
A Support Estimation

Here we study the PML based plug-in estimator for support estimation. [ADOS16] showed that
PML based plug-in estimator is sample complexity optimal for estimating support within additive
accuracy ✏k for all ✏ > 1

k0.2499 . Further for any ✏ < 1
k� for some constant � > 0, the empirical

distribution based plug-in estimator is exact with high probability. Here we provide proofs for two
main results described in Section 3 for support. In Theorem 3.1 and Theorem 3.2, we show that PML
and approximate PML distributions (under the constraint that all its probability values are � 1

k ) based
plug-in estimators are sample complexity optimal for all parameter regimes, thus providing a better
analysis for [ADOS16].

We next define a function that outputs the number of distinct frequencies in the profile. Later in
Lemma A.2, we show that the support of PML and approximate PML distribution is at least the
number of distinct elements in the sequence.
Definition A.1. For any S ✓ D, the function Distinct : �n ! Z+, takes input � and re-
turns

P
j2[n] �j . For any sequence xn, we overload notation and use Distinct(xn) to denote

Distinct(�(xn)). Note Distinct(�) and Distinct(xn) denote the number of distinct domain ele-
ments observed in profile � or sequence xn respectively.
Lemma A.2. For any distribution p 2 �D such that px 2 {0} [ [ 1k , 1] and a profile � 2 �n, if
S(p) < Distinct(�) then p(�) = 0.

Proof. Consider sequences xn with �(xn) = �. All such sequences have Distinct(�) number of
distinct observed elements that is strictly greater than S(p) and distribution p assigns probability zero
for all these sequences.

Proof for Theorem 3.1. Given �, let p� 2 �D, be the distribution with p�(x) 2 {0} [ [ 1k , 1].
If ✏ > 1

k0.2499 , we know that plug-in approach on p� is sample complexity optimal [ADOS16].
We consider the regime where ✏  1

k0.2499 and here the number of samples n = c · k log k for
some constant c � 2. If S(p�) < Distinct(�), then by Lemma A.2 we have p�(�) = 0 a con-
tradiction because the empirical distribution assigns a non-zero probability value for observing
�. Therefore, without loss of generality we assume S(p�) � Distinct(�). We next argue that
S(p�) = Distinct(�). We prove this statement by contradiction. Suppose S(p�) > Distinct(�),
then define p

0
� 2 �D to be the PML distribution under constraints S(p0

�) = Distinct(�)

and p
0
�(x) 2 {0} [ [ 1k , 1]. Let Support : �D ! 2D be a function that takes distribution

p as input and returns index set for the support of p. Now consider P
�
p�,�

�
, and recall

P
�
p�,�

�
=
P

{xn2Dn | �(xn)=�} P
�
p�, x

n
�
. Further note that

P
{xn2Dn | �(xn)=�} P

�
p�, x

n
�
=P

{S✓Support(p�) | |S|=Distinct(�)}
P

{xn2Sn | �(xn)=�} P
�
p�, x

n
�
, therefore,

P
�
p�,�

�
=

X

{S✓Support(p�) | |S|=Distinct(�)}

X

{xn2Sn | �(xn)=�}

P
�
p�, x

n
�


X

{S✓Support(p�) | |S|=Distinct(�)}

✓
1�

S(p�)� |S|
k

◆n

P
�
p
0
�,�

�
.

(7)

In the second inequality, we use for all x 2 D, p�(x) 2 {0} [ [ 1k , 1]

and we have
P

x2S p�(x) 
⇣
1� S(p�)�|S|

k

⌘
and the inequality follows. We

next upper bound the term
P

{S✓Support(p�) | |S|=Distinct(�)}

⇣
1� S(p�)�|S|

k

⌘n
. Note that,

P
{S✓Support(p�) | |S|=Distinct(�)}

⇣
1� S(p�)�|S|

k

⌘n
 exp

⇣
�n

S(p�)�Distinct(�)

k

⌘ � S(p�)

Distinct(�)

�


exp
⇣
�n

S(p�)�Distinct(�)

k + (S(p�)�Distinct(�)) logS(p�)
⌘
 exp (� log k). In the second in-

equality, we use a weak upper bound on the quantity
� S(p�)

Distinct(�)

�
. In the third and fourth inequality,

we use n = ck log k, c � 2 and k � S(p�) > Distinct(�). Combining everything together we get,

P
�
p�,�

�
 exp (� log k)P

⇣
p
0
�,�

⌘
. A contradiction because p� is the PML distribution.
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Therefore if n > 2k log k, then the previous derivation implies,

P
�
S(p�) = Distinct(�)

�
= 1 .

