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A Proofs

A.1 Theorem 1 and its Corollary

Assumption 1. The environment dynamics is stationary between the expert and agent.

Lemma 1. The equality below holds.

DKL [ρπ(s, a, s′)||ρE(s, a, s′)] = DKL [ρπ(s, a)||ρE(s, a)] . (1)

Proof. We can expand the left side of the equality following Kullback–Leibler divergence definition
and Assumption 1 as

DKL [ρπ(s, a, s′)||ρE(s, a, s′)]

= Eρπ
[
log

ρπ(s, a, s′)

ρE(s, a, s′)

]
= Eρπ

[
log

ρπ(s, a)T (s′|s, a)

ρE(s, a)T (s′|s, a)

]
= DKL [ρπ(s, a)||ρE(s, a)] .

Theorem 1. The relation between LfD, naive LfO, and inverse dynamics disagreement can be char-
acterized as

DKL (ρπ(a|s, s′)||ρE(a|s, s′)) = DKL (ρπ(s, a)||ρE(s, a))− DKL (ρπ(s, s′)||ρE(s, s′)) . (2)

Proof. We can subtract the Kullback-Leibler divergence between the state transition of expert
and agent DKL(ρπ(s, s′)||ρE(s, s′)) from the corresponding discrepancy over joint distribution
DKL(ρπ(s, a, s′)||ρE(s, a, s′)) as

DKL (ρπ(s, a, s′)||ρE(s, a, s′))− DKL (ρπ(s, s′)||ρE(s, s′))

=

∫
S×A×S

ρπ(s, a, s′)

(
log

ρπ(s, a, s′)

ρE(s, a, s′)
× ρE(s, s′)

ρπ(s, s′)

)
dsdads′

=

∫
S×A×S

ρπ(s, a, s′) log
ρπ(a|s, s′)
ρE(a|s, s′)

dsdads′

= DKL (ρπ(a|s, s′)||ρE(a|s, s′)) . (3)

With Lemma 1, we have

DKL(ρπ(s, a, s′)||ρE(s, a, s′))− DKL(ρπ(s, s′)||ρE(s, s′))

= DKL(ρπ(s, a)||ρE(s, a))− DKL(ρπ(s, s′)||ρE(s, s′)). (4)

With (3), (4)

DKL (ρπ(a|s, s′)||ρE(a|s, s′)) = DKL (ρπ(s, a)||ρE(s, a))− DKL (ρπ(s, s′)||ρE(s, s′)) .

We now introduce the following lemma that will be used in the proof for Corollary 1.

Lemma 2. if the dynamics is injective, i.e., distribution T (s′|s, a) that characterizes the dynamics
is a degenerate distribution, and there is only one possible action corresponds to a state transition,
the conditional distribution ρπ(a|s, s′) that characterizes the corresponding inverse model under
policy π will also be injective, and will be independent with policy π, thus we have

ρπ(a|s, s′) = ρE(a|s, s′), (5)

where ρE(a|s, s′) characterizes the corresponding inverse dynamics model for the expert.
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Proof. We will begin with the definition of inverse model as

ρπ(a|s, s′) =
T (s′|s, a)π(a|s)∫

A
T (s′|s, ā)π(ā|s)dā

. (6)

Since T is injective, which means that T (s′|s, a) = δ(s′ − f(s, a)), f : S × A → S , f is a
deterministic function that independent with policy π, δ is Dirac delta function. When f(s, a) = s′,
and for given s, s′, there is only one a satisfy this equation, we have

ρπ(a|s, s′) =
δ(0)× π(a|s)

1× π(ā = a|s)
= δ(0). (7)

When f(s, a) 6= s′, it will be

ρπ(a|s, s′) =
0× π(a|s)∫

A
T (s′|s, ā)π(a|s)dā

= 0. (8)

Finally we can rewrite ρπ(a|s, s′) as

ρπ(a|s, s′) =

{
δ(0) f(s, a) = s′,

0 f(s, a) 6= s′
, (9)

which is independent with current policy π, thus we have

ρπ(a|s, s′) = ρE(a|s, s′) =

{
δ(0) f(s, a) = s′,

0 f(s, a) 6= s′
. (10)

Corollary 1. If the dynamics T (s′|s, a) is injective, LfD is equivalent to naive LfO.

