
Adaptive Gradient-Based Meta-Learning Methods

Mikhail Khodak
Carnegie Mellon University

khodak@cmu.edu

Maria-Florina Balcan
Carnegie Mellon University

ninamf@cs.cmu.edu

Ameet Talwalkar
Carnegie Mellon University

& Determined AI
talwalkar@cmu.edu

Abstract

We build a theoretical framework for designing and understanding practical meta-
learning methods that integrates sophisticated formalizations of task-similarity with
the extensive literature on online convex optimization and sequential prediction
algorithms. Our approach enables the task-similarity to be learned adaptively,
provides sharper transfer-risk bounds in the setting of statistical learning-to-learn,
and leads to straightforward derivations of average-case regret bounds for efficient
algorithms in settings where the task-environment changes dynamically or the
tasks share a certain geometric structure. We use our theory to modify several
popular meta-learning algorithms and improve their meta-test-time performance
on standard problems in few-shot learning and federated learning.

1 Introduction

Meta-learning, or learning-to-learn (LTL) [52], has recently re-emerged as an important direction
for developing algorithms for multi-task learning, dynamic environments, and federated settings.
By using the data of numerous training tasks, meta-learning methods seek to perform well on new,
potentially related test tasks without using many samples. Successful modern approaches have
also focused on exploiting the capabilities of deep neural networks, whether by learning multi-task
embeddings passed to simple classifiers [51] or by neural control of optimization algorithms [46].

Because of its simplicity and flexibility, a common approach is parameter-transfer, where all tasks
use the same class of Θ-parameterized functions fθ : X 7→ Y; often a shared model φ ∈ Θ is
learned that is used to train within-task models. In gradient-based meta-learning (GBML) [23],
φ is a meta-initialization for a gradient descent method over samples from a new task. GBML is
used in a variety of LTL domains such as vision [38, 44, 35], federated learning [16], and robotics
[20, 1]. Its simplicity also raises many practical and theoretical questions about the task-relations
it can exploit and the settings in which it can succeed. Addressing these issues has naturally led
several authors to online convex optimization (OCO) [55], either directly [24, 34] or from online-to-
batch conversion [34, 19]. These efforts study how to find a meta-initialization, either by proving
algorithmic learnability [24] or giving meta-test-time performance guarantees [34, 19].

However, this recent line of work has so far considered a very restricted, if natural, notion of task-
similarity – closeness to a single fixed point in the parameter space. We introduce a new theoretical
framework, Average Regret-Upper-Bound Analysis (ARUBA), that enables the derivation of meta-
learning algorithms that can provably take advantage of much more sophisticated structure. ARUBA
treats meta-learning as the online learning of a sequence of losses that each upper bounds the regret
on a single task. These bounds often have convenient functional forms that are (a) sufficiently nice, so
that we can draw upon the existing OCO literature, and (b) strongly dependent on both the task-data
and the meta-initialization, thus encoding task-similarity in a mathematically accessible way. Using
ARUBA we introduce or dramatically improve upon GBML results in the following settings:

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

• Adapting to the Task-Similarity: A major drawback of previous work is a reliance on knowing
the task-similarity beforehand to set the learning rate [24] or regularization [19], or the use of
a sub-optimal guess-and-tune approach using the doubling trick [34]. ARUBA yields a simple
gradient-based algorithm that eliminates the need to guess the similarity by learning it on-the-fly.

• Adapting to Dynamic Environments: While previous theoretical work has largely considered
a fixed initialization [24, 34], in many practical applications of GBML the optimal initialization
varies over time due to a changing environment [1]. We show how ARUBA reduces the problem
of meta-learning in dynamic environments to a dynamic regret-minimization problem, for which
there exists a vast array of online algorithms with provable guarantees that can be directly applied.

• Adapting to the Inter-Task Geometry: A recurring notion in LTL is that certain model weights,
such as feature extractors, are shared, whereas others, such as classification layers, vary between
tasks. By only learning a fixed initialization we must re-learn this structure on every task. Using
ARUBA we provide a method that adapts to this structure and determines which directions in Θ
need to be updated by learning a Mahalanobis-norm regularizer for online mirror descent (OMD).
We show how a variant of this can be used to meta-learn a per-coordinate learning-rate for certain
GBML methods, such as MAML [23] and Reptile [44], as well as for FedAvg, a popular federated
learning algorithm [41]. This leads to improved meta-test-time performance on few-shot learning
and a simple, tuning-free approach to effectively add user-personalization to FedAvg.

• Statistical Learning-to-Learn: ARUBA allows us to leverage powerful results in online-to-batch
conversion [54, 33] to derive new bounds on the transfer risk when using GBML for statistical
LTL [8], including fast rates in the number of tasks when the task-similarity is known and high-
probability guarantees for a class of losses that includes linear regression. This improves upon the
guarantees of Khodak et al. [34] and Denevi et al. [19] for similar or identical GBML methods.

1.1 Related Work

Theoretical LTL: The statistical analysis of LTL was formalized by Baxter [8]. Several works have
built upon this theory for modern LTL, such as via a PAC-Bayesian perspective [3] or by learning the
kernel for the ridge regression [18]. However, much effort has also been devoted to the online setting,
often through the framework of lifelong learning [45, 5, 2]. Alquier et al. [2] consider a many-task
notion of regret similar to the one we study in order to learn a shared data representation, although
our algorithms are much more practical. Recently, Bullins et al. [11] developed an efficient online
approach to learning a linear data embedding, but such a setting is distinct from GBML and more
closely related to popular shared-representation methods such as ProtoNets [51]. Nevertheless, our
approach does strongly rely on online learning through the study of data-dependent regret-upper-
bounds, which has a long history of use in deriving adaptive single-task methods [40, 21]; however,
in meta-learning there is typically not enough data to adapt to without considering multi-task data.
Analyzing regret-upper-bounds was done implicitly by Khodak et al. [34], but their approach is
largely restricted to using Follow-the-Leader (FTL) as the meta-algorithm. Similarly, Finn et al. [24]
use FTL to show learnability of the MAML meta-initialization. In contrast, the ARUBA framework
can handle general classes of meta-algorithms, which leads not only to new and improved results in
static, dynamic, and statistical settings but also to significantly more practical LTL methods.

GBML: GBML stems from the Model-Agnostic Meta-Learning (MAML) algorithm [23] and has
been widely used in practice [1, 44, 31]. An expressivity result was shown for MAML by Finn and
Levine [22], proving that the meta-learner can approximate any permutation-invariant learner given
enough data and a specific neural architecture. Under strong-convexity and smoothness assumptions
and using a fixed learning rate, Finn et al. [24] show that the MAML meta-initialization is learnable,
albeit via an impractical FTL method. In contrast to these efforts, Khodak et al. [34] and Denevi et al.
[19] focus on providing finite-sample meta-test-time performance guarantees in the convex setting,
the former for the SGD-based Reptile algorithm of Nichol et al. [44] and the latter for a regularized
variant. Our work improves upon these analyses by considering the case when the learning rate, a
proxy for the task-similarity, is not known beforehand as in Finn et al. [24] and Denevi et al. [19]
but must be learned online; Khodak et al. [34] do consider an unknown task-similarity but use a
doubling-trick-based approach that considers the absolute deviation of the task-parameters from
the meta-initialization and is thus average-case suboptimal and sensitive to outliers. Furthermore,
ARUBA can handle more sophisticated and dynamic notions of task-similarity and in certain settings
can provide better statistical guarantees than those of Khodak et al. [34] and Denevi et al. [19].

2

2 Average Regret-Upper-Bound Analysis
Our main contribution is ARUBA, a framework for analyzing the learning of X -parameterized
learning algorithms via reduction to the online learning of a sequence of functions Ut : X 7→ R
upper-bounding their regret on task t. We consider a meta-learner facing a sequence of online learning
tasks t = 1, . . . , T , each with mt loss functions `t,i : Θ 7→ R over action-space Θ ⊂ Rd. The learner
has access to a set of learning algorithms parameterized by x ∈ X that can be used to determine the
action θt,i ∈ Θ on each round i ∈ [mt] of task t. Thus on each task t the meta-learner chooses xt ∈ X ,
runs the corresponding algorithm, and suffers regret Rt(xt) =

∑mt
i=1 `t,i(θt,i)−minθ

∑mt
i=1 `t,i(θ).

We propose to analyze the meta-learner’s performance by studying the online learning of a sequence of
regret-upper-bounds Ut(xt) ≥ Rt(xt), specifically by bounding the average regret-upper-bound
ŪT = 1

T

∑T
t=1 Ut(xt). The following two observations highlight why we care about this quantity:

1. Generality: Many algorithms of interest in meta-learning have regret guarantees Ut(x) with nice,
e.g. smooth and convex, functional forms that depend strongly on both their parameterizations
x ∈ X and the task-data. This data-dependence lets us adaptively set the parameterization xt ∈ X .

2. Consequences: By definition of Ut we have that ŪT bounds the task-averaged regret (TAR)
R̄T = 1

T

∑T
t=1 Rt(xt) [34]. Thus if the average regret-upper-bound is small then the meta-

learner will perform well on-average across tasks. In Section 5 we further show that a low average
regret-upper-bound will also lead to strong statistical guarantees in the batch setting.

ARUBA’s applicability depends only on finding a low-regret algorithm over the functions Ut; then
by observation 2 we get a task-averaged regret bound where the first term vanishes as T →∞ while
by observation 1 the second term can be made small due to the data-dependent task-similarity:

R̄T ≤ ŪT ≤ oT (1) + min
x

1

T

T∑
t=1

Ut(x)

The Case of Online Gradient Descent: Suppose the meta-learner uses online gradient descent
(OGD) as the within-task learning algorithm, as is done by Reptile [44]. OGD can be parameterized
by an initialization φ ∈ Θ and a learning rate η > 0, so that X = {(φ, η) : φ ∈ Θ, η > 0}.
Using the notation va:b =

∑b
i=a vi and ∇t,j = ∇`t,j(θt,j), at each round i of task t OGD plays

θt,i = arg minθ∈Θ
1
2‖θ − φ‖

2
2 + η〈∇t,1:i−1, θ〉. The regret of this procedure when run on m convex

G-Lipschitz losses has a well-known upper-bound [48, Theorem 2.11]

Ut(x) = Ut(φ, η) =
1

2η
‖θ∗t − φ‖22 + ηG2m ≥

m∑
i=1

`t,i(θt)− `t,i(θ∗t) = Rt(x) (1)

which is convex in the learning rate η and the initialization φ. Note the strong data dependence via
θ∗t ∈ arg minθ

∑mt
i=1 `t,i(θ), the optimal action in hindsight. To apply ARUBA, first note that if

θ̄∗ = 1
T θ
∗
1:T is the mean of the optimal actions θ∗t on each task and V 2 = 1

T

∑T
t=1 ‖θ∗t − θ̄∗‖22 is their

empirical variance, then minφ,η
1
T

∑T
t=1 Ut(φ, η) = O(GV

√
m). Thus by running a low-regret

algorithm on the regret-upper-bounds Ut the meta-learner will suffer task-averaged regret at most
oT (1) +O(GV

√
m), which can be much better than the single-task regret O(GD

√
m), where D is

the `2-radius of Θ, if V � D, i.e. if the optimal actions θ∗t are close together. See Theorem 3.2 for
the result yielded by ARUBA in this simple setting.

3 Adapting to Similar Tasks and Dynamic Environments
We now demonstrate the effectiveness of ARUBA for analyzing GBML by using it to prove a general
bound for a class of algorithms that can adapt to both task-similarity, i.e. when the optimal actions
θ∗t for each task are close to some good initialization, and to changing environments, i.e. when this
initialization changes over time. The task-similarity will be measured using the Bregman divergence
BR(θ||φ) = R(θ) − R(φ) − 〈∇R(φ), θ − φ〉 of a 1-strongly-convex function R : Θ 7→ R [10], a
generalized notion of distance. Note that for R(·) = 1

2‖ · ‖
2
2 we have BR(θ||φ) = 1

2‖θ − φ‖
2
2. A

changing environment will be studied by analyzing dynamic regret, which for a sequence of actions
{φt}t ⊂ Θ taken by some online algorithm over a sequence of loss functions {ft : Θ 7→ R}t is
defined w.r.t. a reference sequence Ψ = {ψt}t ⊂ Θ as RT (Ψ) =

∑T
t=1 ft(φt)− ft(ψt). Dynamic

regret measures the performance of an online algorithm taking actions φt relative to a potentially time-
varying comparator taking actions ψt. Note that when we fix ψt = ψ∗ ∈ arg minψ∈Θ

∑T
t=1 ft(ψ)

we recover the standard static regret, in which the comparator always uses the same action.

3

Algorithm 1: Generic online algorithm for gradient-based parameter-transfer meta-learning. To
run OGD within-task set R(·) = 1

2‖ · ‖
2
2. To run FTRL within-task substitute `t,j(θ) for 〈∇t,j , θ〉.

Set meta-initialization φ1 ∈ Θ and learning rate η1 > 0.
for task t ∈ [T] do

for round i ∈ [mt] do
θt,i ← arg minθ∈Θ BR(θ||φt) + ηt〈∇t,1:i−1, θ〉 // online mirror descent step
Suffer loss `t,i(θt,i)

Update φt+1, ηt+1 // meta-update of OMD initialization and learning rate

Putting these together, we seek to define variants of Algorithm 1 for which as T →∞ the average
regret scales with VΨ, where V 2

Ψ = 1
T

∑T
t=1 BR(θ∗t ||ψt), without knowing this quantity in advance.

Note for fixed ψt = θ̄∗ = 1
T θ
∗
1:T this measures the empirical standard deviation of the optimal task-

actions θ∗t . Thus achieving our goal implies that average performance improves with task-similarity.

On each task t Algorithm 1 runs online mirror descent with regularizer 1
ηt
BR(·||φt) for initialization

φt ∈ Θ and learning rate ηt > 0. It is well-known that OMD and the related Follow-the-Regularized-
Leader (FTRL), for which our results also hold, generalize many important online methods, e.g. OGD
and multiplicative weights [26]. For mt convex losses with mean squared Lipschitz constant G2

t they
also share a convenient, data-dependent regret-upper-bound for any θ∗t ∈ Θ [48, Theorem 2.15]:

Rt ≤ Ut(φt, ηt) =
1

ηt
BR(θ∗t ||φt) + ηtG

2
tmt (2)

All that remains is to come up with update rules for the meta-initialization φt ∈ Θ and the learning rate
ηt > 0 in Algorithm 1 so that the average over T of these upper-bounds Ut(φt, ηt) is small. While this
can be viewed as a single online learning problem to determine actions xt = (φt, ηt) ∈ Θ× (0,∞),
it is easier to decouple φ and η by first defining two function sequences {f init

t }t and {f sim
t }t:

f init
t (φ) = BR(θ∗t ||φ)Gt

√
mt f sim

t (v) =

(
BR(θ∗t ||φt)

v
+ v

)
Gt
√
mt (3)

We show in Theorem 3.1 that to get an adaptive algorithm it suffices to specify two OCO algorithms,
INIT and SIM, such that the actions φt = INIT(t) achieve good (dynamic) regret over f init

t and the
actions vt = SIM(t) achieve low (static) regret over f sim

t ; these actions then determine the update
rules of φt and ηt = vt/(Gt

√
mt). We will specialize Theorem 3.1 to derive algorithms that provably

adapt to task similarity (Theorem 3.2) and to dynamic environments (Theorem 3.3).

To understand the formulation of f init
t and f sim

t , first note that f sim
t (v) = Ut(φt, v/(Gt

√
mt)), so the

online algorithm SIM over f sim
t corresponds to an online algorithm over the regret-upper-bounds

Ut when the sequence of initializations φt is chosen adversarially. Once we have shown that SIM
is low-regret we can compare its losses f sim

t (vt) to those of an arbitrary fixed v > 0; this is the first
line in the proof of Theorem 3.1 (below). For fixed v, each f init

t (φt) is an affine transformation of
f sim
t (v), so the algorithm INIT with low dynamic regret over f init

t corresponds to an algorithm with
low dynamic regret over the regret-upper-bounds Ut when ηt = v/(Gt

√
mt) ∀ t. Thus once we

have shown a dynamic regret guarantee for INIT we can compare its losses f init
t (φt) to those of an

arbitrary comparator sequence {ψt}t ⊂ Θ; this is the second line in the proof of Theorem 3.1.
Theorem 3.1. Assume Θ ⊂ Rd is convex, each task t ∈ [T] is a sequence of mt convex losses
`t,i : Θ 7→ R with mean squared Lipschitz constant G2

t , and R : Θ 7→ R is 1-strongly-convex.
• Let INIT be an algorithm whose dynamic regret over functions {f init

t }t w.r.t. any reference
sequence Ψ = {ψt}Tt=1 ⊂ Θ is upper-bounded by Uinit

T (Ψ).
• Let SIM be an algorithm whose static regret over functions {f sim

t }t w.r.t. any v > 0 is upper-
bounded by a non-increasing function Usim

T (v) of v.