Further if n > 2k log k, then

P (S(p) = Distinct(�)) � 1� k exp

✓
�n

k

◆
.

Combining previous two inequalities and substituting n > 2k log k we get, P
�
S(p) = S(p�)

�
�

1� exp(� log k), thus concluding the proof.

Proof for Theorem 3.2. The proof for this result is similar to Theorem 3.1 and for completeness
we reprove it. Given �, let p�, p

�
� 2 �D, be PML and �-approximate PML distributions re-

spectively under the constraint p�(x), p
�
�(x) 2 {0} [ [ 1k , 1]. If ✏ > 1

k0.2499 , by [ADOS16] we
already know that plug-in approach on p

�
� for � = exp(�✏2n1�↵) is sample complexity opti-

mal with high probability. Here we consider the regime ✏  1
k0.2499 and in this case the num-

ber of samples n = c · k log k for some large constant c � 2. If S(p�
�) < Distinct(�), then

by Lemma A.2 we have p
�
�(�) = 0 which is a contradiction, because the empirical distribution

clearly returns a non-zero probability value. Therefore, without loss of generality we assume
S(p�

�) � Distinct(�). We next argue that S(p�
�)  Distinct(�) + ✏k. We prove this statement

by contradiction. Suppose S(p�
�) > Distinct(�) + ✏k, then consider the P

⇣
p
�
�,�

⌘
, and recall

P
⇣

p
�
�,�

⌘
=
P

{xn2Dn|�(xn)=�} P
⇣

p
�
�, x

n
⌘

. Further note that
P

{xn2Dn|�(xn)=�} P
⇣

p
�
�, x

n
⌘
=

P
{S✓Support(p

�
�)||S|=Distinct(�)}

P
{xn2Sn|�(xn)=�} P

⇣
p
�
�, x

n
⌘

. Therefore,

P
⇣

p
�
�,�

⌘
=

X

{S✓Support(p
�
�)||S|=Distinct(�)}

X

{xn2Sn|�(xn)=�}

P
⇣

p
�
�, x

n
⌘


X

{S✓Support(p
�
�) | |S|=Distinct(�)}

 
1�

S(p�
�)� |S|
k

!n

P
�
p�,�

�
.

(8)

In the final inequality we used for all x 2 D, p
�
�(x) 2 {0} [ [ 1k , 1] and we have

P
x2S p

�
�(x) 

✓
1� S(p

�
�)�|S|
k

◆
and using the definition of p� the inequality follows. We

next upper bound the term
P

{S✓Support(p
�
�) | |S|=Distinct(�)}

✓
1� S(p

�
�)�|S|
k

◆n

. Note that

P
{S✓Support(p

�
�) | |S|=Distinct(�)}(1 � S(p

�
�)�|S|
k )n  exp(�n

S(p
�
�)�Distinct(�)

k )
� S(p

�
�)

Distinct(�)

�


exp(�n
S(p

�
�)�Distinct(�)

k + (S(p�
�) � Distinct(�)) logS(p�

�))  exp((S(p�
�) �

Distinct(�))(log k � c log k)  exp(�✏k log k) < exp(�✏2n1�4↵). In the second inequality, we
use a weak upper bound for the quantity

� S(p�)

Distinct(�)

�
. In the third and fourth inequality, we use

n = ck log k, c � 2 and S(p�
�) > Distinct(�) + ✏k. In the final inequality, we use n1�↵  k log k

for constant ↵ > 0. Combining everything together we get P
⇣

p
�
�,�

⌘
< exp(�✏2n1�4↵)P

�
p�,�

�
,

a contradiction on the definition of p
�
�.