DKL (ρπ(s, a)||ρE(s, a)) = DKL (ρπ(s, s′)||ρE(s, s′)) . (11)

Proof. With Lemma 1, we can substitute the right side of the equality as

DKL(ρπ(s, a)||ρE(s, a))

= DKL(ρπ(s, a, s′)||ρE(s, a, s′))

= Eρπ
[
log

ρπ(s, a, s′)

ρπ(s, a, s′)

]
= Eρπ

[
ρπ(s, s′)ρπ(a|s, s′)
ρE(s, s′)ρE(a|s, s′)

]
= Eρπ

[
ρπ(s, s′)

ρE(s, s′)

]
︸ ︷︷ ︸

by Lemma 2

= DKL(ρπ(s, s′)||ρE(s, s′)). (12)

A.2 Theorem 2

Theorem 2. LetHπ(s, a) andHE(s, a) denote the causal entropies over the state-action occupancy
measures of the agent and expert, respectively. When DKL [ρπ(s, s′)||ρE(s, s′)] is minimized, we
have

DKL [ρπ(a|s, s′)||ρE(a|s, s′)] 6 −Hπ(s, a) + Const. (13)
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Proof. We will begin with the gap as the discrepancy between the inverse model of agent and expert

DKL (ρπ(a|s, s′)||ρE(a|s, s′))

=

∫
S×A×S

ρπ(s, a, s′) log
ρπ(s, a, s′)ρE(s, s′)

ρE(s, a, s′)ρπ(s, s′)
dsdads′

=

∫
S×A×S

ρπ(s, a, s′) log
ρπ(s, a)ρE(s, s′)

ρE(s, a)ρπ(s, s′)
dsdads′︸ ︷︷ ︸

by Lemma 1

=

∫
S×A×S

ρπ(s, a, s′) log
ρπ(s, a)

ρE(s, a)︸ ︷︷ ︸
DKL(ρπ(s,s′)||ρE(s,s′))=0

dsdads′

= −Hπ(s, a)−
∫
S×A

ρπ(s, a) log ρE(s, a)dsda

6 −Hπ(s, a) + sup
ρπ

(
−
∫
S×A

ρπ(s, a) log ρE(s, a)dsda

)
= −Hπ(s, a) + Const. (14)

Note that the second term in the inequality supρπ (·) cannot be optimized w.r.t. the parameterized
policy πθ and thus can be omitted from the objective of maximizingHπ(s, a).

A.3 Theorem 1 and its Corollary with Jensen-Shannon Divergence

Lemma 3 (Lemma 1 with JS divergence). The equality below holds.

DJS [ρπ(s, a, s′)||ρE(s, a, s′)] = DJS [ρπ(s, a)||ρE(s, a)] . (15)

Proof. We can expand the left side of the equality as

DJS [ρπ(s, a, s′)||ρE(s, a, s′)]

= Eρπ
[

1

2
log

ρπ(s, a, s′)
1
2ρπ(s, a, s′) + 1

2ρE(s, a, s′)

]
+ EρE

[
1

2
log

ρE(s, a, s′)
1
2ρπ(s, a, s′) + 1

2ρE(s, a, s′)

]
= Eρπ

[
1

2
log

ρπ(s, a)T (s′|s, a)

( 1
2ρπ(s, a) + 1

2ρE(s, a))T (s′|s, a)

]
+ EρE

[
1

2
log

ρE(s, a)T (s′|s, a)

( 1
2ρπ(s, a) + 1

2ρE(s, a))T (s′|s, a)

]
= Eρπ

[
1

2
log

ρπ(s, a)
1
2ρπ(s, a) + 1

2ρE(s, a)

]
+ EρE

[
1

2
log

ρE(s, a)
1
2ρπ(s, a) + 1

2ρE(s, a)

]
= DJS [ρπ(s, a)||ρE(s, a)] . (16)

Theorem 3 (Theorem 1 with JS divergence). Given optimal expert policy πE , ρE(s, a), ρE(s, s′)
denote its state-action and state transition occupancy measures accordingly, the optimization gap
between minimizing the discrepancy of these two types of occupancy measures w.r.t. agent policy π
shows that

DJS (ρπ(a|s, s′)||ρE(a|s, s′)) = DJS (ρπ(s, a)||ρE(s, a))− DJS (ρπ(s, s′)||ρE(s, s′)) + ε, (17)

where the minor term ε will converge to zero when minimizing the näive LfO objective under JS
divergence DJS (ρπ(s, s′)||ρE(s, s′)).

Proof. We will begin with subtracting the Jensen-Shannon divergence between the state transition
of expert and agent DJS(ρπ(s, s′)||ρE(s, s′)) from the corresponding discrepancy over joint distri-
bution DJS(ρπ(s, a)||ρE(s, a)) as

DJS(ρπ(s, a)||ρE(s, a))− DJS(ρπ(s, s′)||ρE(s, s′))
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= DJS(ρπ(s, a, s′)||ρE(s, a, s′))− DJS(ρπ(s, s′)||ρE(s, s′))︸ ︷︷ ︸
by Lemma 3

=

∫
S×A×S

1

2
ρπ(s, a, s′) log

(
ρπ(s, a, s′)

1
2 (ρπ(s, a, s′) + ρE(s, a, s′))