If Algorithm 1 sets φt = INIT(t) and ηt = SIM(t)
Gt
√
mt

then for V 2
Ψ =

∑T
t=1 BR(θ∗t ||ψt)Gt

√
mt∑T

t=1 Gt
√
mt

it will
achieve average regret

R̄T ≤ ŪT ≤
Usim
T (VΨ)

T
+

1

T
min

Uinit
T (Ψ)

VΨ
, 2

√√√√Uinit
T (Ψ)

T∑
t=1

Gt
√
mt

+
2VΨ

T

T∑
t=1

Gt
√
mt

4

Proof. For σt = Gt
√
mt we have by the regret bound on OMD/FTRL (2) that

ŪT T =

T∑
t=1

(
BR(θ∗t ||φt)

vt
+ vt

)
σt ≤ min

v>0
Usim
T (v) +

T∑
t=1

(
BR(θ∗t ||φt)

v
+ v

)
σt

≤ min
v>0

Usim
T (v) +

Uinit
T (Ψ)

v
+

T∑
t=1

(
BR(θ∗t ||ψt)

v
+ v

)
σt

≤ Usim
T (VΨ) + min

{
Uinit
T (Ψ)

VΨ
, 2

√√
Uinit
T (Ψ)σ1:T

}
+ 2VΨσ1:T

where the last line follows by substituting v = max

{
VΨ,

√
Uinit
T (Ψ)/σ1:T

}
.

Similar Tasks in Static Environments: By Theorem 3.1, if we can specify algorithms INIT and
SIM with sublinear regret over f init

t and f sim
t (3), respectively, then the average regret will converge

toO(VΨ
√
m) as desired. We first show an approach in the case when the optimal actions θ∗t are close

to a fixed point in Θ, i.e. for fixed ψt = θ̄∗ = 1
T θ
∗
1:T . Henceforth we assume the Lipschitz constant

G and number of rounds m are the same across tasks; detailed statements are in the supplement.

Note that if R(·) = 1
2‖ · ‖

2
2 then {f init

t }t are quadratic functions, so playing φt+1 = 1
t θ
∗
1:t has

logarithmic regret [48, Corollary 2.2]. We use a novel strongly convex coupling argument to show
that this holds for any such sequence of Bregman divergences, even for nonconvex BR(θ∗t ||·). The
second sequence {f sim

t }t is harder because it is not smooth near 0 and not strongly convex if θ∗t = φt.
We study a regularized sequence f̃ sim

t (v) = f sim
t (v) + ε2/v for ε ≥ 0. Assuming a bound of D2 on

the Bregman divergence and setting ε = 1/ 4
√
T , we achieve Õ(

√
T) regret on the original sequence

by running exponentially-weighted online-optimization (EWOO) [28] on the regularized sequence:

vt =

∫√D2+ε2

0
v exp(−γ

∑
s<t f̃

sim
s (v))dv∫√D2+ε2

0
exp(−γ

∑
s<t f̃

sim
s (v))dv

for γ =
2

DG
√
m

min

{
ε2

D2
, 1

}
(4)

Note that while EWOO is inefficient in high dimensions, we require only single-dimensional integrals.
In the supplement we also show that simply setting v2

t+1 = ε2t +
∑
s≤t BR(θ∗s ||φt) has only a

slightly worse regret of Õ(T 3/5). These guarantees suffice to show the following:
Theorem 3.2. Under the assumptions of Theorem 3.1 and boundedness of BR over Θ, if INIT plays
φt+1 = 1

t θ
∗
1:t and SIM uses ε-EWOO (4) with ε = 1/ 4

√
T then Algorithm 1 achieves average regret

R̄T ≤ ŪT = Õ
(

min

{
1 + 1

V√
T

,
1

4
√
T

}
+ V

)√
m for V 2 = min

φ∈Θ

1

T

T∑
t=1

BR(θ∗t ||φ)

Observe that if V , the average deviation of θ∗t , is ΩT (1) then the bound becomes O(V
√
m) at rate

Õ(1/
√
T), while if V = oT (1) the bound tends to zero. Theorem 3.1 can be compared to the main

result of Khodak et al. [34], who set the learning rate via a doubling trick. We improve upon their
result in two aspects. First, their asymptotic regret isO(D∗

√
m), where D∗ is the maximum distance

between any two optimal actions. Note that V is always at most D∗, and indeed may be much smaller
in the presence of outliers. Second, our result is more general, as we do not need convex BR(θ∗t ||·).
Remark 3.1. We assume an oracle giving a unique θ∗ ∈ arg minθ∈Θ

∑
`∈S `(θ) for any finite loss

sequence S , which may be inefficient or undesirable. One can instead use the last or average iterate of
within-task OMD/FTRL for the meta-update; in the supplement we show that this incurs an additional
o(
√
m) regret term under a quadratic growth assumption that holds in many practical settings [34].

Related Tasks in Changing Environments: In many settings we have a changing environment
and so it is natural to study dynamic regret. This has been widely analyzed by the online learning
community [15, 30], often by showing a dynamic regret bound consisting of a sublinear term plus a
bound on the variation in the action or function space. Using Theorem 3.1 we can show dynamic
guarantees for GBML via reduction to such bounds. We provide an example in the Euclidean
geometry using the popular path-length-bound PΨ =

∑T
t=2 ‖ψt − ψt−1‖2 for reference actions

Ψ = {ψt}Tt=1 [55]. We use a result showing that OGD with learning rate η ≤ 1/β over α-strongly-
convex, β-strongly-smooth, and L-Lipschitz functions has a bound of O(L(1 + PΨ)) on its dynamic
regret [42, Corollary 1]. Observe that in the case of R(·) = 1

2‖ · ‖
2
2 the sequence f init

t in Theorem 3.1
consists of DG

√
m-Lipschitz quadratic functions. Thus using Theorem 3.1 we achieve the following:

5

Figure 1: Left - Theorem 3.2 improves upon [34,
Theorem 2.1] via its dependence on the average
deviation V rather than the maximal deviation
D∗ of the optimal task-parameters θ∗t (light blue).
Right - a case where Theorem 3.3 yields a strong
task-similarity-based guarantee via a dynamic
comparator Ψ despite the deviation V being large.

Figure 2: Learning rate variation across layers
of a convolutional net trained on Mini-ImageNet
using Algorithm 2. Following intuition outlined
in Section 6, shared feature extractors are not
updated much if at all compared to higher layers.

Theorem 3.3. Under Theorem 3.1 assumptions, bounded Θ, and R(·) = 1
2‖ · ‖

2
2, if INIT is OGD

with learning rate 1
G
√
m

and SIM uses ε-EWOO (4) with ε = 1/ 4
√
T then by using OGD within-task

Algorithm 1 will achieve for any fixed comparator sequence Ψ = {ψt}t∈[T] ⊂ Θ the average regret

R̄T ≤ ŪT = Õ

(
min

{
1 + 1

VΨ√
T

,
1

4
√
T

}
+ min

{
1 + PΨ

VΨT
,

√
1 + PΨ

T

}
+ VΨ

)
√
m

for V 2
Ψ = 1

2T

∑T
t=1 ‖θ∗t − ψt‖22 and PΨ =

∑T
t=2 ‖ψt − ψt−1‖2.

This bound controls the average regret across tasks using the deviation VΦ of the optimal task
parameters θ∗t from some reference sequence Φ, which is assumed to vary slowly or sparsely
so that the path length PΦ is small. Figure 1 illustrates when such a guarantee improves over
Theorem 3.2. Note also that Theorem 3.3 specifies OGD as the meta-update algorithm INIT, so
under the approximation that each task t’s last iterate is close to θ∗t this suggests that simple GBML
methods such as Reptile [44] or FedAvg [41] are adaptive. The generality of ARUBA also allows for
the incorporation of other dynamic regret bounds [25, 53] and other non-static notions of regret [27].

4 Adapting to the Inter-Task Geometry
Previously we gave improved guarantees for learning OMD under a simple notion of task-similarity:
closeness of the optimal actions θ∗t . We now turn to new algorithms that can adapt to a more sophisti-
cated task-similarity structure. Specifically, we study a class of learning algorithms parameterized by
an initialization φ ∈ Θ and a symmetric positive-definite matrix H ∈M ⊂ Rd×d which plays

θt,i = arg min
θ∈Θ

1

2
‖θ − φ‖2H−1 + 〈∇t,1:i−1, θ〉 (5)

This corresponds θt,i+1 = θt,i−H∇t,i, so if the optimal actions θ∗t vary strongly in certain directions,
a matrix emphasizing those directions improves within-task performance. By strong-convexity of
1
2‖θ−φ‖

2
H−1 w.r.t. ‖·‖H−1 , the regret-upper-bound is Ut(φ,H) = 1

2‖θ
∗
t −φ‖2H−1 +

∑m
i=1 ‖∇t,i‖2H

[48, Theorem 2.15]. We first study the diagonal case, i.e. learning a per-coordinate learning rate
η ∈ Rd to get iteration θt,i+1 = θt,i − ηt �∇t,i. We propose to set ηt at each task t as follows:

ηt =

√√∑
s<t ε

2
s + 1

2(θ
∗
s − φs)2∑

s<t ζ
2
s +

∑ms
i=1∇2

s,i

for ε2
t =

ε2

(t+ 1)p
, ζ2

t =
ζ2

(t+ 1)p
∀ t ≥ 0, where ε, ζ, p > 0 (6)

Observe the similarity between this update AdaGrad [21], which is also inversely related to the sum
of the element-wise squares of all gradients seen so far. Our method adds multi-task information by
setting the numerator to depend on the sum of squared distances between the initializations φt set by
the algorithm and that task’s optimal action θ∗t . This algorithm has the following guarantee:
Theorem 4.1. Let Θ be a bounded convex subset of Rd, let D ⊂ Rd×d be the set of positive definite
diagonal matrices, and let each task t ∈ [T] consist of a sequence ofm convex Lipschitz loss functions
`t,i : Θ 7→ R. Suppose for each task t we run the iteration in Equation 5 setting φ = 1

t−1θ
∗
1:t−1 and

setting H = Diag(ηt) via Equation 6 for ε = 1, ζ =
√
m, and p = 2

5 . Then we achieve

R̄T ≤ ŪT = min
φ∈Θ
H∈D

Õ

 d∑
j=1

min

{
1
Hjj

+Hjj

T
2
5

,
1

5
√
T

} √√
m+

1

T

T∑
t=1

‖θ∗t − φ‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

6

As T → ∞ the average regret converges to the minimum over φ,H of the last two terms, which
corresponds to running OMD with the optimal initialization and per-coordinate learning rate on
every task. The rate of convergence of T−2/5 is slightly slower than the usual 1/

√
T achieved

in the previous section; this is due to the algorithm’s adaptivity to within-task gradients, whereas
previously we simply assumed a known Lipschitz bound Gt when setting ηt. This adaptivity makes
the algorithm much more practical, leading to a method for adaptively learning a within-task learning
rate using multi-task information; this is outlined in Algorithm 2 and shown to significantly improve
GBML performance in Section 6. Note also the per-coordinate separation of the left term, which
shows that the algorithm converges more quickly on non-degenerate coordinates. The per-coordinate
specification of ηt (6) can be further generalized to learning a full-matrix adaptive regularizer, for
which we show guarantees in Theorem 4.2. However, the rate is much slower, and without further
assumptions such methods will have Ω(d2) computation and memory requirements.

Theorem 4.2. Let Θ be a bounded convex subset of Rd and let each task t ∈ [T] consist of a sequence
of m convex Lipschitz loss functions `t,i : Θ 7→ R. Suppose for each task t we run the iteration in
Equation 5 with φ = 1

t−1θ
∗
1:t−1 and H the unique positive definite solution of B2

t = HG2
tH for

B2
t = tε2Id +

1

2

∑
s<t

(θ∗s − φs)(θ∗s − φs)T and G2
t = tζ2Id +

∑
s<t

m∑
i=1

∇s,i∇Ts,i

for ε = 1/ 8
√
T and ζ =

√
m/ 8
√
T . Then for λj corresponding to the jth largest eigenvalue we have

R̄T ≤ ŪT = Õ
(

1
8
√
T

)√
m+ min

φ∈Θ
H�0

2λ2
1(H)

λd(H)

1 + log T

T
+

T∑
t=1

‖θ∗t − φ∗‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

5 Fast Rates and High Probability Bounds for Statistical Learning-to-Learn
Batch-setting transfer risk bounds have been an important motivation for studying LTL via online
learning [2, 34, 19]. If the regret-upper-bounds are convex, which is true for most practical variants
of OMD/FTRL, ARUBA yields several new results in the classical distribution over task-distributions
setup of Baxter [8]. In Theorem 5.1 we present bounds on the risk `P(θ̄) of the parameter θ̄ obtained
by running OMD/FTRL on i.i.d. samples from a new task distribution P and averaging the iterates.
Theorem 5.1. Assume Θ,X are convex Euclidean subsets. Let convex losses `t,i : Θ 7→ [0, 1] be
drawn i.i.d. Pt ∼ Q, {`t,i}i ∼ Pmt for distribution Q over tasks. Suppose they are passed to an
algorithm with average regret upper-bound ŪT that at each t picks xt ∈ X to initialize a within-task
method with convex regret upper-bound Ut : X 7→ [0, B

√
m], forB ≥ 0. If the within-task algorithm

is initialized by x̄ = 1
T x1:T and it takes actions θ1, . . . , θm on m i.i.d. losses from new task P ∼ Q

then θ̄ = 1
mθ1:m satisfies the following transfer risk bounds for any θ∗ ∈ Θ (all w.p. 1− δ):

1. general case: EP∼Q EPm `P(θ̄) ≤ EP∼Q `P(θ∗) + LT for LT = Ū
m +B

√
8
mT log 1

δ .

2. ρ-self-bounded losses `: if ∃ ρ > 0 s.t. ρE`∼P ∆`(θ) ≥ E`∼P(∆`(θ) − E`∼P ∆`(θ))2 for
all distributions P ∼ Q, where ∆`(θ) = `(θ)− `(θ∗) for any θ∗ ∈ arg minθ∈Θ `P(θ), then for

LT as above we have EP∼Q `P(θ̄) ≤ EP∼Q `P(θ∗) + LT +
√

2ρLT
m log 2

δ + 3ρ+2
m log 2

δ .

3. α-strongly-convex, G-Lipschitz regret-upper-bounds Ut: in parts 1 and 2 above we can

substitute LT = Ū + minx EP∼QU(x)
m + 4G

T

√
Ū
αm log 8 log T

δ + max{16G2,6αB
√
m}

αmT log 8 log T
δ .

In the general case, Theorem 5.1 provides bounds on the excess transfer risk decreasing with Ū /m

and 1/
√
mT . Thus if Ū improves with task-similarity so will the transfer risk as T →∞. Note that

the second term is 1/
√
mT rather than 1/

√
T as in most-analyses [34, 19]; this is because regret

is m-bounded but the OMD regret-upper-bound is O(
√
m)-bounded. The results also demonstrate

ARUBA’s ability to utilize specialized results from the online-to-batch conversion literature. This is
witnessed by the guarantee for self-bounded losses, a class which Zhang [54] shows includes linear
regression; we use a result by the same author to obtain high-probability bounds, whereas previous
GBML bounds are in-expectation [34, 19]. We also apply a result due to Kakade and Tewari [33] for
the case of strongly-convex regret-upper-bounds, enabling fast rates in the number of tasks T . The
strongly-convex case is especially relevant for GBML since it holds for OGD with fixed learning rate.

