
We are grateful to all the reviewers for their careful and overall positive assessment of our manuscript, and in particular1

thank for their helpful suggestions for its improvement. As the reviewers pointed out, convergence of existing Stein2

variational methods is known to suffer in high dimensions. To address this critical challenge, we proposed the algorithm3

pSVN by exploiting the intrinsic low-dimensionality of the difference between the prior and posterior, which can be4

observed in many applications and proved in some cases as in [1, 4, 5, 6, 8, 9, 11, 16, 26] and references therein. As5

the reviewers assessed, the algorithm is well motivated and presented with concrete theoretical analysis and empirical6

validation, which is shown to converge faster and achieve higher accuracy compared to SVGD and SVN for both the7

tested linear and nonlinear problems, as well as to offer a complexity independent of parameters and sample dimensions,8

with the parallel scalability demonstrated to pose the potential of being used in real world large scale problem. We9

really appreciate the reviewers’ careful reading, deep understanding, and high recognition of pSVN’s merits.10

Below are our responses for the helpful questions and suggestions of each reviewer.11

To Reviewer 1: (1) For Gaussian priors, x⊥ is in fact independent of xr, i.e., p0(x) = pr0(xr)p⊥0 (x⊥), so there is no12

need to update x⊥ (no bias in Theorem 1 by freezing x⊥). For non-Gaussian priors, in general x⊥ does depend on xr,13

even negligible for the posterior update if the dimension of the projected subspace r is sufficiently large. The adaptive14

pSVN with adaptively changing subspaces can in fact enable data-informed update in x⊥ at different steps, i.e., the15

freezing is only effective in the same projection space. We will add these clarifications in the revision. More subtle16

convergence analysis for adaptive pSVN will be studied in future work. The adaptive pSVN was indeed used in the17

nonlinear test problem. We will add an empirical comparison with pSVN in the revision. The approximation of the18

averaged Hessian is also performed adaptively depending on the current particles, which becomes less dependent on the19

prior (even uninformative) when the particles approach the posterior. (2) Indeed, the method works for more general20

cases than Gaussian likelihoods as long as the posterior density is differentiable. We will update the presentation of the21

method to the more general cases and keep the theoretical analysis to the Gaussian likelihoods in this work. (3) Thank22

you for pointing out these (slightly) abused/unclear notations. We will revise them accordingly. (4) We add a new23

experiment on Bayesian autoencoder networks to demonstrate the crucial property of the intrinsic low-dimensionality24

exploited by pSVN, see below, which will be added to the supplementary material with more details in the revision.25

To Reviewer 2: We appreciate very much the reviewer’s positive and detailed assessment of our work. The algorithm26

works admittedly particularly well for the two examples using Gaussian priors with compact covariances, which are27

commonly found in many application areas, e.g., spatial statistics, geostatistis, physical cosmology, etc. [Lindgren and28

Rue, 2011]. To test on more general models, we add an experiment on Bayesian autoencoder networks to demonstrate29

the crucial property of the intrinsic low-dimensionality exploited by pSVN, see below. We will add more details of this30

experiement in the revision.31

To Reviewer 3: (1) We understand that the current presentation and examples may be a bit misleading that using32

Hessian to find the low-dimensional projection direction is under Gaussian assumption, which is however not true. The33

covariance Γ0 in (30) does not require a Gaussian prior. Moreover, for general priors, e.g., uniform, we can also ignore34

the covariance Γ0 in (30), as long as we can compute the Hessian of the (log) posterior density. We clarify this in the35

revision. (2) We agree that the dimension of the Hessian-based subspace r does not change with increasing parameter36

dimension makes the generation model looks too simple, which is however often true in applications when the Gaussian37

prior covariance is compact. We add an experiment of Bayesian autoencoder networks with different eigenvalue decays38

to rule out this impression, see below. (3) The suggestion to use MCMC as ground truth is valuable. In fact, we did use39

MCMC, page 7, line 227, in the nonlinear problem as the baseline to test the accuracy of the algorithm. For the linear40

problem, the posterior is explicitly given as in (31), which was used as the baseline instead of MCMC samples.41

We briefly present an experiment on Bayesian autoencoder neural net-
work model to demonstrate the intrinsic low-dimensionality exploited
by pSVN. The four cases with increasing parameter dimension (775,
3,079, 5,395, 21,523) correspond to autoencoders of convolutional
neural networks with (4, 4, 6, 6) layers, each layer with (6, 6, 6, 6)
convolutional kernels of dimension (8, 16, 8, 16), respectively. To
compute the eigenvalues of the Hessian of the log-likelihood, we use
10,000 MNIST images as the data corrupted with i.i.d. additive noise
of 5% noise-to-signal ratio, and i.i.d. Gaussian prior N (0, σ2

i ) with
the first layer variance set to 1 and subsequent layers decay by a con-
stant 0.5 multiplicative factor. The right figure displays the dominate
eigenvalues |λi|, which converge rapidly with over 1000X reduction
for the first 100 eigenvalues (sharp decay in last few due to artifact of
randomized SVD using 100 samples), which indicates the intrinsic
low-dimensional structure. We will add more details of pSVN for this
experiment as the supplementary material in the revision.
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