Therefore if n > 2k log k, then the previous derivation implies P
⇣
|S(p�

�)�Distinct(�)| � ✏k
⌘
=

1. Further if n > 2k log k, then P (S(p) = Distinct(�)) � 1� k exp(�n
k ). Combining the previous

two inequalities and substituting n > 2k log k we get, P
⇣
|S(p�

�)� S(p)| � ✏k
⌘
� 1�exp(� log k),

thus concluding the proof.
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B Omitted Proof from Section 4

Here we provide the proof for Lemma 4.1.

Proof for Lemma 4.1. Fix an ordering on the elements of F. Let F(i) denote the i’th frequency
element of F. For all �S 2 B, the set of distinct frequencies in �S is a subset of F and the length of
�S is equal to n. Therefore, any element �S 2 B can be encoded as a unique vector v�S 2 [0, n]F,
where v�S (i)

def
= �(F(i)) denotes the number of elements in �S that have frequency F (i). Using the

previous discussion, we have |B|  |[0, n]F|  (n+ 1)|F|.

C Omitted Proofs from Section 5

Here, we present and prove results related to the existence of an estimator for entropy and distance
to uniformity on a fixed subset S ✓ D. Note the estimator we provide here is exactly same to the
one presented in [ADOS16] but defined only on subset S ✓ D. All the results and proofs presented
here are similar to the ones in [ADOS16] and for completeness and verification purposes we reprove
(with slight modifications) these results. As in [ADOS16], we first provide a general definition of an
estimator that works both for entropy and distance to uniformity. In Lemma C.1, we prove a result
that captures the maximum change of this general estimator by changing one sample. In section C.1
and C.2, we provide proofs for entropy and distance to uniformity respectively.

Given 2n samples x2n = (xn
1 , x

n
2 ) from distribution p. Let n

0

y
def
= f(xn

1 , y), and ny
def
= f(xn

2 , y)
be the number of appearances of symbol y in the first and second half respectively. We define the
following estimator which is exactly the same as [ADOS16] but defined only on subset S. For all
x 2 S,

ĝS(x
2n) = max

8
<

:min

8
<

:
X

y2S

gy, fS,max

9
=

; , 0

9
=

; .

where fS,max is the maximum value of the property f on subset S and for all y 2 S,

gy =

8
><

>:

GL,g(ny), for n
0

y < c2 logN, and ny < c1 logN,

0, for n
0

y < c2 log k, and ny � c1 logN,

g
�ny

n

�
+ gn, for n

0

y � c2 logN,

where gn is the first order bias correction term for g, GL,g(ny) =
PL

i=1 bi(
ny

n )
i is the unbiased

estimator for PL,g(py), the optimal uniform approximation of function g by degree-L polynomials
on [0; c1

logn
n ].

Lemma C.1. For any estimator ĝ defined as above, changing any one of the sample changes the
estimator by at most

9max

✓
eL

2/n max |bi|,
Lg

n
, g

✓
c1 log(n)

n

◆
, gn

◆
,

where Lg = nmaxi2N |g(i/n)� g((i� 1)/n)|.

Proof. Given 2n samples x2n = (xn
1 , x

n
2 ) from distribution p. Recall the estimator for entropy and

distance to uniform from [ADOS16],

ĝ(x2n) = max

8
<

:min

8
<

:
X

y2S

gy, fmax

9
=

; , 0

9
=

; .

where fmax is the maximum value of the property f and for all y 2 D,

gy =

8
><

>:

GL,g(ny), for n
0

y < c2 logN, and ny < c1 logN,

0, for n
0

y < c2 log k, and ny � c1 logN,

g
�ny

n

�
+ gn, for n

0

y � c2 logN,
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Now construct a new sequence from xn as follows: replace all symbols in S̄ (appearing in xn) by a
unique symbol y0 2 S̄ and call this new sequence zn. Now note our estimator is unaffected by this
change, because it only depends on the occurrences of elements in S. The change in the value of
estimator in [ADOS16] by changing one sample in zn is upper bounded by:

8max

✓
eL

2/n max |bi|,
Lg

n
, g

✓
c1 log(n)

n

◆
, gn

◆
, (9)

The above result follows by Lemma 5 in [ADOS16]. We next study the change in the value
of our estimator by changing one sample in zn. Note this is equivalent to the change in the
value of our estimator by changing one sample in xn. The worst case change in the value
of our estimator is when we take a symbol in S (or S̄\{y0}) and replace it by a symbol in
S̄\{y0} (or S). In this case, by triangle inequality change in our estimator is upper bounded
by 8max

⇣
eL

2/n max |bi|, Lg

n , g
⇣

c1 log(n)
n

⌘
, gn

⌘
+ GL,g(1) that is further upper bounded by

9max
⇣
eL

2/n max |bi|, Lg

n , g
⇣

c1 log(n)
n

⌘
, gn

⌘
and the result follows.