7

Algorithm 2: ARUBA: an approach for modifying a
generic batch GBML method to learn a per-coordinate
learning rate. Two specialized variants provided below.
Input: T tasks, update method for meta-initialization,

within-task descent method, settings ε, ζ, p > 0
Initialize b1 ← ε21d, g1 ← ζ21d
for task t = 1, 2, . . . , T do

Set φt according to update method, ηt ←
√
bt/gt

Run descent method from φt with learning rate ηt:
observe gradients∇t,1, . . . ,∇t,mt
obtain within-task parameter θ̂t

bt+1 ← bt + ε21d
(t+1)p + 1

2 (φt − θ̂t)2

gt+1 ← gt + ζ21d
(t+1)p +

∑mt
i=1∇2

t,i

Result: initialization φT , learning rate ηT =
√
bT /gT

ARUBA++: starting with ηT,1 = ηT and gT,1 = gT , adap-
tively reset the learning rate by setting ĝT,i+1 ← ĝT,i+c∇2

i

for some c > 0 and then updating ηT,i+1 ←
√
bT /gT,i+1.

Isotropic: bt and gt are scalars tracking the sum of squared
distances and sum of squared gradient norms, respectively.

Figure 3: Next-character prediction
performance for recurrent networks
trained on the Shakespeare dataset [12]
using FedAvg [41] and its modifica-
tions by Algorithm 2. Note that the
two ARUBA methods require no learn-
ing rate tuning when personalizing the
model (refine), unlike both FedAvg
methods; this is a critical improve-
ment in federated settings. Furthermore,
isotropic ARUBA has negligible over-
head by only communicating scalars.

We present two consequences of these results for the algorithms from Section 3 when run on i.i.d.
data. To measure task-similarity we use the variance V 2

Q = minφ∈Θ EP∼Q EPm ‖θ∗ − φ‖22 of
the empirical risk minimizer θ∗ of an m-sample task drawn from Q. If VQ is known we can use
strong-convexity of the regret-upper-bounds to obtain a fast rate for learning the initialization, as
shown in the first part of Corollary 5.1. The result can be loosely compared to Denevi et al. [19], who
provide a similar asymptotic improvement but with a slower rate of O(1/

√
T) in the second term.

However, their task-similarity measures the deviation of the true, not empirical, risk-minimizers, so
the results are not directly comparable. Corollary 5.1 also gives a guarantee for when we do not
know VQ and must learn the learning rate η in addition to the initialization; here we match the rate of
Denevi et al. [19], who do not learn η, up to some additional fast o(1/

√
m) terms.

Corollary 5.1. In the setting of Theorems 3.2 & 5.1, if δ ≤ 1/e and Algorithm 1 uses within-task

OGD with initialization φt+1 = 1
t θ
∗
1:t and step-size ηt = VQ+1/

√
T

G
√
m

for VQ as above, then w.p. 1− δ

E
P∼Q

E
Pm

`P(θ̄) ≤ E
P∼Q

`P(θ∗) + Õ
(
VQ√
m

+

(
1√
mT

+
1

T

)
log

1

δ

)
If ηt is set adaptively using ε-EWOO as in Theorem 3.2 for ε = 1/ 4

√
mT + 1/

√
m then w.p. 1− δ

E
P∼Q

E
Pm

`P(θ̄) ≤ E
P∼Q

`P(θ∗) + Õ

(
VQ√
m

+ min

{
1√
m

+ 1√
T

VQm
,

1
4
√
m3T

+
1

m

}
+

√
1

T
log

1

δ

)

6 Empirical Results: Adaptive Methods for Few-Shot & Federated Learning
A generic GBML method does the following at iteration t: (1) initialize a descent method at φt; (2)
take gradient steps with learning rate η to get task-parameter θ̂t; (3) update meta-initialization to φt+1.
Motivated by Section 4, in Algorithm 2 we outline a generic way of replacing η by a per-coordinate
rate learned on-the-fly. This entails keeping track of two quantities: (1) bt ∈ Rd, a per-coordinate sum
over s < t of the squared distances from the initialization φs to within-task parameter θ̂s; (2) gt ∈ Rd,
a per-coordinate sum of the squared gradients seen so far. At task t we set η to be the element-wise
square root of bt/gt, allowing multi-task information to inform the trajectory. For example, if along
coordinate j the θ̂t,j is usually not far from initialization then bj will be small and thus so will ηj ;
then if on a new task we get a high noisy gradient along coordinate j the performance will be less
adversely affected because it will be down-weighted by the learning rate. Single-task algorithms such
as AdaGrad [21] and Adam [36] also work by reducing the learning rate along frequent directions.

8

20-way Omniglot 5-way Mini-ImageNet
1-shot 5-shot 1-shot 5-shot

1st-Order MAML [23] 89.4± 0.5 97.9± 0.1 48.07± 1.75 63.15± 0.91
1st Reptile [44] w. Adam [36] 89.43± 0.14 97.12± 0.32 49.97± 0.32 65.99± 0.58

Order Reptile w. ARUBA 86.67± 0.17 96.61± 0.13 50.73± 0.32 65.69± 0.61
Reptile w. ARUBA++ 89.66± 0.3 97.49± 0.28 50.35± 0.74 65.89± 0.34

2nd 2nd-Order MAML 95.8± 0.3 98.9± 0.2 48.7± 1.84 63.11± 0.92
Order Meta-SGD [38] 95.93± 0.38 98.97± 0.19 50.47± 1.87 64.03± 0.94

Table 1: Meta-test-time performance of GBML algorithms on few-shot classification benchmarks.
1st-order and 2nd-order results obtained from Nichol et al. [44] and Li et al. [38], respectively.

However, in meta-learning some coordinates may be frequently updated during meta-training because
good task-weights vary strongly from the best initialization along them, and thus their gradients should
not be downweighted; ARUBA encodes this intuition in the numerator using the distance-traveled
per-task along each direction, which increases the learning rate along high-variance directions. We
show in Figure 2 that this is realized in practice, as ARUBA assigns a faster rate to deeper layers than
to lower-level feature extractors, following standard intuition in parameter-transfer meta-learning. As
described in Algorithm 2, we also consider two variants: ARUBA++, which updates the meta-learned
learning-rate at meta-test-time in a manner similar to AdaGrad, and Isotropic ARUBA, which only
tracks scalar quantities and is thus useful for communication-constrained settings.
Few-Shot Classification: We first examine if Algorithm 2 can improve performance on Omniglot
[37] and Mini-ImageNet [46], two standard few-shot learning benchmarks, when used to modify
Reptile, a simple meta-learning method [44]. In its serial form Reptile is roughly the algorithm we
study in Section 3 when OGD is used within-task and η is fixed. Thus we can set Reptile+ARUBA
to be Algorithm 2 with θ̂t the last iterate of OGD and the meta-update a weighted sum of θ̂t and φt.
In practice, however, Reptile uses Adam [36] to exploit multi-task gradient information. As shown
in Table 1, ARUBA matches or exceeds this baseline on Mini-ImageNet, although on Omniglot it
requires the additional within-task updating of ARUBA++ to show improvement.
It is less clear how ARUBA can be applied to MAML [23], as by only taking one step the distance
traveled will be proportional to the gradient, so η will stay fixed. We also do not find that ARUBA
improves multi-step MAML – perhaps not surprising as it is further removed from our theory due to
its use of held-out data. In Table 1 we compare to Meta-SGD [38], which does learn a per-coordinate
learning rate for MAML by automatic differentiation. This requires more computation but does
lead to consistent improvement. As with the original Reptile, our modification performs better on
Mini-ImageNet but worse on Omniglot compared to MAML and its modification Meta-SGD.
Federated Learning: A main goal in this setting is to use data on heterogeneous nodes to learn
a global model without much communication; leveraging this to get a personalized model is an
auxiliary goal [50], with a common application being next-character prediction on mobile devices.
A popular method is FedAvg [41], where at each communication round r the server sends a global
model φr to a batch of nodes, which then run local OGD; the server then sets φr+1 to the average
of the returned models. This can be seen as a GBML method with each node a task, making it easy
to apply ARUBA: each node simply sends its accumulated squared gradients to the server together
with its model. The server can use this information and the squared difference between φr and φr+1

to compute a learning rate ηr+1 via Algorithm 2 and send it to each node in the next round. We
use FedAvg with ARUBA to train a character LSTM [29] on the Shakespeare dataset, a standard
benchmark of a thousand users with varying amounts of non-i.i.d. data [41, 12]. Figure 3 shows that
ARUBA significantly improves over non-tuned FedAvg and matches the performance of FedAvg with
a tuned learning rate schedule. Unlike both baselines we also do not require step-size tuning when
refining the global model for personalization. This reduced need for hyperparameter optimization is
crucial in federated settings, where the number of user-data accesses are extremely limited.

7 Conclusion
In this paper we introduced ARUBA, a framework for analyzing GBML that is both flexible and
consequential, yielding new guarantees for adaptive, dynamic, and statistical LTL via online learning.
As a result we devised a novel per-coordinate learning rate applicable to generic GBML procedures,
improving their training and meta-test-time performance on few-shot and federated learning. We see
great potential for applying ARUBA to derive many other new LTL methods in a similar manner.

9

Acknowledgments
We thank Jeremy Cohen, Travis Dick, Nikunj Saunshi, Dravyansh Sharma, Ellen Vitercik, and
our three anonymous reviewers for helpful feedback. This work was supported in part by DARPA
FA875017C0141, National Science Foundation grants CCF-1535967, CCF-1910321, IIS-1618714,
IIS-1705121, IIS-1838017, and IIS-1901403, a Microsoft Research Faculty Fellowship, a Bloomberg
Data Science research grant, an Amazon Research Award, an Amazon Web Services Award, an
Okawa Grant, a Google Faculty Award, a JP Morgan AI Research Faculty Award, and a Carnegie
Bosch Institute Research Award. Any opinions, findings and conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of DARPA,
the National Science Foundation, or any other funding agency.

References
[1] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter

Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environments.
In Proceedings of the 6th International Conference on Learning Representations, 2018.

[2] Pierre Alquier, The Tien Mai, and Massimiliano Pontil. Regret bounds for lifelong learning. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017.

[3] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended PAC-Bayes
theory. In Proceedings of the 35th International Conference on Machine Learning, 2018.

[4] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tôhoku Mathematical
Journal, 19:357–367, 1967.

[5] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Efficient representations for lifelong
learning and autoencoding. In Proceedings of the Conference on Learning Theory, 2015.

[6] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with
Bregman divergences. Journal of Machine Learning Research, 6:1705–1749, 2005.

[7] Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In
Advances in Neural Information Processing Systems, 2008.

[8] Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research,
12:149–198, 2000.

[9] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[10] Lev M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7:200–217, 1967.

[11] Brian Bullins, Elad Hazan, Adam Kalai, and Roi Livni. Generalize across tasks: Efficient algo-
rithms for linear representation learning. In Proceedings of the 30th International Conference
on Algorithmic Learning Theory, 2019.

[12] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. LEAF: A benchmark for federated settings. arXiv, 2018.

[13] Nicoló Cesa-Bianchi and Claudio Gentile. Improved risk tail bounds for on-line algorithms. In
Advances in Neural Information Processing Systems, 2005.

[14] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

[15] Nicoló Cesa-Bianchi, Pierre Gaillard, Gabor Lugosi, and Gilles Stoltz. A new look at shifting
regret. HAL, 2012.

[16] Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning for recom-
mendation. arXiv, 2018.

10

[17] Chandler Davis. Notions generalizing convexity for functions defined on spaces of matrices. In
Proceedings of Symposia in Pure Mathematics, 1963.

[18] Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Incremental learning-
to-learn with statistical guarantees. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2018.

[19] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. arXiv, 2019.

[20] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances in Neural
Information Processing Systems, 2017.

[21] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[22] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and
gradient descent can approximate any learning algorithm. In Proceedings of the 6th International
Conference on Learning Representations, 2018.

[23] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

[24] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergei Levine. Online meta-learning. In
Proceedings of the 36th International Conference on Machine Learning, 2019. To Appear.

[25] Eric C. Hall and Rebecca M. Willet. Online optimization in dynamic environments. arXiv,
2016.

[26] Elad Hazan. Introduction to online convex optimization. In Foundations and Trends in
Optimization, volume 2, pages 157–325. now Publishers Inc., 2015.

[27] Elad Hazan and C. Seshadri. Efficient learning algorithms for changing environments. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

[28] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69:169–192, 2007.

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:
1735–1780, 1997.

[30] Ali Jadbabaie, Alexander Rakhlin, and Shahin Shahrampour. Online optimization : Competing
with dynamic comparators. In Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics, 2015.

[31] Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, and Katherine Heller. Online gradient-based
mixtures for transfer modulation in meta-learning. arXiv, 2018.

[32] Sham Kakade and Shai Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms
for online optimization. In Advances in Neural Information Processing Systems, 2008.

[33] Sham Kakade and Ambuj Tewari. On the generalization ability of online strongly convex
programming algorithms. In Advances in Neural Information Processing Systems, 2008.

[34] Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In Proceedings of the 36th International Conference on Machine Learning,
2019. To Appear.

[35] Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi,
Yongseok Choi, Dong-Yeon Choi, and Jiwon Kim. Auto-Meta: Automated gradient based meta
learner search. arXiv, 2018.

11

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations, 2015.

[37] Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot
learning of simple visual concepts. In Proceedings of the Conference of the Cognitive Science
Society (CogSci), 2017.

[38] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learning quickly
for few-shot learning. arXiv, 2017.

[39] Elliott H. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Advances in
Mathematics, 11:267–288, 1973.

[40] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. In Proceedings of the Conference on Learning Theory, 2010.

[41] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artifical Intelligence and Statistics, 2017.

[42] Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online opti-
mization in dynamic environments: Improved regret rates for strongly convex problems. In
Proceedings of the 55th IEEE Conference on Decision and Control, 2016.

[43] Ken-ichiro Moridomi, Kohei Hatano, and Eiji Takimoto. Online linear optimization with the
log-determinant regularizer. IEICE Transactions on Information and Systems, E101-D(6):
1511–1520, 2018.

[44] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv, 2018.

[45] Anastasia Pentina and Christoph H. Lampert. A PAC-Bayesian bound for lifelong learning. In
Proceedings of the 31st International Conference on Machine Learning, 2014.

[46] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Proceed-
ings of the 5th International Conference on Learning Representations, 2017.

[47] Ankan Saha, Prateek Jain, and Ambuj Tewari. The interplay between stability and regret in
online learning. arXiv, 2012.

[48] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107—-194, 2011.

[49] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,
stability and uniform convergence. Journal of Machine Learning Research, 11, 2010.

[50] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, 2017.

[51] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems, 2017.

[52] Sebastian Thrun and Lorien Pratt. Learning to Learn. Springer Science & Business Media,
1998.

[53] Lijun Zhang, Tianbao Yang, Jinfeng Yi, and Rong Jin Zhi-Hua Zhou. Improved dynamic regret
for non-degenerate functions. In Advances in Neural Information Processing Systems, 2017.

[54] Tong Zhang. Data dependent concentration bounds for sequential prediction algorithms. In
Proceedings of the International Conference on Learning Theory, 2005.

[55] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning, 2003.

12

A Background and Results for Online Convex Optimization

Throughout the appendix we assume all subsets are convex and in a finite-dimensional real vector
space with inner product 〈·, ·〉 unless explicitly stated. Let ‖ · ‖∗ be the dual norm of ‖ · ‖ and note
that the dual norm of ‖ · ‖2 is itself. For sequences of scalars σ1, . . . , σT ∈ R we will use the notation
σ1:t to refer to the sum of the first t of them. In the online learning setting, we will use the shorthand
∇t to denote the subgradient of `t : Θ 7→ R evaluated at action θt ∈ Θ. We will use Conv(S) to
refer to the convex hull of a set of points S and ProjS(·) to be the projection to any convex subset S.

A.1 Convex Functions

We first state the related definitions of strong convexity and strong smoothness:
Definition A.1. An everywhere sub-differentiable function f : S 7→ R is α-strongly-convex w.r.t.
norm ‖ · ‖ if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 ∀ x, y ∈ S

Definition A.2. An everywhere sub-differentiable function f : S 7→ R is β-strongly-smooth w.r.t.
norm ‖ · ‖ if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2 ∀ x, y ∈ S

Finally, we will also consider functions that are exp-concave [28]:
Definition A.3. An everywhere sub-differentiable function f : S 7→ R is γ-exp-concave if
exp(−γf(x)) is concave. For S ⊂ R we have that ∂xxf(x)

(∂xf(x))2 ≥ γ ∀ x ∈ S =⇒ f is γ-exp-
concave.

