1 and perform 40 steps with the step size 0.005 in every iteration. We also use L1

regularization factor of 0.00005. For the experiments with FashionMNIST we use exactly the same
setup.

CIFAR-10 In the experiments on CIFAR-10, in all of the training methods we consider the network
is trained for 100 epochs using batch size 128. We use SGD optimizer and with initial learning rate
0.01 which we decay by 0.5 every 10 epochs. For the experiments which use PGD training, we
train with ε = 0.005 and perform 7 steps with the step size 0.002 in every iteration. We also use L1

regularization factor of 0.00001, except for the experiment with rotation and shearing where we use
0.00005.

19