C.1 Entropy

Here we present proof sketch for the following: for entropy the estimator defined above has low bias
and the value of the estimator does not change too much by change in one sample. This result is
analogous to Lemma 6 in [ADOS16] and our proof for this lemma is very similar to [ADOS16] and
for completeness sketch for the proof.
Lemma C.2. Let gn = 1/(2n) and ↵ > 0. Suppose c1 = 2c2, and c2 > 35, Further suppose that
n3

⇣
16c1
↵2 + 1

c2

⌘
> log k · log n. Then for all subset S ✓ D, there exists a polynomial approximation

of �y log y with degree L = 0.25↵ log n, over [0, c1 logN
n ] such that maxi |bi|  n↵/n and the bias

of the entropy estimator on subset S (
P

y2S py log 1
py

) is at most O
⇣�

1 + 1
↵2

�
N

n logN + logN
N4

⌘
.

Proof. We first upper bound the bias of our estimator. We consider three events
here. E1

def
= \y2S

n
n0
y  c2 logN,n0

y  c1 logN =) py  c1 logN
n

o
, E2

def
=

\y2S

n
n0
y > c2 logN =) py > c3 logN

n

o
and E3

def
= \y2S

�
n0
y  c2 logN and n0

y > c1 logN
 

.
By proof of Lemma 6 in [ADOS16] we have,

P (Ec
3) 

1

n4.9
(10)

By equations 48 and 49 in [WY16a] combined with Equation (10), we get,

P (Ec
1) 

2

N4
and P (Ec

2) 
1

N4

Define E
def
= E1 \ E2, then

P (Ec)  P (Ec
1) + P (Ec

2) 
2

N4
. (11)

Further we define random sets I1
def
=

n
y 2 S|n0

y < c2 logN,ny < c1 logN and py  c1 logN
n

o
and

I2
def
=

n
y 2 S | n0

y > c2 logN and py > c3 logN
n

o
. We first bound the conditional bias and we later

use it to bound the bias of our estimator. Our next statement follows from uniform approximation
error [Tim14] and is explicitly written in to Equation 53 of [WY16a].

|E [fI1(p)� ĝI1 |I1] = |
X

y2I1

py log
1

py

� PL,g(py)| 
N

↵2n logN
. (12)
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Let p̂ be the empirical distribution on xn
2 . Similarly by analysis of Case 2 and Equation 58 in [WY16a]

we have,

|E [fI2(p)� ĝI2 |I2] = |E

2

4
X

y2I2

(py log
1

py

� p̂y log
1

p̂y

)|I2

3

5 |  N

n logN
. (13)

Combining equations 12, 13, 11 and 10 we can upper bound the bias of our estimator by 2N
n logN +

4 logN
N4 . Note here we use the fact that in the case of bad event (Ec or Ec

3) the bias of our estimator is
upper bounded by logN .

Our analysis for largest change in the value of estimator by changing one sample is exactly the same
as [ADOS16] and for completeness we describe it next. The largest coefficient of the optimal uniform
polynomial approximation of degree L for function x log x in the interval [0, 1] is upper bounded by
23L. This result follows from the proof of Lemma 2 in [CL11] and is also explicitly mentioned in the
proof of Proposition 4 in [WY16a]. Therefore, the largest change (after appropriately normalizing) is
the largest value of bi (co-efficient of the optimal uniform polynomial approximation) which is

23LeL
2/n

n
.

For L = 0.25↵ log n, this is at most n↵

n .

The proof of Lemma 5.1 for entropy follows from the above lemma and Lemma C.1 by substituting
n = O

⇣
N

logN
1
✏

⌘
and ✏ > ⌦

⇣
logN
N1�↵

⌘
.