We now turn to the Bregman divergence and a discussion of several useful properties [10, 6]:
Definition A.4. Let f : S 7→ R be an everywhere sub-differentiable strictly convex function. Its
Bregman divergence is defined as

Bf (x||y) = f(x)− f(y)− 〈∇f(y), x− y〉

The definition directly implies that Bf (·||y) preserves the (strong or strict) convexity of f for any
fixed y ∈ S. Strict convexity further implies Bf (x||y) ≥ 0 ∀ x, y ∈ S, with equality iff x = y.
Finally, if f is α-strongly-convex, or β-strongly-smooth, w.r.t. ‖ · ‖ then Definitions A.1 and A.2 imply
Bf (x||y) ≥ α

2 ‖x− y‖
2 or Bf (x||y) ≤ β

2 ‖x− y‖
2, respectively.

Claim A.1. Let f : S 7→ R be a strictly convex function on S, α1, . . . , αn ∈ R be a sequence
satisfying α1:n > 0, and x1, . . . , xn ∈ S. Then

x̄ =
1

α1:n

n∑
i=1

αixi = arg min
y∈S

n∑
i=1

αiBf (xi||y)

Proof. ∀ y ∈ S we have
n∑
i=1

αi (Bf (xi||y)− Bf (xi||x̄))

=

n∑
i=1

αi (f(xi)− f(y)− 〈∇f(y), xi − y〉 − f(xi) + f(x̄) + 〈∇f(x̄), xi − x̄〉)

= (f(x̄)− f(y) + 〈∇f(y), y〉)α1:n +

n∑
i=1

αi (−〈∇f(x̄), x̄〉+ 〈∇f(x̄)−∇f(y), xi〉)

= (f(x̄)− f(y)− 〈∇f(y), x̄− y〉)α1:n

= α1:nBf (x̄||y)

By Definition A.4 the last expression has a unique minimum at y = x̄.

13

A.2 Online Algorithms

Here we provide a review of the online algorithms we use. Recall that in this setting our goal is
minimizing regret:
Definition A.5. The regret of an agent playing actions {θt ∈ Θ}t∈[T] on a sequence of loss functions
{`t : Θ 7→ R}t∈[T] is

RT =

T∑
t=1

`t(θt)−min
θ∈Θ

T∑
t=1

`t(θ)

Within-task our focus is on two closely related meta-algorithms, Follow-the-Regularized-Leader
(FTRL) and (linearized lazy) Online Mirror Descent (OMD).
Definition A.6. Given a strictly convex functionR : Θ 7→ R, starting point φ ∈ Θ, fixed learning rate
η > 0, and a sequence of functions {`t : Θ 7→ R}t≥1, Follow-the-Regularized Leader (FTRL

(R)
φ,η)

plays
θt = arg min

θ∈Θ
BR(θ||φ) + η

∑
s<t

`s(θ)

Definition A.7. Given a strictly convex function R : Θ 7→ R, starting point φ ∈ Θ, fixed learning
rate η > 0, and a sequence of functions {`t : Θ 7→ R}t≥1, lazy linearized Online Mirror Descent
(OMD

(R)
φ,η) plays

θt = arg min
θ∈Θ

BR(θ||φ) + η
∑
s<t

〈∇s, θ〉

These formulations make the connection between the two algorithms – their equivalence in the linear
case `s(·) = 〈∇s, ·〉 – very explicit. There exists a more standard formulation of OMD that is used
to highlight its generalization of OGD – the case of R(·) = 1

2‖ · ‖
2
2 – and the fact that the update

is carried out in the dual space induced by R [26, Section 5.3]. However, we will only need the
following regret bound satisfied by both [48, Theorems 2.11 and 2.15]
Theorem A.1. Let {`t : Θ 7→ R}t∈[T] be a sequence of convex functions that are Gt-Lipschitz w.r.t.

‖ · ‖ and let R : S 7→ R be 1-strongly-convex. Then the regret of both FTRL
(R)
η,φ and OMD

(R)
η,φ is

bounded by

RT ≤
BR(θ∗||φ)

η
+ ηG2T

for all θ∗ ∈ Θ and G2 ≥ 1
T

∑T
t=1G

2
t .

We next review the online algorithms we use for the meta-update. The main requirement here is
logarithmic regret guarantees for the case of strongly convex loss functions, which is satisfied by two
well-known algorithms:
Definition A.8. Given a sequence of strictly convex functions {`t : Θ 7→ R}t≥1, Follow-the-Leader
(FTL) plays arbitrary θ1 ∈ Θ and for t > 1 plays

θt = arg min
θ∈Θ

∑
s<t

`s(θ)

Definition A.9. Given a sequence of functions {`t : Θ 7→ R}t≥1 that are αt-strongly-convex w.r.t.
‖ · ‖2, Adaptive OGD (AOGD) plays arbitrary θ1 ∈ Θ and for t > 1 plays

θt+1 = ProjΘ

(
θt −

1

α1:t
∇f(θt)

)
Kakade and Shalev-Shwartz [32, Theorem 2] and Bartlett et al. [7, Theorem 2.1] provide for FTL
and AOGD, respectively, the following regret bound:
Theorem A.2. Let {`t : Θ 7→ R}t∈[T] be a sequence of convex functions that are Gt-Lipschitz and
αt-strongly-convex w.r.t. ‖ · ‖. Then the regret of both FTL and AOGD is bounded by

RT ≤
1

2

T∑
t=1

G2
t

α1:t

14

Finally, we state the EWOO algorithm due to Hazan et al. [28]. While difficult to run in high-
dimensions, we will be running this method in single dimensions, when computing it requires only
one integral.
Definition A.10. Given a sequence of γ-exp-concave functions {`t : Θ 7→ R}, Exponentially
Weighted Online Optimization (EWOO) plays

θt =

∫
Θ
θ exp(−γ

∑
s<t `s(θ))dθ∫

Θ
exp(−γ

∑
s<t `s(θ))dθ

Hazan et al. [28, Theorem 7] provide the following guarantee for EWOO, which is notable for its
lack of explicit dependence on the Lipschitz constant.
Theorem A.3. Let {`t : Θ 7→ R} be a sequence of γ-exp-concave functions. Then the regret of
EWOO is bounded by

RT ≤
d

γ
(1 + log(T + 1))

A.3 Online-to-Batch Conversion

Finally, as we are also interested in distributional meta-learning, we discuss some techniques for
converting regret guarantees into generalization bounds, which are usually named online-to-batch
conversions. We first state some standard results.
Proposition A.1. If a sequence of bounded convex loss functions {`t : Θ 7→ R}t∈[T] drawn i.i.d.
from some distribution D is given to an online algorithm with regret bound RT that generates a
sequence of actions {θt ∈ Θ}t∈[T] then

E
DT

E
`∼D

`(θ̄) ≤ E
`∼D

`(θ∗) +
RT

T

for θ̄ = 1
T θ1:T and any θ∗ ∈ Θ.

Proof. Applying Jensen’s inequality yields

E
DT

E
`∼D

`(θ̄) ≤ 1

T
E
DT

T∑
t=1

E
`′t∼D

`′t(θt)

=
1

T
E

{`t}∼DT

(
T∑
t=1

E
`′t∼D

`′t(θt)− `t(θt)

)
+

1

T
E

{`t}∼DT

(
T∑
t=1

`t(θt)

)

≤ 1

T

T∑
t=1

E
{`s}s<t∼Dt−1

(
E

`′t∼D
`′t(θt)− E

`t∼D
`t(θt)

)
+

RT

T
+

1

T

T∑
t=1

E
`∼D

`(θ∗)

=
RT

T
+ E
`∼D

`(θ∗)

where we used the fact that θt only depends on `1, . . . , `t−1.

For nonnegative bounded losses we have the following fact [14, Proposition 1]:
Proposition A.2. If a sequence of loss functions {`t : Θ 7→ [0, 1]}t∈[T] drawn i.i.d. from some
distribution D is given to an online algorithm that generates a sequence of actions {θt ∈ Θ}t∈[T]

then
1

T

T∑
t=1

E
`∼D

`(θt) ≤
1

T

T∑
t=1

`t(θt) +

√
2

T
log

1

δ
w.p. 1− δ

1

T

T∑
t=1

E
`∼D

`(θt) ≥
1

T

T∑
t=1

`t(θt)−
√

2

T
log

1

δ
w.p. 1− δ

Note that Cesa-Bianchi et al. [14] only prove the first inequality; the second follows via the same
argument but applying the symmetric version of the Azuma-Hoeffding inequality [4]. The inequalities
above can be easily used to derive the following competitive bounds:

15

Corollary A.1. If a sequence of loss functions {`t : Θ 7→ [0, 1]}t∈[T] drawn i.i.d. from some
distribution D is given to an online algorithm with regret bound RT that generates a sequence of
actions {θt ∈ Θ}t∈[T] then

E
t∼U [T]

E
`∼D

`(θt) ≤ E
`∼D

`(θ∗) +
RT

T
+

√
8

T
log

1

δ
w.p. 1− δ

for any θ∗ ∈ Θ. If the losses are also convex then for θ̄ = 1
T θ1:T we have

E
`∼D

`(θ̄) ≤ E
`∼D

`(θ∗) +
RT

T
+

√
8

T
log

1

δ
w.p. 1− δ

Proof. By Proposition A.2 we have

1

T

T∑
t=1

E
`∼D

`(θt) ≤
1

T

T∑
t=1

`t(θ
∗) +

RT

T
+

√
2

T
log

1

δ
≤ E
`∼D

`(θ∗) +
RT

T
+

√
8

T
log

1

δ

Apply linearity of expectations to get the first inequality and Jensen’s inequality to get the second.

We now discuss some stronger guarantees for certain classes of loss functions. The first, due to
Kakade and Tewari [33, Theorem 2], yields faster rates for strongly convex losses:
Theorem A.4. Let D be some distribution over loss functions ` : Θ 7→ [0, B] for some B > 0 that
are G-Lipschitz w.r.t. ‖ · ‖ for some G > 0 and α-strongly-convex w.r.t ‖ · ‖ for some α > 0. If a
sequence of loss functions {`t}t∈[T] is drawn i.i.d. from D and given to an online algorithm with
regret bound RT that generates a sequence of actions {θt ∈ Θ}t∈[T] then w.p. 1 − δ we have for
θ̄ = 1

T θ1:T and any θ∗ ∈ Θ that

E
`∼D

`(θ̄) ≤ E
`∼D

`(θ∗) +
RT

T
+

4G

T

√
RT

α
log

4 log T

δ
+

max{16G2, 6αB}
αT

log
4 log T

δ

We can also obtain a data-dependent bound using a result of Zhang [54] under a self-bounding
property. Cesa-Bianchi and Gentile [13, Proposition 2] show a similar but less general result.
Definition A.11. A distribution D over ` : Θ 7→ R has ρ-self-bounding losses if ∀ θ ∈ Θ we have

ρ E
`∼D

`(θ) ≥ E
`∼D

(`(θ)− E
`∼D

`(θ))2

Theorem A.5. LetD be some distribution over ρ-self-bounding convex loss functions ` : Θ 7→ [−1, 1]
for some ρ > 0. If a sequence of loss functions {`t}t∈[T] is drawn i.i.d. from D and given to an
online algorithm with regret bound RT that generates a sequence of actions {θt ∈ Θ}t∈[T] then w.p.
1− δ we have

E
`∼D

`(θ̄) ≤ L̄T +

√
2ρmax{0, L̄T }

T
log

1

δ
+

3ρ+ 2

T
log

1

δ

where θ̄ = 1
T θ1:T and L̄T = 1

T

∑T
t=1 `t(θt) is the average loss suffered by the agent.

Proof. Apply Jensen’s inequality and Zhang [54, Theorem 4].

Note that nonnegative 1-bounded convex losses satisfy the conditions of Theorem A.5 with ρ = 1.
However, we are interested in a different result that can yield a data-dependent competitive bound:
Corollary A.2. Let D be some distribution over convex loss functions ` : Θ 7→ [0, 1] such that the
functions `(θ) − `(θ∗) are ρ-self-bounded for some θ∗ ∈ arg minθ∈Θ E`∼D `(θ). If a sequence of
loss functions {`t}t∈[T] is drawn i.i.d. from D and given to an online algorithm with regret bound
RT that generates a sequence of actions {θt ∈ Θ}t∈[T] then w.p. 1− δ we have

E
`∼D

`(θ̄) ≤ E
`∼D

`(θ∗) +
RT

T
+

1

T

√
2ρRT log

1

δ
+

3ρ+ 2

T
log

1

δ

where θ̄ = 1
T θ1:T and E∗ = arg minθ∈Θ E `(θ).

Proof. Apply Theorem A.5 over the sequence of functions {`t(θ)− `t(θ∗)}t∈[T] and by definition
of regret substitute L̄T = 1

T

∑T
t=1 `t(θ)− `t(θ∗) ≤

RT

T .

Zhang [54, Lemma 7] shows that the conditions are satisfied for ρ = 4 by least-squares regression.

16

A.4 Dynamic Regret Guarantees

Here we review several results for optimizing dynamic regret. We first define this quantity:
Definition A.12. The dynamic regret of an agent playing actions {θt ∈ Θ}t∈[T] on a sequence of
loss functions {`t : Θ 7→ R} w.r.t. a sequence of reference parameters Ψ = {ψt}t∈[T] is

RT (Ψ) =

T∑
t=1

`t(θt)−
T∑
t=1

`t(ψt)

Mokhtari et al. [42, Corollary 1] show the following guarantee for OGD over strongly convex
functions:
Theorem A.6. Let {`t : Θ 7→ R}t∈[T] be a sequence of α-strongly-convex, β-strongly-smooth, and
G-Lipschitz functions w.r.t. ‖ · ‖2. Then OGD with step-size η ≤ 1

β achieves dynamic regret

RT (Ψ) ≤ GD

1− ρ

(
1 +

T∑
t=2

‖ψt − ψt−1‖2

)

w.r.t. reference sequence Ψ = {ψt}t∈[T] for ρ =
√

1− hα
η for any h ∈ (0, 1] and D the `2-diameter

of Θ.

17

B Strongly Convex Coupling

Our first result is a simple trick that we believe may be of independent interest. It allows us to bound
the regret of FTL on any (possibly non-convex) sequence of Lipschitz functions so long as the actions
played are identical to those played on a different strongly-convex sequence of Lipschitz functions.
The result is formalized in Theorem B.1.

B.1 Derivation

We start with some standard facts about convex functions.
Claim B.1. Let f : S 7→ R be an everywhere sub-differentiable convex function. Then for any norm
‖ · ‖ we have

f(x)− f(y) ≤ ‖∇f(x)‖∗‖x− y‖ ∀ x, y ∈ S
Claim B.2. Let f : S 7→ R be α-strongly-convex w.r.t. ‖ · ‖ with minimum x∗ ∈ arg minx∈S f(x).
Then x∗ is unique and for all x ∈ S we have

f(x) ≥ f(x∗) +
α

2
‖x− x∗‖2

Next we state some technical results, starting with the well-known be-the-leader lemma [48,
Lemma 2.1].
Lemma B.1. Let θ1, . . . , θT+1 ∈ Θ be the sequence of actions of FTL on the function sequence
{`t : Θ 7→ R}t∈[T]. Then

T∑
t=1

`t(θt)− `t(θ∗) ≤
T∑
t=1

`t(θt)− `t(θt+1)

for all θ∗ ∈ Θ.

The final result depends on a stability argument for FTL on strongly-convex functions adapted from
Saha et al. [47]:
Lemma B.2. Let {`t : Θ 7→ R}t∈[T] be a sequence of functions that are αt-strongly-convex w.r.t.
‖ · ‖ and let θ1, . . . , θT+1 ∈ Θ be the corresponding sequence of actions of FTL. Then

‖θt − θt+1‖ ≤
2‖∇t‖∗

αt + 2α1:t−1

for all t ∈ [T].

Proof. The proof slightly generalizes an argument in Saha et al. [47, Theorem 6]. For each t ∈ [T]

we have by Claim B.2 and the α1:t-strong-convexity of
∑t
s=1 `s(·) that

t∑
s=1

`s(θt) ≥
t∑

s=1

`s(θt+1) +
α1:t

2
‖θt − θt+1‖2

We similarly have
t−1∑
s=1

`s(θt+1) ≥
t−1∑
s=1

`s(θt) +
α1:t−1

2
‖θt+1 − θt‖2

Adding these two inequalities and applying Claim B.1 yields(αt
2

+ α1:t−1

)
‖θt − θt+1‖2 ≤ `t(θt)− `t(θt+1) ≤ ‖∇t‖∗‖θt − θt+1‖

Dividing by ‖θt − θt+1‖ yields the result.

18

Theorem B.1. Let {`t : Θ 7→ R}t∈[T] be a sequence of functions that are Gt-Lipschitz in ‖ · ‖A and
let θ1, . . . , θT+1 be the sequence of actions produced by FTL. Let {`′t : Θ 7→ R}t∈[T] be a sequence
of functions on which FTL also plays θ1, . . . , θT+1 but which areG′t-Lipschitz and αt-strongly-convex
in ‖ · ‖B . Then

T∑
t=1

`t(θt)− `t(θ∗) ≤ 2C

T∑
t=1

GtG
′
t

αt + 2α1:t−1

for all θ∗ ∈ Θ and some constant C s.t. ‖θ‖A ≤ C‖θ‖B ∀ θ ∈ Θ. If the functions `t are also convex
then we have

T∑
t=1

`t(θt)− `t(θ∗) ≤ 2C

T∑
t=1

‖∇t‖A,∗‖∇′t‖B,∗
αt + 2α1:t−1

or all θ∗ ∈ Θ

Proof. By Lemma B.2,

‖θt − θt+1‖A ≤ C‖θt − θt+1‖B ≤
2CG′t

αt + 2α1:t−1

for all t ∈ [T]. Then by Lemma B.1 and the Gt-Lipschitzness of `t we have for all θ∗ ∈ Θ that

T∑
t=1

`t(θt)− `t(θ∗) ≤
T∑
t=1

`t(θt)− `(θt+1) ≤
T∑
t=1

Gt‖θt − θt+1‖A ≤ 2C

T∑
t=1

GtG
′
t

αt + 2α1:t−1

In the convex case we instead apply Claim B.1 and Lemma B.2 to get

T∑
t=1

`t(θt)−`t(θ∗) ≤
T∑
t=1

`t(θt)−`(θt+1) ≤
T∑
t=1

‖∇t‖A,∗‖θt−θt+1‖A ≤ 2C

T∑
t=1

‖∇t‖A,∗‖∇′t‖B,∗
αt + 2α1:t−1

B.2 Applications

We now show two applications of strongly convex coupling. The first shows logarithmic regret for
FTL run on a sequence of Bregman regularizers. Note that these functions are nonconvex in general.
Proposition B.1. Let R : Θ 7→ R be 1-strongly-convex w.r.t. ‖ · ‖ and consider any θ1, . . . , θT ∈
Θ. Then when run on the loss sequence α1BR(θ1||·), . . . , αTBR(θT ||·) for any positive scalars
α1, . . . , αT ∈ R+, FTL obtains regret

RT ≤ 2CD

T∑
t=1

α2
tGt

αt + 2α1:t−1

for C s.t. ‖θ‖ ≤ C‖θ‖2 ∀ θ ∈ Θ, D = maxθ,φ∈Θ ‖θ − φ‖2 the `2-diameter of Θ, and Gt the
Lipschitz constant of BR(θt||·) over Θ w.r.t. ‖ · ‖. Note that for ‖ · ‖ = ‖ · ‖2 we have C = 1 and
Gt ≤ D ∀ t ∈ [T].

Proof. Note that αtBR(θt||·) is αtGt-Lipschitz w.r.t. ‖ · ‖. Let R′(·) = 1
2‖ · ‖

2
2, so BR′(θt||φ) =

1
2‖θt− φ‖

2
2 ∀ φ ∈ Θ, t ∈ [T]. The function αtBR′(θt||·) is thus αt-strongly-convex and D-Lipschitz

w.r.t. ‖ · ‖2. Now by Claim A.1 FTL run on this new sequence plays the same actions as FTL run on
the original sequence. Applying Theorem B.1 yields the result.

19

In the next application we use coupling to give a Õ(T
3
5)-regret algorithm for a sequence of non-

Lipschitz convex functions.

Proposition B.2. Let {`t : R+ 7→ R}t≥1 be a sequence of functions of form `t(x) =
(
B2
t

x + x
)
αt

for any positive scalars α1, . . . , αT ∈ R+ and adversarially chosen Bt ∈ [0, D]. Then the ε-FTL

algorithm, which for ε > 0 uses the actions of FTL run on the functions ˜̀
t(x) =

(
B2
t+ε2

x + x
)
αt

over the domain [ε,
√
D2 + ε2] to determine xt, achieves regret

RT ≤ min

{
ε2

x∗
, ε

}
α1:T + 2Dmax

{
D3

ε3
, 1

} T∑
t=1

α2
t

αt + 2α1:t−1

for all x∗ > 0.

Proof. Define B̃2
t = B2

t + ε2 and note that FTL run on the functions ˜̀′
t(x) =

(
x2

2 − B̃
2
t log x

)
αt

plays the exact same actions x2
t =

∑
s<t αsB̃

2
s

α1:t−1
as FTL run on ˜̀

t. We have that

|∂x ˜̀
t| = αt

∣∣∣∣∣1− B̃2
t

x2

∣∣∣∣∣ ≤ αtD
2

ε2

|∂x ˜̀′
t| = αt

∣∣∣∣∣x− B̃2
t

x

∣∣∣∣∣ ≤ αt max

{
D,

D2

ε

}
∂xx ˜̀′

t = αt

(
1 +

B̃2
t

x2

)
≥ αt

so the functions ˜̀
t are αtD

2

ε2 -Lipschitz while the functions ˜̀′
t are αtDmax

{
D
ε , 1

}
-Lipschitz and

αt-strongly-convex. Therefore by Theorem B.1 we have that

T∑
t=1

˜̀
t(xt)− ˜̀

t(x
∗) ≤ 2Dmax

{
D3

ε3
, 1

} T∑
t=1

α2
t

αt + 2α1:t−1

for any x∗ ∈ [ε,
√
D2 + ε2]. Since

∑T
t=1

˜̀
t is minimized on [ε,

√
D2 + ε2], the above also holds for

all x∗ > 0. Therefore we have that
T∑
t=1

`t(xt) ≤
T∑
t=1

(
B2
t + ε2

xt
+ xt

)
αt

=

T∑
t=1

˜̀
t(xt)

≤ min
x∗>0

2Dmax

{
D3

ε3
, 1

} T∑
t=1

α2
t

αt + 2α1:t−1
+

T∑
t=1

˜̀
t(x
∗)

= min
x∗>0

2Dmax

{
D3

ε3
, 1

} T∑
t=1

α2
t

αt + 2α1:t−1
+

T∑
t=1

(
B2
t + ε2

x∗
+ x∗

)
αt

= min
x∗>0

ε2

x∗
α1:T + 2Dmax

{
D3

ε3
, 1

} T∑
t=1

α2
t

αt + 2α1:t−1
+

T∑
t=1

`t(x
∗)

Note that substituting x∗ =

√∑T
t=1 αtB̃

2
t

α1:T
into the second-to-last line yields

min
x∗>0

T∑
t=1

(
B2
t + ε2

x∗
+ x∗

)
αt ≤ 2

√√√√α1:T

T∑
t=1

αtB̃2
t ≤ 2εα1:T + min

x∗>0

T∑
t=1

`t(x
∗)

completing the proof.

20

C Adaptive and Dynamic Guarantees

Throughout Appendices C, D, and E we assume that arg minθ∈Θ

∑
`∈S `(θ) returns a unique mini-

mizer of the sum of the loss functions in the sequence S . Formally, this can be defined to be the one
minimizing an appropriate Bregman divergence BR(·|φR) from some fixed φR ∈ Θ, e.g. the origin
in Euclidean space or the uniform distribution over the simplex, which is unique by strong-convexity
of BR(·|φR) and convexity of the set of optimizers of a convex function.
Theorem C.1. Let each task t ∈ [T] consist of a sequence of mt convex loss functions `t,i : Θ 7→ R
that are Gt,i-Lipschitz w.r.t. ‖ · ‖. For G2

t = G2
1:mt/mt and R : Θ 7→ R a 1-strongly-convex function

w.r.t. ‖ · ‖ define the following online algorithms:

1. INIT: a method that has dynamic regret Uinit
T (Ψ) =

∑T
t=1 f

init
t (φt)− f init

t (ψt) w.r.t. refer-
ence actions Ψ = {ψt}Tt=1 ⊂ Θ over the sequence f init

t (·) = BR(θ∗t ||·)Gt
√
mt .

2. SIM: a method that has (static) regret Usim
T (x) decreasing in x > 0 over the sequence of

functions f sim
t (x) =

(
BR(θ∗t ||φt)

x + x
)
Gt
√
mt.

Then if Algorithm 1 sets φt = INIT(t) and ηt = SIM(t)
Gt
√
mt

it will achieve

R̄T ≤ ŪT ≤
Usim
T (VΨ)

T
+

1

T
min

Uinit
T (Ψ)

VΨ
, 2

√√√√Uinit
T (Ψ)

T∑
t=1

Gt
√
mt

+
2VΨ

T

T∑
t=1

Gt
√
mt

for V 2
Ψ = 1∑T

t=1 Gt
√
mt

∑T
t=1 BR(θ∗t ||ψt)Gt

√
mt.

Proof. Letting xt = SIM(t) be the output of SIM at time t, defining σt = Gt
√
mt and σ1:T =∑T

t=1 σt, and substituting into the regret-upper-bound of OMD/FTRL (2), we have that

ŪT T =

T∑
t=1

(
BR(θ∗t ||φt)

xt
+ xt

)
σt ≤ min

x>0
Usim
T (x) +

T∑
t=1

(
BR(θ∗t ||φt)

x
+ x

)
σt

≤ min
x>0

Usim
T (x) +

Uinit
T (Ψ)

x
+

T∑
t=1

(
BR(θ∗t ||ψt)

x
+ x

)
σt

≤ Usim
T (VΨ) + min

{
Uinit
T (Ψ)

VΨ
, 2

√√
Uinit
T (Ψ)σ1:T

}
+ 2VΨσ1:T

where the last line follows by substituting x = max

{
VΨ,

√
Uinit
T (Ψ)

σ1:T

}
.

Corollary C.1. Under the assumptions of Theorem C.1 and boundedness of BR over Θ, if INIT uses
FTL, or AOGD in the case of R(·) = 1

2‖ · |
2
2, and SIM uses ε-FTL as defined in Proposition B.2, then

Algorithm 1 achieves

ŪT T ≤ min

{
ε2

V
, ε

}
σ1:T + 2Dmax

{
D3

ε3
, 1

} T∑
t=1

σ2
t

σ1:t
+

√√√√8CDσ1:T

T∑
t=1

σ2
t

σ1:t
+ 2V σ1:T

for V 2 = minφ∈Θ

∑T
t=1 σtBR(θ∗t ||φ) and constant C the product of the constant C from Proposi-

tion B.1 and the bound on the gradient of the Bregman divergence. Assuming σt = G
√
m ∀ t and

substituting ε = 1
5√
T

yields

R̄T ≤ ŪT = Õ
(

min

{
1

V T
2
5

+
1√
T
,

1
5
√
T

}
+ V

)√
m

Proof. Substitute Propositions B.1 and B.2 into Theorem C.1.

21

Proposition C.1. Let {`t : R+ 7→ R}t≥1 be a sequence of functions of form `t(x) =
(
B2
t

x + x
)
αt

for any positive scalars α1, . . . , αT ∈ R+ and adversarially chosen Bt ∈ [0, D]. Then the losses
˜̀
t(x) =

(
B2
t+ε2

x + x
)
αt over the domain [ε,

√
D2 + ε2] are αtD

2

ε2 -Lipschitz and 2
αtD

min
{
ε2

D2 , 1
}

-
exp-concave.

Proof. Lipschitzness follows by taking derivatives as in Proposition B.2. Define B̃2
t = B2

t + ε2. We
then have

∂x ˜̀
t = αt

(
1− B̃2

t

x2

)
∂xx ˜̀

t =
2αtB̃

2
t

x3

The γ-exp-concavity of the functions ˜̀
t can be determined by finding the largest γ satisfying

γ ≤ ∂xx ˜̀
t

(∂x ˜̀
t)2

=
2B̃2

t x

αt(B̃2
t − x2)2

for all x ∈ [ε,
√
D2 + ε2] and all t ∈ [T]. We first minimize jointly over choice of x, B̃t ∈

[ε,
√
D2 + ε2]. The derivatives of the objective w.r.t. x and B̃t, respectively, are

2B̃2
t (B̃2

t + 3x2)

(B̃2
t − x2)3

− 4B̃tx(B̃2
t + x2)

(B̃2
t − x2)3

Note that the objective approaches∞ as the coordinates approach the line x = B̃t. For x < B̃t the
derivative w.r.t. x is always positive while the derivative w.r.t. B̃t is always negative. Since we have
the constraints x ≥ ε and B̃2

t ≤ D2 + ε2, the optimum over x < B̃t is thus attained at x = ε and
B̃2
t = D2 + ε2. Substituting into the original objective yields

2(D2 + ε2)ε

αtD4
≥ 2ε

αtD2

For x > B̃t the derivative w.r.t. x is always negative while the derivative w.r.t. B̃t is always positive.
Since we have the constraints x ≤

√
D2 + ε2 and B̃2

t ≥ ε2, the optimum over x > B̃t is thus
attained at x =

√
D2 + ε2 and B̃2

t = ε2. Substituting into the original objective yields

2ε2
√
D2 + ε2

αtD4
≥ 2ε2

αtD3

Thus we have that the functions ˜̀
t are 2

αtD
min

{
ε2

D2 , 1
}

-exp-concave.

Corollary C.2. Let {`t : R+ 7→ R}t≥1 be a sequence of functions of form `t(x) =
(
B2
t

x + x
)
αt

for any positive scalars α1, . . . , αT ∈ R+ and adversarially chosen Bt ∈ [0, D]. Then the ε-EWOO

algorithm, which for ε > 0 uses the actions of EWOO run on the functions ˜̀
t(x) =

(
B2
t+ε2

x + x
)
αt

over the domain [ε,
√
D2 + ε2] to determine xt, achieves regret

RT ≤ min
x∗>0

{
ε2

x∗
, ε

}
α1:T +

Dαmax

2
max

{
D2

ε2
, 1

}
(1 + log(T + 1))

for all x∗ > 0.

Proof. Since
∑T
t=1

˜̀
t is minimized on [ε,

√
D2 + ε2], we apply Theorem A.3 and follow a similar

argument to that concluding Proposition B.2 to get
T∑
t=1

`t(xt) ≤
Dαmax

2
max

{
D2

ε2
, 1

}
(1 + log(T + 1)) +

T∑
t=1

˜̀
t(x
∗)

= min
x∗>0

{
ε2

x∗
, ε

}
α1:T +

Dαmax

2
max

{
D2

ε2
, 1

}
(1 + log(T + 1)) +

T∑
t=1

`t(x
∗)

22

Corollary C.3. Under the assumptions of Theorem C.1 and boundedness of BR over Θ, if INIT uses
FTL, or AOGD in the case of R(·) = 1

2‖ · ‖
2
2, and SIM uses ε-EWOO as defined in Proposition C.2,

then Algorithm 1 achieves

ŪT T ≤ min

{
ε2

V
, ε

}
σ1:T+

Dσmax

2
max

{
D2

ε2
, 1

}
(1+log(T+1))+

√√√√√√√√8CDσ1:T

T∑
t=1

σ2
t

σ1:t
+2V σ1:T

for V 2 = minφ∈Θ

∑T
t=1 σtBR(θ∗t ||φ) and constant C the product of the constant C from Proposi-

tion B.1 and the bound on the gradient of the Bregman divergence. Assuming σt = G
√
m ∀ t and

substituting ε = 1
4√
T

yields

R̄T ≤ ŪT = Õ
(

min

{
1 + 1

V√
T

,
1

4
√
T

}
+ V

)√
m

Proof. Substitute Proposition B.1 and Corollary C.2 into Theorem C.1.