C.2 Distance to uniformity

Here we provide proof sketch for the existence of an estimator with desired properties. This result is
analogous to Lemma 7 in [ADOS16] and proof for this lemma is very similar to that of [ADOS16]
and for completeness we sketch the proof for this result.
Lemma C.3. Let c1 > 2c2, c2 = 35. Then for all subset S ✓ D, there is an estimator for distance
to uniformity on subset S (

P
y2S |py � 1

N |) that changes by at most n↵/n when a sample is changed,

and the bias of the estimator is at most O( 1
↵

q
c1 logN
N ·n ).

Proof. We divide estimation of distance to uniformity into two cases based on n. Note the proof for
this lemma follows along the lines of [ADOS16].

Case 1:
1
N < c2 logN/n. In this case, we use the estimator defined in the last section for g(x) =

|x� 1/k|.

Case 2:
1
N > c2 logN/n. The estimator is as follows for all y 2 S:

gy =

8
>>><

>>>:

GL,g(ny), for |n
0
y

n � 1
N | <

q
c2 logN

Nn , and |ny

n � 1
N | <

q
c1 logN

Nn ,

0, for |n
0
y

n � 1
N | <

q
c2 logN

Nn , and |ny

n � 1
N | �

q
c1 logN

Nn ,

g
�ny

n

�
, for |n

0
y

n � 1
N | �

q
c2 logN

Nn .

The estimator proposed in [ADOS16] is exactly the same as ours, but we define our estimator only for
the domain elements in S ✓ D. Note the estimator defined in [JHW17] is slightly different, assigning
GL,g(ny) for the first two cases. As in [ADOS16], this second case is designed to bound the change
in value of the estimator by changing one sample. Using [Tim14](Equation 7.2.2), [JHW17] (for
their estimator) show that, contribution towards bias (conditioned on "good" event 6) by any domain
element y 2 D (note we only need this result to hold for y 2 S) satisfying n

0

y < c2 logN, and ny <

6Refer [JHW17] for definitions of "good" and "bad" events.
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c1 logN for case 1 and |n
0
y

n � 1
N | <

q
c2 logN

Nn , and |ny

n � 1
N | <

q
c1 logN

Nn for case 2, using

polynomial approximation (Lemma 27 in [JHW17]) is upper bounded by O
⇣

1
L

q
logN

N ·n logN

⌘
, where

L is the degree of optimal uniform approximation for function |x� 1
N | in the interval [0, 2c1 logN

N ] for

case 1 (Equation (351) in [JHW17]) and [ 1N �
q

c1 logN
Nn , 1

N �
q

c1 logN
Nn ] for case 2 (Equation (367)

in [JHW17]). Further, the bias (conditioned on the "good" event) by empirical estimate for domain
element y 2 D (as before, we need this result to hold only for y 2 S) satisfying n

0

y � c2 logN for

case 1 and |n
0
y

n � 1
N | �

q
c2 logN

Nn for case 2, is zero (Refer proof of Theorem 2 [JHW17]). [JHW17]
also bound the probability of "bad" event6 (Refer proof of Lemma 2 in [JHW17]), thus bounding the
bias with respect to these domain elements. Further similar to [ADOS16], by our choice of c1, c2, the
contribution to bias by domain element y 2 S satisfying n

0

y < c2 log k, and ny � c1 logN for case

1 and |n
0
y

n � 1
N | <

q
c2 logN

Nn , and |ny

n � 1
N | �

q
c1 logN

Nn for case 2, is upper bounded by 1/n4 < ✏2.
Combining analysis of all these cases together, we have our result for bias.

The proof for largest change in the estimator value by changing one sample is exactly same
as [ADOS16]. Similar to [ADOS16], here we use the fact [CL11] (Lemma 2) that the largest
coefficient of the optimal uniform polynomial approximation of degree L for function |x| in the
interval [�1, 1] is upper bounded by 23L. 23L. Similar to entropy (after appropriate normalization),
the largest difference in estimation will be at most n↵/n.

The proof of Lemma 5.2 for distance to uniformity follows from the above lemma and Lemma C.1
and by substituting n = O

⇣
N

logN
1
✏2

⌘
.
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