Corollary C.4. Under the assumptions of Theorem 3.1 and boundedness of Θ, if INIT is OGD with
learning rate 1

σmax
and SIM uses ε-EWOO as defined in Proposition C.2 then Algorithm 1 achieves

ŪT T ≤ min

{
ε2

VΨ
, ε

}
σ1:T +

Dσmax

2
max

{
D2

ε2
, 1

}
(1 + log(T + 1))

+ 2Dmin

{
Dσmax

VΨ
(1 + PΨ),

√
2σmaxσ1:T (1 + PΨ)

}
+ 2VΨσ1:T

for PT (Ψ) =
∑T
t=2 ‖ψt − ψt−1‖2. Assuming σt = G

√
m ∀ t and substituting ε = 1

4√
T

yields

R̄T ≤ ŪT = Õ

(
min

{
1 + 1

VΨ√
T

,
1

4
√
T

}
+ min

{
1 + PΨ

VΨT
,

√
1 + PΨ

T

}
+ VΨ

)
√
m

Proof. Substitute Theorem 3.3 and Corollary C.2 into Theorem C.1.

23

D Adapting to the Inter-Task Geometry

For clarity, vectors and matrices in this section will be bolded, although scalar regret quantities will
continue to be as well. For any two vectors x,y ∈ Rd, x�y will denote element-wise multiplication,
x
y will denote element-wise division, xp will denote raising each element of x to the power p, and
max{x,y} and min{x,y} will denote element-wise maximum and minimum, respectively. For any
nonnegative a ∈ Rd we will use the notation ‖ · ‖a = 〈

√
a, ·〉; note that if all elements of a are

positive then ‖ · ‖a is a norm on Rd with dual norm ‖ · ‖a−1 .
Claim D.1. For t ≥ 1 and p ∈ (0, 1) we have

t−1∑
s=0

1

(s+ 1)p
≥

t∑
s=1

1

(s+ 1)p
≥ cpt1−p and

t∑
s=1

1

sp
≤ cpt1−p

for cp =
1−(2

3)
1−p

1−p and cp = 1
1−p .

Proof.

t−1∑
s=0

1

(s+ 1)p
≥

t∑
s=1

1

(s+ 1)p
≥
∫ t+1

1

ds

(s+ 1)p
=

(t+ 2)1−p − 21−p

1− p
≥ cp(t+ 2)1−p ≥ cpt1−p

t∑
s=1

1

sp
≤ 1 +

∫ t

1

ds

sp
= 1 +

t1−p − 1

1− p
≤ cpt1−p

Claim D.2. For any x ∈ Rd we have ‖x2‖22 ≤ ‖x‖42.

Proof.

‖x2‖22 =

d∑
j=1

x4
j ≤

 d∑
j=1

x2
j

2

= ‖x‖42

We now review some facts from matrix analysis. Throughout this section we will use matrices in
Rd×d; we denote the subset of symmetric matrices by Sd, the subset of symmetric PSD matrices by
Sd+, and the subset of symmetric positive-definite matrices by Sd++. Note that every symmetric matrix
A ∈ Sd has diagonalizationA = V ΛV −1 for diagonal matrix Λ ∈ Sd containing the eigenvalues of
A along the diagonal and a matrix V ∈ Rd×d of orthogonal eigenvectors. For such matrices we will
use λj(A) to denote the jth largest eigenvalue ofA and for any function f : [λd(A), λ1(A)] 7→ R
we will use the notation

f(A) = V

f(Λ11)
. . .

f(Λdd)

V −1

We will denote the spectral norm by ‖ · ‖2 and the Frobenius norm by ‖ · ‖F .

Claim D.3. [9, Section A.4.1] f(X) = log detX has gradient∇Xf = X−1 over Sd++

Claim D.4. [43, Theorem 3.1] The function f(X) = − log detX is 1
σ2 -strongly-convex w.r.t. ‖ · ‖2

over the set of symmetric positive-definite matrices with spectral norm bounded by σ.

24

Definition D.1. A function f : (0,∞) 7→ R is operator convex if ∀X,Y ∈ Sd++ and any t ∈ [0, 1]
we have

f(tX + (1− t)Y) � tf(X) + (1− t)f(Y)

Claim D.5. IfA ∈ Sd+ and f : (0,∞) 7→ R is operator convex then Tr(Af(X)) is convex on Sd++.

Proof. Consider any X,Y ∈ Sd++ and any t ∈ [0, 1]. By the operator convexity of f , positive
semi-definiteness ofA, and linearity of the trace functional we have that

0 � Tr(A(tf(X) + (1− t)f(Y)− f(tX + (1− t)Y)))

= tTr(A(f(X))) + (1− t) Tr(Af(Y))− Tr(A(f(tX + (1− t)Y)))

Corollary D.1. IfA ∈ Sd+ then Tr(AX−1) and Tr(AX) are convex over Sd++.

Proof. By the Löwner-Heinz theorem [17], x−1, x, and x2 are operator convex. The result follows
by applying Claim D.5.

Corollary D.2. [39, Corollary 1.1] IfA,B ∈ Sd+ then Tr(AXBX) is convex over Sd+.

25

Proposition D.1. Let {`t : R+ 7→ R}t≥1 be of form `t(x) =
∥∥∥b2

t

x + g2
t � x

∥∥∥
1

for adversarially

chosen bt, gt satisfying ‖bt‖2 ≤ D, ‖gt‖2 ≤ G. Then the (ε, ζ, p)-FTL algorithm, which for ε, ζ > 0

and p ∈ (0, 2
3) uses the actions of FTL run on the functions ˜̀

t(x) =
∥∥∥b2

t+ε
2
t1d
x + (g2

t + ζ2
t 1d)� x

∥∥∥
1
,

where ε2
t = ε2(t+ 1)−p, ζ2

t = ζ2(t+ 1)−p for t ≥ 0 and b0 = g0 = 0d, to determine xt, has regret

RT ≤ Cp
d∑
j=1

min

{(
ε2

x∗j
+ ζ2x∗j

)
T 1−p,

√
ζ2b2

j,1:T + ε2g2
j,1:TT

1−p
2 + 2εζT 1−p

}

+ Cp

(
D + ε

ζ3
G4 +

G+ ζ

ε3
D4

)
T

3
2p + Cp(Dζ +Gε+ εζ)d

for any x > 0 and some constant Cp depending only on p.

Proof. Define b̃2
t = b2

t + ε2
t1d, g̃

2
t = g2

t + ζ2
t 1d and note that FTL run on the modified functions

˜̀′
t(x) =

∥∥∥ g̃2
t�x

2

2 − b̃2
t � log(x)

∥∥∥
1

plays the exact same actions x2
t =

b̃2
0:t−1

g̃2
0:t−1

as FTL run ˜̀
t. Since

both sequences of loss functions are separable across coordinates, we consider d per-coordinate
problems, with loss functions of form ˜̀

t(x) =
b̃2t
x + g̃2

t x and ˜̀′
t(x) =

g̃2
tx

2

2 − b̃2t log x. We have that

|∇t| =

∣∣∣∣∣g̃2
t −

b̃2t
x2
t

∣∣∣∣∣ =
|g̃2
t x

2
t − b̃2t |
x2
t

|∇′t| =

∣∣∣∣∣g̃2
t xt −

b̃2t
xt

∣∣∣∣∣ =
|g̃2
t x

2
t − b̃2t |
xt

∂xx ˜̀′
t = g̃2

t +
b̃2t
x2
≥ g̃2

t

so by Theorem B.1 and substituting the action x2
t =

b̃20:t−1

g̃2
0:t−1

we have per-coordinate regret

T∑
t=1

˜̀
t(xt)− ˜̀

t(x
∗) ≤ 2

T∑
t=1

|∇t||∇′t|
g̃2

1:t

= 2

T∑
t=1

|g̃2
t x

2
t − b̃2t |2

x3
t g̃

2
1:t

≤ 2

T∑
t=1

g̃4
t xt
g̃2

1:t

+
b̃4t

x3
t g̃

2
1:t

= 2

T∑
t=1

g̃4
t

√
b̃20:t−1

g̃2
1:t

√
g̃2

0:t−1

+
b̃4t

g̃2
1:t

(
b̃20:t−1

g̃2
0:t−1

) 3
2

≤ 2

T∑
t=1

g̃4
t

√
b̃20:t−1

g̃2
1:t

√
g̃2

0:t−1

+
b̃4t
√

2g̃2
1:t

(b̃20:t−1)
3
2

+
b̃4t g̃

3
0

√
2

g̃2
1:t(b̃

2
0:t−1)

3
2

Taking the summation over the coordinates yields

T∑
t=1

˜̀
t(xt)− ˜̀

t(x
∗)

≤ 4

T∑
t=1

 (D + ε)(‖g2
t ‖22 + ζ4

t d)

ζ2
1:t

√
2ζ2

0:t−1

+
(G+ ζ)(‖b2

t‖22 + ε4
td)

(ε2
0:t−1)

3
2

+
(‖b2

t‖22 + ε4
td)ζ3

ζ̃2
0:t−1(ε̃2

0:t−1)
3
2

√2t

≤ 4

T∑
t=1

(
(D + ε)(G4 + ζ4

t d)

(cpζ2t1−p)
3
2

√
2

+
(G+ ζ)(D4 + ε4

td)

(cpε2t1−p)
3
2

+
(D4 + ε4

td)ζ

ε3(cpt1−p)
5
2

)
√

2t

≤ 4
√

2
1 + 1

cp

c
3
2
p

T∑
t=1

(
D + ε

ζ3
G4 +

G+ ζ

ε3
D4

)
t

3
2p−1 +

Dζ +Gε+ 2εζ

t1+ p
2

d

≤ Cp,1
(
D + ε

ζ3
G4 +

G+ ζ

ε3
D4

)
T

3
2p + Cp,2(Dζ +Gε+ 2εζ)d

26

for Cp,1 = 4c1− 3
2p

√
2
(

1 + 1
cp

)
/c3/2
p and Cp,2 = 4

√
2
(

1 + 1
cp

)∑∞
t=1

1

t1+
p
2
/c3/2
p . Thus we have

T∑
t=1

`t(xt) ≤
T∑
t=1

˜̀
t(xt)

≤ min
x∗>0

Cp,1

(
D + ε

ζ3
G4 +

G+ ζ

ε3
D4

)
T

3
2p + Cp,2(Dζ +Gε+ 2εζ)d+

T∑
t=1

˜̀
t(x
∗)

= Cp,1

(
D + ε

ζ3
G4 +

G+ ζ

ε3
D4

)
T

3
2p + Cp,2(Dζ +Gε+ 2εζ)d

+ min
x∗>0

T∑
t=1

∥∥∥∥b2
t + ε2

t1d
x∗

+ (g2
t + ζ2

t 1d)� x∗
∥∥∥∥

1

≤ Cp,1
(
D + ε

ζ3
G4 +

G+ ζ

ε3
D4

)
T

3
2p + Cp,2(Dζ +Gε+ 2εζ)d

min
x∗>0

cpT
1−p

d∑
j=1

ε2

x∗j
+ ζ2x∗j +

T∑
t=1

`t(x
∗)

Separating again per-coordinate we have that

T∑
t=1

b̃2t
x∗

+ g̃2
t x
∗ ≤ cpT 1−p ε

2

x∗
+ ζ2x∗ +

T∑
t=1

`t(x
∗)

However, substituting x∗ =

√
b̃21:T

g̃1:T
also yields

min
x∗>0

T∑
t=1

b̃2t
x∗

+ g̃2
t x
∗ ≤ 2

√
b̃21:T g̃

2
1:T

≤ 2
√
cp (ζ2b21:T + ε2g2

1:T)T
1−p

2 + 2cpεζT
1−p + min

x∗>0

T∑
t=1

`t(x
∗)

completing the proof.

27

Theorem D.1. Let Θ be a bounded convex subset of Rd, let D ⊂ Rd×d be the set of positive definite
diagonal matrices, and let each task t ∈ [T] consist of a sequence ofm convex Lipschitz loss functions
`t,i : Θ 7→ R. Suppose for each task t we run the iteration in Equation 5 setting φ = 1

t−1θ
∗
1:t−1 and

settingH = Diag(ηt) via Equation 6 for ε = 1, ζ =
√
m, and p = 2

5 . Then we achieve

R̄T ≤ ŪT= min
φ∈Θ
H∈D

Õ

 d∑
j=1

min

{
1
Hjj

+Hjj

T
2
5

,
1

5
√
T

} √√
m+

1

T

T∑
t=1

‖θ∗t − φ‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

Proof. Define b2
t = 1

2 (θ∗t − φt)2 and g2
t =∇2

1:m. Then applying Proposition D.1 yields

ŪT T =

T∑
t=1

‖θ∗t − φt‖2η−1
t

2
+

m∑
i=1

‖∇t,i‖2ηt

=

T∑
t=1

∥∥∥∥ (θ∗t − φt)2

2ηt
+ ηt �∇2

t,1:m

∥∥∥∥
1

≤ min
η>0

T∑
t=1

∥∥∥∥ (θ∗t − φt)2

2η
+ η �∇2

t,1:m

∥∥∥∥
1

+ Cp

d∑
j=1

min

{(
ε2

ηj
+ ζ2ηj

)
T 1−p,

√
ζ2b2

j,1:T + ε2g2
j,1:TT

1−p
2 + 2εζT 1−p

}

+ Cp

(
D + ε

ζ3
G4m2 +

G
√
m+ ζ

ε3
D4

)
T

3
2p + Cp(Dζ +G

√
mε+ εζ)d

≤ min
φ∈Θ
η>0

T∑
t=1

‖θ∗t − φ‖2η−1

2
+

mt∑
i=1

‖∇t,i‖2η +
D2
∞
2
‖η−1‖1(1 + log T)

+ Cp

d∑
j=1

min

{(
ε2

ηj
+ ζ2ηj

)
T 1−p,

√
ζ2b2

j,1:T + ε2g2
j,1:TT

1−p
2 + 2εζT 1−p

}

+ Cp

(
D + ε

ζ3
G4m2 +

G
√
m+ ζ

ε3
D4

)
T

3
2p + Cp(Dζ +G

√
mε+ εζ)d

Substituting η + 1d√
mT

for the optimum and the values of ε, ζ, p completes the proof.

28

Proposition D.2. Let {`t : R+ 7→ R}t≥1 be of form `t(X) = Tr(X−1B2
t) + Tr(XG2

t) for
adversarially chosen Bt,Gt satisfying ‖Bt‖2 ≤ σB , ‖Gt‖2 ≤ σG

√
m for m ≥ 1. Then the

(ε, ζ)-FTL algorithm, which for ε, ζ > 0 uses the actions of FTL on the alternate function sequence
˜̀
t(X) = Tr((B2 + ε2Id)X

−1) + Tr((G2 + ζ2Id)X), achieves regret

RT ≤
Cσm

2

ε4ζ3
(1 + log T) + ((1 + σ2

G)ε
√
m+ (1 + σ2

B)ζ)T

for constant Cσ depending only on σB , σG.

Proof. Define B̃2
t = B2

t + ε2Id, G̃
2
t = G2

t + ζ2Id and note that FTL run on modified functions
˜̀′
t(X) = 1

2 Tr(B̃−2
t XG̃2

tX)− log detX has the same solution B̃2
1:T = XG̃2

1:TX .

‖∇X ˜̀
t(X)‖2 = ‖G̃2

t −X−1B̃2
tX
−1‖2 ≤ ‖G̃t‖22 + ‖X−1‖22‖B̃t‖22 ≤

σ2
B

ε2
+mσ2

G + ζ2

‖∇X ˜̀′
t(X)‖2 = ‖G̃2

tXB̃
−2
t −X−1‖2 ≤ ‖G̃t‖22‖X‖2‖B̃−1

t ‖22 + ‖X−1‖2

≤
(mσ2

G + ζ2)
√
σ2
B + ε2

ε2ζ
+

√
mσ2

G + ζ2

ζ

Since by Claim D.4 − log det |X| is ζ2

σ2
B+ε2

-strongly-convex we have by Theorem B.1 that

T∑
t=1

˜̀
t(Xt)− ˜̀

t(X
∗) ≤ Cσm

2

ε4ζ3
(1 + log T)

for some Cσ depending on σ2
B , σ

2
G. Therefore

T∑
t=1

`t(X) ≤
T∑
t=1

˜̀
t(X)

≤ Cσm
2

ε4ζ3
(1 + log T) + min

X�0

T∑
t=1

˜̀
t(X)

≤ Cσm
2

ε4ζ3
(1 + log T) + min

X�0
ε2T Tr(X−1) + ζ2T Tr(X) +

T∑
t=1

`t(X)

≤ Cσm
2

ε4ζ3
(1 + log T) + (1 + σ2

G)εT
√
m+ min

X�0
ζ2T Tr(X) +

T∑
t=1

`t(X)

≤ Cσm
2

ε4ζ3
(1 + log T) + ((1 + σ2

G)ε
√
m+ (1 + σ2

B)ζ)T + min
X�0

T∑
t=1

`t(X)

29

Theorem D.2. Let Θ be a bounded convex subset of Rd and let each task t ∈ [T] consist of a sequence
of m convex Lipschitz loss functions `t,i : Θ 7→ R. Suppose for each task t we run the iteration in
Equation 5 with φ = 1

t−1θ
∗
1:t−1 andH the unique positive definite solution ofB2

t = HG2
tH for

B2
t = tε2Id +

∑
s<t

(θ∗s − φs)(θ∗s − φs)T and G2
t = tε2Id +

∑
s<t

m∑
i=1

∇s,i∇T
s,i

for ε = 1/ 8
√
T and ζ =

√
m/ 8
√
T . Then we achieve

R̄T ≤ ŪT = Õ
(

1
8
√
T

)√
m+ min

φ∈Θ
H�0

2λ2
1(H)

λd(H)

1 + log T

T
+

T∑
t=1

‖θ∗t − φ∗‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

Proof. Let D and G be the diameter of Θ and Lipschitz bound on the losses, respectively. Then
applying Proposition D.2 yields

ŪT T =

T∑
t=1

‖θ∗t − φt‖2H−1
t

2
+

m∑
i=1

‖∇t,i‖2Ht

=

T∑
t=1

1

2
Tr
(
H−1
t (θ∗t − φt)(θ∗t − φt)T

)
+ Tr

(
Ht

m∑
i=1

∇t,i∇T
t,i

)

≤ min
H�0

T∑
t=1

1

2
Tr
(
H−1(θ∗t − φt)(θ∗t − φt)T

)
+ Tr

(
H

m∑
i=1

∇t,i∇T
t,i

)

+
Cσm

2

ε4ζ3
(1 + log T) + ((1 +G2)ε

√
m+ (1 +D2)ζ)T

= min
H�0

T∑
t=1

‖θ∗t − φt‖2H−1

2
+ Tr

(
H

m∑
i=1

∇t,i∇T
t,i

)

+
Cσm

2

ε4ζ3
(1 + log T) + ((1 +G2)ε

√
m+ (1 +D2)ζ)T

≤ min
φ∈Θ
H�0

2λ2
1(H)

λd(H)

T∑
t=1

1

t
+

T∑
t=1

‖θ∗t − φ∗‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

+
Cσm

2

ε4ζ3
(1 + log T) + ((1 +G2)ε

√
m+ (1 +D2)ζ)T

= min
φ∈Θ
H�0

2λ2
1(H)

λd(H)

T∑
t=1

1

t
+

T∑
t=1

‖θ∗t − φ∗‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

+
Cσm

2

ε4ζ3
(1 + log T) + ((1 +G2)ε

√
m+ (1 +D2)ζ)T

30

E Online-to-Batch Conversion for Task-Averaged Regret

Theorem E.1. LetQ be a distribution over distributions P over convex loss functions ` : Θ 7→ [0, 1].
A sequence of sequences of loss functions {`t,i}t∈[T],i∈[m] is generated by drawing m loss functions
i.i.d. from each in a sequence of distributions {Pt}t∈[T] themselves drawn i.i.d. from Q. If such a
sequence is given to an meta-learning algorithm with task-averaged regret bound R̄T that has states
{st}t∈[T] at the beginning of each task t then we have w.p. 1− δ for any θ∗ ∈ Θ that

E
t∼U [T]

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) +
R̄T

m
+

√
8

T
log

1

δ

where θ̄ = 1
mθ1:m is generated by randomly sampling t ∈ U [T], running the online algorithm with

state st, and averaging the actions {θi}i∈[m]. If on each task the meta-learning algorithm runs
an online algorithm with regret upper bound Um(st) a convex, nonnegative, and B

√
m-bounded

function of the state st ∈ X , where X is a convex Euclidean subset, and the total regret upper bound
is ŪT , then we also have the bound

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) +
ŪT

m
+B

√
8

mT
log

1

δ

where θ̄ = 1
mθ1:m is generated by running the online algorithm with state s̄ = 1

T s1:T and averaging
the actions {θi}i∈[m].

Proof. For the second inequality, applying Proposition A.1, Jensen’s inequality, and Proposition A.2
yields

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

(
E
`∼P

`(θ∗) +
Um(s̄)

m

)
≤ E
P∼Q

E
`∼P

`(θ∗) +
1

T

T∑
t=1

E
P∼Q

(
Um(st)

m

)

= E
P∼Q

E
`∼P

`(θ∗) +
2B

T
√
m

T∑
t=1

E
P∼Q

(
Um(st)

2B
√
m

+

√
m

2B

)
− 1

≤ E
P∼Q

E
`∼P

`(θ∗) +
ŪT

m
+B

√
8

mT
log

1

δ

The first inequality follows similarly except using Rm instead of Um, linearity of expectation instead
of Jensen’s inequality, 1 instead of B, and R̄T instead of ŪT .

Note that since regret-upper-bounds are nonnegative one can easily replace 8 by 2 in the second
inequality by simply multiplying and dividing by B

√
m in the third line of the above proof.

Claim E.1. In the setup of Theorem E.1, let θ∗t ∈ arg minθ∈Θ

∑m
i=1 `t,i(θ) and define the quantities

V 2
Q = arg minφ∈Θ EP∼Q EPm ‖θ∗ − φ‖22 and D the `2-radius of Θ. Then w.p. 1− δ we have

V 2 = min
φ∈Θ

1

T

T∑
t=1

‖θ∗t − φ‖22 ≤ O
(
V 2
Q +

D2

T
log

1

δ

)

Proof. Define φ̂ = arg minφ∈Θ

∑T
t=1 ‖θ∗t − φ‖22 and φ∗ = arg minφ∈Θ EP∼Q EPm ‖θ∗ − φ‖22.

Then by a multiplicative Chernoff’s inequality w.p. at least 1− δ we have

TV 2 =

T∑
t=1

‖θ∗t − φ̂‖22 ≤
T∑
t=1

‖θ∗t − φ∗‖22 ≤
(

1 + max

{
1,

3D2

V 2
QT

log
1

δ

})
T E
P∼Q

E
Pm
‖θ∗ − φ∗‖22

≤ 2TV 2
Q + 3D2 log

1

δ

31

Corollary E.1. Under the assumptions of Theorems 3.2 and 5.1, if the loss functions are Lipschitz and
we use Algorithm 1 with ηt also learned, using ε-EWOO as in Theorem 3.2 for ε = 1/ 4

√
mT +1/

√
m,

and set the initialization using φt+1 = 1
t

∑
s≤t θ

∗
s , then w.p. 1− δ we have

E
P∼Q

E
Pm

`P(θ̄) ≤ E
P∼Q

`P(θ∗) + Õ

(
VQ√
m

+ min

{
1√
T

+ 1√
m

VQm
,

1
4
√
m3T

+
1

m

}
+

√
1

T
log

1

δ

)
where V 2

Q = minφ∈Θ EP∼Q EPm ‖θ∗ − φ‖22.

Proof. Substitute Corollary C.3 into Theorem E.1 using the fact the the regret-upper-bounds are
O(
√
m
ε)-bounded. Conclude by applying Claim E.1.

Theorem E.2. Let Q be a distribution over distributions P over convex losses ` : Θ 7→ [0, 1] such
that the functions `(θ)− `(θ∗) are ρ-self-bounded for some ρ > 0 and θ∗ ∈ arg minθ∈Θ E`∼P(θ). A
sequence of sequences of loss functions {`t,i}t∈[T],i∈[m] is generated by drawing m loss functions
i.i.d. from each in a sequence of distributions {Pt}t∈[T] themselves drawn i.i.d. from Q. If such a
sequence is given to an meta-learning algorithm with task-averaged regret bound R̄T that has states
{st}t∈[T] at the beginning of each task t then we have w.p. 1− δ for any θ∗ ∈ Θ that

E
t∼U [T]

E
P∼Q

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) +
R̄T

m
+

√√√√2ρ

m

(
R̄T

m
+

√
8

T
log

2

δ

)
log

2

δ

+

√
8

T
log

2

δ
+

3ρ+ 2

m
log

2

δ

where θ̄ = 1
mθ1:m is generated by randomly sampling t ∈ U [T], running the online algorithm with

state st, and averaging the actions {θi}i∈[m]. If on each task the meta-learning algorithm runs
an online algorithm with regret upper bound Um(st) a convex, nonnegative, and B

√
m-bounded

function of the state st ∈ X , where X is a convex Euclidean subset, and the total regret upper bound
is ŪT , then we also have the bound

E
P∼Q

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) +
ŪT

m
+

√√√√2ρ

m

(
ŪT

m
+B

√
8

mT
log

2

δ

)
log

2

δ

+B

√
8

mT
log

2

δ
+

3ρ+ 2

m
log

2

δ

where θ̄ = 1
mθ1:m is generated by running the online algorithm with state s̄ = 1

T s1:T and averaging
the actions {θi}i∈[m].

Proof. By Corollary A.2 and Jensen’s inequality we have w.p. 1− δ
2 that

E
P∼Q

E
`∼P

`(θ̄) ≤ E
P∼Q

(
E
`∼P

`(θ∗) +
Um(s̄)

m
+

1

m

√
2ρUm(s̄) log

1

δ
+

3ρ+ 2

m
log

1

δ

)

≤ E
P∼Q

E
`∼P

`(θ∗) +
1

T

T∑
t=1

E
P∼Q

(
Um(st)

m

)

+

√√√√ 2ρ

mT

T∑
t=1

E
P∼Q

(
Um(st)

m

)
log

2

δ
+

3ρ+ 2

m
log

2

δ

As in the proof of Theorem E.1, by Proposition A.2 we further have w.p. 1− δ
2 that

1

T

T∑
t=1

E
P∼Q

(
Um(st)

m

)
≤ ŪT

m
+B

√
8

mT
log

2

δ

Substituting the second inequality into the first yields the second bound. The first bound follows
similarly except using Rm instead of Um, linearity of expectation instead of Jensen’s inequality, 1
instead of B, and R̄T instead of ŪT .

32

Theorem E.3. LetQ be a distribution over distributions P over convex loss functions ` : Θ 7→ [0, 1].
A sequence of sequences of loss functions {`t,i}t∈[T],i∈[m] is generated by drawing m loss functions
i.i.d. from each in a sequence of distributions {Pt}t∈[T] themselves drawn i.i.d. from Q. If such a
sequence is given to an meta-learning algorithm that on each task runs an online algorithm with regret
upper bound Um(st) a nonnegative, B

√
m-bounded, G-Lipschitz w.r.t. ‖ · ‖, and α-strongly-convex

w.r.t. ‖ · ‖ function of the state st ∈ X at the beginning of each task t, where X is a convex Euclidean
subset, and the total regret upper bound is ŪT , then we have w.p. 1− δ for any θ∗ ∈ Θ that

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) + LT

for

LT =
U∗+ ŪT

m
+

4G

T

√
ŪT

αm
log

8 log T

δ
+

max{16G2, 6αB
√
m}

αmT
log

8 log T

δ

where U∗ = EP∼QUm(s∗) for any valid s∗ and θ̄ = 1
mθ1:m is generated by running the online

algorithm with state s̄ = 1
T s1:T and averaging the actions {θi}i∈[m]. If we further assume that the

functions `(θ)− `(θ∗) are ρ-self-bounded for some ρ > 0 and θ∗ ∈ arg minθ∈Θ E`∼P(θ) for all P
in the support of Q then we also have the bound

E
P∼Q

E
`∼P

`(θ̄) ≤ E
P∼Q

E
`∼P

`(θ∗) + LT +

√
2ρLT
m

log
2

δ
+

3ρ+ 2

m
log

2

δ

Proof. Applying Proposition A.1 and Theorem A.4 we have w.p. 1− δ
2 that

E
P∼Q

E
Pm

E
`∼P

`(θ̄) ≤ E
P∼Q

(
E
`∼P

`(θ∗) +
Um(s̄)

m

)
≤ E
P∼Q

E
`∼P

`(θ∗) +
1

m
E
P∼Q

Um(s∗) +
ŪT

m

+
4G

T

√
ŪT

αm
log

8 log T

δ
+

max{16G2, 6αB
√
m}

αmT
log

8 log T

δ
≤ E
P∼Q

E
`∼P

`(θ∗) + LT

This yields the first bound since. The second bound follows similarly except for the application of
Corollary A.2 in the second step w.p. 1− δ

2 .

Corollary E.2. Under the assumptions of Theorem 5.1 and boundedness of Θ, if the loss functions
are G-Lipschitz and we use Algorithm 1 running OGD with fixed η = VQ+1/

√
T

G
√
m

, where we have
V 2
Q = minφ∈Θ EP∼Q EPm ‖θ∗ − φ‖22, and set the initialization using φt+1 = 1

t θ
∗
1:t, then w.p. 1− δ

we have

E
P∼Q

E
Pm

`P(θ̄) ≤ E
P∼Q

`P(θ∗) + Õ

(
VQ√
m

+

(
1

T
+

1√
mT

)
max

{
log

1

δ
,

√
log

1

δ

})

Proof. Apply Theorem C.1 with VΦ = VQ + 1/
√
T , Usim = 0 (because the learning rate is fixed),

and Uinit = Õ
(
V̂
√
m+ 1/

√
T
)

(for V̂ 2 = minφ∈Θ
1
T

∑T
t=1 ‖θ∗t − φ‖22). Substitute the result

into Theorem E.3 using the fact that Um is O
((

1
ε + ε

)√
m
)
-bounded, O

(√
m
ε

)
-Lipschitz, and

Ω
(√

m
ε

)
-strongly-convex. Conclude by applying Claim E.1 to bound V̂ .

33

F Adapting to Task-Similarity under Parameter Growth

In this appendix we cast the problem of adaptively learning the task-similarity in the framework
of Khodak et al. [34]. We do this specifically to show that our basic results extend to approximate
meta-updates under quadratic growth. We first provide a generalized version of their Ephemeral
method in Algorithm 3. We then state the relevant approximation assumptions and proceed to prove
guarantees on the average regret-upper-bound for the case of a fixed task-similarity in Theorem F.1
and for adaptively learning it in Theorem F.2. Then the quadratic-growth results of Khodak et al. [34],
specifically Propositions B.1, B.2, and B.3, can be applied directly to show average regret-upper-
bound guarantees of the same order as those in the main paper but with additional om(1) terms inside
the parentheses. Note that our results, especially in the batch-within-online setting, will in general be
stronger because we do not incur the ∆max-error term that is needed to account for the doubling trick
in Khodak et al. [34].

Algorithm 3: Follow-the-Meta-Regularized-Leader (Ephemeral) meta-algorithm for meta-
learning [34]. For the Optimal Action variant we assume arg minθ∈Θ L(θ) returns θ minimizing
BR(θ|φR) over the set of all minimizers of L over Θ, where φR is some appropriate element of
Φ such as the origin in Euclidean space or the uniform distribution over the simplex.

Data:
• action space Θ ⊂ Rd with norm ‖ · ‖
• function R : Θ 7→ R that is 1-strongly-convex w.r.t. ‖ · ‖ and its corresponding Bregman

divergence BR
• class of within-task algorithms {TASKη,φ : η > 0, φ ∈ Θ}
• meta-update algorithms INIT and SIM

• sequence of loss functions {`t,i : Θ 7→ R}t∈[T],i∈[mt] where `t,i is Gt,i-Lipschitz w.r.t. ‖ · ‖

for t ∈ [T] do

// set learning rate and initialization using meta-update algorithms
Dt = SIM({`s,i}s<t,i∈[ms])

Gt ←
√

1
mt

∑mt
i=1G

2
t,i

ηt ← Dt
Gt
√
mt

φt = INIT({`s,i}s<t,i∈[ms])

// run within-task algorithm
for i ∈ [mt] do

θt,i ← TASKηt,φt(`t,1, . . . , `t,i−1)
suffer loss `t,i(θt,i)

// compute meta-update vector θt according to Ephemeral variant
case Optimal Action do

θt ← arg minθ∈Θ

∑mt
i=1 `t,i(θ)

case Last Iterate do
θt ← TASKηt,φt(`t,1, . . . , `t,mt)

case Average Iterate do
θt ← 1

mt

∑mt
i=1 θt,i

34

Assumption F.1. Assume the data given to Algorithm 3 and define the following quantities:

• convenience coefficients σt = Gt
√
mt

• sequence of update parameters {θ̂t ∈ Θ}t∈[T] with average update φ̂ = 1
σ1:T

∑T
t=1 σtθ̂

• a sequence of reference parameters {θ′t ∈ Θ}t∈[T] with average reference parameter
φ′ = 1

σ1:T

∑T
t=1 σtθ

′
t

• a sequence {θ∗t ∈ Θ}t∈[T] of optimal parameters in hindsight

• we will say we are in the “Exact" case if θ̂t = θ′t = θ∗t ∀ t and the “Approx" case otherwise

• κ ≥ 1,∆∗t ≥ 0 s.t.
∑T
t=1 αtBR(θ∗t ||φt) ≤ ∆∗1:T + κ

∑T
t=1 αtBR(θ̂t||φt) for some αt ≥ 0

• ν ≥ 1,∆′ ≥ 0 s.t.
∑T
t=1 σtBR(θ̂t||φ̂) ≤ ∆′ + ν

∑T
t=1 σtBR(θ′t||φ′)

• average deviation V 2 = 1
σ1:T

∑T
t=1 σtBR(θ′t||φ′) of the reference parameters

• action diameter D2 = max{D∗2,maxθ∈Θ BR(θ||φ1)} in the Exact case or
maxθ,φ∈Θ BR(θ||φ) in the Approx case

• constant C ′ s.t. ‖θ‖ ≤ C ′‖θ‖2 ∀ θ ∈ Θ and `2-diameter D′ = maxθ,φ ‖θ − φ‖2 of Θ

• effective action space Θ̂ = Conv({θ̂t}t∈[T]) if INIT is FTL or Θ if INIT is AOGD

• upper bound G′ on the Lipschitz constants of the functions {BR(θ̂t||·)}t∈[T] over Θ̂

• we will say we are in the “Nice" case if BR(θ||·) is 1-strongly-convex and β-strongly-smooth
w.r.t. ‖ · ‖ ∀ θ ∈ Θ

• in the general case INIT is FTL; in the Nice case INIT may instead be AOGD

• convenience indicator ι = 1INIT=FTL

• TASKη,φ = FTRL
(R)
η,φ or OMD

(R)
η,φ

We make the following assumptions:

• the loss functions `t,i are convex ∀ t, i

• at t = 1 the update algorithm INIT plays φ1 ∈ Θ satisfying maxθ∈Θ BR(θ||φ1) <∞

• in the Approx case R is β-strongly-smooth for some β ≥ 1

35

F.1 Average Regret using Fixed Task Similarity

The following theorem does not appear in the main paper but is used in discussion. It shows guarantees
for the case when the task-similarity is known in advance and so SIM always returns a constant.
Theorem F.1. Make Assumption F.1 and suppose SIM always plays Dt = ε. Then Algorithm 3 has
a regret upper-bound of

ŪM ≤
1

T

((
κD2

ε
+ ε

)
ισ1 +

κC

ε

T∑
t=1

σ2
t

σ1:t
+

(
κνV 2

ε
+ ε

)
σ1:T +

∆∗1:T

ε
+
κ∆′

ε

)

for C = G′2

2 in the Nice case or otherwise C = 2C ′D′G′.

Proof. Let {φ̃t}t∈[T] be a “cheating" sequences such that φ̃t = φt on all t except if SIM is FTL and
t = 1, in which case φ̃1 = θ̂1. Note that by this definition all upper bounds of BR(θ̂t||φt) also upper
bound BR(θ̂t||φ̃t). We then use the fact that the actions of FTL at t > 1 do not depend on the action
at time t = 1 to get

ŪM T

=

T∑
t=1

BR(θ∗t ||φt)
ηt

+ ηtG
2
tmt

=
∆∗1:T

ε
+

T∑
t=1

(
κBR(θ̂t||φt)

ε
+ ε

)
σt (substitute ηt =

Dt

Gt
√
mt

and Dt = ε)

≤
(
κD2

ε
+ ε

)
ισ1 +

∆∗1:T

ε
+

T∑
t=1

(
κBR(θ̂t||φ̃t)

ε
+ ε

)
σt (substitute cheating sequence)

=

(
κD2

ε
+ ε

)
ισ1 +

∆∗1:T

ε
+
κ

ε

T∑
t=1

(
BR(θ̂t||φ̃t)− BR(θ̂t||φ̂)

)
σt +

T∑
t=1

(
κBR(θ̂t||φ̂)

ε
+ ε

)
σt

≤
(
κD2

ε
+ ε

)
ισ1 +

∆∗1:T

ε
+
κC

ε

T∑
t=1

σ2
t

σ1:t
+
κ∆′

ε

+

T∑
t=1

(
κνBR(θ′t||φ′)

ε
+ ε

)
σt (Thm. A.2 and Prop. B.1)

=

(
κD2

ε
+ ε

)
ισ1 +

∆∗1:T

ε
+
κC

ε

T∑
t=1

σ2
t

σ1:t
+
κ∆′

ε
+

(
κνV 2

ε
+ ε

)
σ1:T

36

F.2 Average Regret when Learning Task Similarity

Theorem F.2. Make Assumption F.1 and let SIM be an algorithm running on the sequence of
pairs {BR(θ̂t||φt), σt}t∈[T] and at each time t having as output the action of an OCO algorithm
on the function sequence {`t(x) = (BR(θ̂t||φt)/x + x)σt}t∈[T]. Let RT be the associated regret
of this algorithm and suppose it has a parameter ε > 0 controlling the minimum action taken. For
simplicity assume that at time t = 1 SIM plays D1 s.t. 1

2 (maxθ∈Θ

√
BR(θ||φ1) + ε) ≤ D1 ≤

maxθ∈Θ

√
BR(θ||φ1) + ε . Then Algorithm 3 has a regret upper-bound of

ŪM ≤
1

T

(
(2κD + ε)ισ1 + κRT +

κC

V

T∑
t=1

σ2
t

σ1:t
+ κ(ν + 1)V σ1:T +

∆∗1:T

ε
+
κ∆′

V

)

for C = G′2

2 in the Nice case or otherwise C = 2C ′D′G′.

Proof. Let {φ̃t}t∈[T] be “cheating" sequence such that φ̃t = φt on all t except if SIM is FTL and
t = 1, in which case φ̃1 = θ̂1. Note that by this definition all upper bounds of BR(θ̂t||φt) also upper
bound BR(θ̂t||φ̃t). We then have

ŪM T =

T∑
t=1

BR(θ∗t ||φt)
ηt

+ ηtG
2
tmt

=
∆∗1:T

ε
+

T∑
t=1

(
κBR(θ̂t||φt)

Dt
+Dt

)
σt (substitute ηt =

Dt

Gt
√
mt

and Dt ≥ ε)

≤

(
κBR(θ̂t||φt)

D1
+D1

)
ισ1 +

∆∗1:T

ε

+

T∑
t=1

(
κBR(θ̂t||φ̃t)

Dt
+Dt

)
σt (substitute cheating sequences)

≤ ((κ+ 1)D + ε)ισ1 +
∆∗1:T

ε
+ κRT +κ

T∑
t=1

(
BR(θ̂t||φ̃t)

V
+ V

)
σt

≤ (2κD + ε)ισ1 +
∆∗1:T

ε
+ κRT +

κC

V

T∑
t=1

σ2
t

σ1:t

+ κ

T∑
t=1

(
BR(θ̂t||φ̂)

V
+ V

)
σt (Thm. A.2 and Prop. B.1)

≤ (2κD + ε)ισ1 +
∆∗1:T

ε
+ κRT +

κC

V

T∑
t=1

σ2
t

σ1:t
+
κ∆′

V
+ κ

T∑
t=1

(
νBR(θ′t||φ′)

V
+ V

)
σt

≤ (2κD + ε)ισ1 +
∆∗1:T

ε
+ κRT +

κC

V

T∑
t=1

σ2
t

σ1:t
+
κ∆′

V
+ κ(ν + 1)V σ1:T

37

F.3 Statistical Task-Similarity under Quadratic Growth

In this section we relate our task-similarity measure to that of Denevi et al. [19] under α-QG.
Proposition F.1. For some distribution P ∼ Q over losses ` : Θ 7→ R+ let θ∗P = arg minθ∈Θ `P(θ)

and θ̂m = arg minθ∈Θ

∑m
i=1 `i(θ) for m i.i.d. samples `i ∼ P . Define task-similarity measures

V 2 = minφ∈Θ EP∼Q ‖θ∗P − φ‖22 and V̂ 2
m = minφ∈Θ EP∼Q EPm ‖θ̂m − φ‖22. If both `P and

1
m

∑m
i=1 `i are G-Lipschitz and α-QG a.s. then we have

V 2 ≤ 2V̂ 2
m +

16G2

α2m
and V̂ 2

m ≤ 2V 2 +
16G2

α2m

Proof. Following the argument of Shalev-Shwartz et al. [49, Theorem 2] but applying α-QG instead
of strong-convexity in Equation 8, which holds by definition of α-QG, we obtain

E
Pm

(`P(θ̂m)− `P(θ∗P)) ≤ 4G2

αm

Then for φ∗ = arg minEP∼Q ‖θ∗P − φ‖22 and φ∗m = arg minφ∈Θ EP∼Q EPm ‖θ̂m − φ‖22 we have
by these definitions, the triangle inequality, Jensen’s inequality, α-QG of 1

m

∑m
i=1 `i, and the above

inequality we have

V̂ 2
m = E

P∼Q
E
Pm
‖θ̂m − φ∗m‖22 ≤ E

P∼Q
E
Pm
‖θ̂m − φ∗‖22

≤ 2 E
P∼Q

E
Pm

(
‖θ̂m − θ∗P‖22 + ‖θ∗P − φ∗‖22

)
≤ 4

α
E
P∼Q

E
Pm

(`P(θ̂m)− `P(θ∗P)) + 2V 2

≤ 16G2

α2m
+ 2V 2

Similarly,

V 2 = E
P∼Q

E
Pm
‖θP − φ∗‖22 ≤ E

P∼Q
E
Pm
‖θP − φ∗m‖22

≤ 2 E
P∼Q

E
Pm

(
‖θ̂m − θ∗P‖22 + ‖θ̂m − φ∗m‖22

)
≤ 4

α
E
P∼Q

E
Pm

(`P(θ̂m)− `P(θ∗P)) + 2V 2

≤ 16G2

α2m
+ 2V 2

38

G Experimental Details

Code is available at https://github.com/mkhodak/ARUBA.

G.1 Reptile

For our Reptile experiments we use the code and default settings provided by Nichol et al. [44],
except we tune the learning rate, which for ARUBA corresponds to ε/ζ, and the coefficient c in
ARUBA++. In addition to the the parameters listed in the above tables, we set ζ = p = 1.0 for all
experiments. All evaluations are averages of three runs.

Omniglot 1-shot 5-shot

5-way evaluation setting hyperparameters evaluation setting hyperparameters

regular transductive η = ε
ζ c regular transductive η = ε

ζ c

MAML (1) [23] 98.3± 0.5 99.2± 0.2
Reptile [44] 95.39± 0.09 97.68± 0.04 1e− 3 98.90± 0.10 99.48± 0.06 1e− 3

ARUBA 94.57± 1.04 97.44± 0.32 1e− 1 98.64± 0.04 99.29± 0.07 1e− 2
ARUBA++ 94.80± 1.10 97.58± 0.13 1e− 1 103 98.93± 0.13 99.46± 0.02 1e− 2 103

MAML (2) 98.7± 0.4 99.9± 0.1
Meta-SGD [38] 99.53± 0.26 99.93± 0.09

Figure 4: Final learning rate ηT across the layers of a convolutional network trained on 1-shot 5-way
Omniglot (top) and 5-shot 5-way Omniglot (bottom) using Algorithm 2 applied to Reptile.

39

https://github.com/mkhodak/ARUBA

Omniglot 1-shot 5-shot

20-way evaluation setting hyperparameters evaluation setting hyperparameters

regular transductive η = ε
ζ c regular transductive η = ε

ζ c

MAML (1) [23] 95.8± 0.3 98.9± 0.2
Reptile [44] 88.14± 0.15 89.43± 0.14 5e− 4 96.65± 0.33 97.12± 0.32 5e− 4

ARUBA 85.61± 0.25 86.67± 0.17 5e− 3 96.02± 0.12 96.61± 0.13 5e− 3
ARUBA++ 88.38± 0.24 89.66± 0.3 5e− 3 103 96.99± 0.35 97.49± 0.28 5e− 3 10

MAML (2) 95.8± 0.3 98.9± 0.2
Meta-SGD [38] 95.93± 0.38 98.97± 0.19

Figure 5: Final learning rate ηT across the layers of a convolutional network trained on 1-shot
20-way Omniglot (top) and 5-shot 20-way Omniglot (bottom) using Algorithm 2 applied to Reptile.

40

Mini-ImageNet 1-shot 5-shot

5-way evaluation setting hyperparameters evaluation setting hyperparameters

regular transductive η = ε
ζ c regular transductive η = ε

ζ c

MAML (1) [23] 48.07± 1.75 63.15± 0.91
Reptile [44] 47.07± 0.26 49.97± 0.32 1e− 3 62.74± 0.37 65.99± 0.58 1e− 3

ARUBA 47.01± 0.37 50.73± 0.32 5e− 3 62.35± 0.25 65.69± 0.61 5e− 3

ARUBA++ 47.25± 0.61 50.35± 0.74 5e− 3 10 62.69± 0.57 65.89± 0.34 5e− 3 10−1

MAML (2) 48.70± 1.84 63.11± 0.92
Meta-SGD [38] 50.47± 1.87 64.03± 0.94

Figure 6: Final learning rate ηT across the layers of a convolutional network trained on 1-shot
5-way Mini-ImageNet (top) and 5-shot 5-way Mini-ImageNet (bottom) using Algorithm 2 applied to
Reptile.

41

G.2 FedAvg

For FedAvg we train a 2-layer stacked LSTM model with 256 hidden units, 8-dimensional trained
character embeddings, with a maximum input string size of 80 characters; these settings are used
to match those of McMahan et al. [41]. Similarly, we take their approach of only removing those
actors from the Shakespeare dataset with fewer than two lines and split each user temporally into
train/test sets with a training fraction of 0.8. Unlike McMahan et al. [41], we also split the users
into meta-training and meta-testing sets, also with a fraction of 0.8, in order to evaluate meta-test
performance. We run both algorithms for 500 rounds with a batch of 10 users per round and a
within-task batch-size of 10, as in Caldas et al. [12]. For unmodified FedAvg we found that an initial
learning rate of η = 1.0 worked well – this is similar to those reported in McMahan et al. [41]
and Caldas et al. [12] – and for the tuned variant we found that a multiplicative decay of 0.99. At
meta-test-time we tuned the refinement learning rate over {10−3, 10−2, 10−1}. For ARUBA and its
isotropic variant we set ε = ζ = 0.05 and p = 1.0, so that η = ε/ζ = 1.0 in our setting as well.

Figure 7: Final learning rate ηT across the layers of an LSTM trained for next-character prediction
on the Shakespeare dataset using Algorithm 2 applied to FedAvg.

42

	Introduction
	Related Work

	Average Regret-Upper-Bound Analysis
	Adapting to Similar Tasks and Dynamic Environments
	Adapting to the Inter-Task Geometry
	Fast Rates and High Probability Bounds for Statistical Learning-to-Learn
	Empirical Results: Adaptive Methods for Few-Shot & Federated Learning
	Conclusion
	Background and Results for Online Convex Optimization
	Convex Functions
	Online Algorithms
	Online-to-Batch Conversion
	Dynamic Regret Guarantees

	Strongly Convex Coupling
	Derivation
	Applications

	Adaptive and Dynamic Guarantees
	Adapting to the Inter-Task Geometry
	Online-to-Batch Conversion for Task-Averaged Regret
	Adapting to Task-Similarity under Parameter Growth
	Average Regret using Fixed Task Similarity
	Average Regret when Learning Task Similarity
	Statistical Task-Similarity under Quadratic Growth

	Experimental Details
	Reptile
	FedAvg