×
1
2 (ρπ(s, s′) + ρE(s, s′))

ρπ(s, s′)

)
dsdads′

+

∫
S×A×S

1

2
ρE(s, a, s′) log

(
ρE(s, a, s′)

1
2 (ρπ(s, a, s′) + ρE(s, a, s′))

×
1
2 (ρπ(s, s′) + ρE(s, s′))

ρE(s, s′)

)
dsdads′

=

∫
S×A×S

(
1

2
ρπ(s, a, s′) (log ρπ(a|s, s′) + log f(s, a, s′))

+
1

2
ρE(s, a, s′) (log ρE(a|s, s′) + log f(s, a, s′))

)
dsdads′. (18)

We denotes (18) as Γ(s, a, s′) and f(s, a, s′) = ρπ(s,s
′)+ρE(s,s′)

ρπ(s,a,s′)+ρE(s,a,s′) . We then expand the discrep-
ancy between the inverse model of expert and agent as

DJS(ρπ(a|s, s′)||ρE(a|s, s′))

=

∫
S×A×S

1

2
ρπ(s, a, s′) log

2ρπ(a|s, s′)
ρπ(a|s, s′) + ρE(a|s, s′)

dsdads′

+

∫
S×A×S

1

2
ρE(s, a, s′) log

2ρE(a|s, s′)
ρπ(a|s, s′) + ρE(a|s, s′)

dsdads′.

When DJS(ρπ(s, s′)||ρE(s, s′)) → 0, there will be ρπ(s,s
′)

ρE(s,s′) → 1, and g(s, a, s′) → 2. Therefore
Γ(s, a, s′)− DJS(ρπ(a|s, s′)||ρE(a|s, s′))→ 0. If we denote

ε = Γ(s, a, s′)− DJS(ρπ(a|s, s′)||ρE(a|s, s′))
= DJS(ρπ(s, a)||ρE(s, a))− DJS(ρπ(s, s′)||ρE(s, s′))− DJS(ρπ(a|s, s′)||ρE(a|s, s′)),

we get ε→ 0 during the minimization of DJS(ρπ(s, s′)||ρE(s, s′)).

Corollary 2 (Corollary 1 with JS divergence). If the dynamics T (s′|s, a) is injective, LfD is equiv-
alent to naive LfO (replacing KL with JS divergence).

DJS (ρπ(s, a)||ρE(s, a)) = DJS (ρπ(s, s′)||ρE(s, s′)) . (19)

Proof. With Lemma 3, we can substitute the right side of the equality as

DJS(ρπ(s, a)||ρE(s, a))

= DJS(ρπ(s, a, s′)||ρE(s, a, s′))

= Eρπ
[

1

2
log

2ρπ(s, a, s′)

ρπ(s, a, s′) + ρE(s, a, s′)

]
+ EρE

[
1

2
log

2ρE(s, a, s′)

ρπ(s, a, s′) + ρE(s, a, s′)

]
= Eρπ

[
1

2
log

2ρπ(s, s′)ρπ(a|s, s′)
ρπ(s, s′)ρπ(a|s, s′) + ρE(s, s′)ρE(a|s, s′)

]
+ EρE

[
1

2
log

2ρE(s, s′)ρE(a|s, s′)
ρπ(s, s′)ρπ(a|s, s′) + ρE(s, s′)ρE(a|s, s′)

]
= Eρπ

[
1

2
log

2ρπ(s, s′)

ρπ(s, s′) + ρE(s, s′)

]
+ EρE

[
1

2
log

2ρE(s, s′)

ρπ(s, s′) + ρE(s, s′)

]
︸ ︷︷ ︸

by Lemma 2

= DJS(ρπ(s, s′)||ρE(s, s′)). (20)
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A.4 Theorem 2 with Jensen-Shannon Divergence

Assumption 2. Given the inverse dynamics model of agent ρπ(a|s, s′) and expert ρE(a|s, s′). The
following inequality

DKL(ρE(a|s, s′)||ρπ(a|s, s′)) 6 DKL(ρπ(a|s, s′)||ρE(a|s, s′)) + δ, (21)

where δ is a minor term that will converge to 0 and thus can be omitted during the minimization
the inverse dynamics disagreement between ρπ(a|s, s′) and ρE(a|s, s′), should always holds, or
the reverse Kullback-Leibler divergence of the inverse model between agent and expert should be
bounded by the KL divergence between them.

Note that, this assumption is somewhat trivial since when KL divergence
DKL(ρπ(a|s, s′)||ρE(a|s, s′)) is sufficiently minimized, the total variance between ρπ(a|s, s′) and
ρE(a|s, s′) is also minimized, thus inverse DKL(ρE(a|s, s′)||ρπ(a|s, s′)) will be minimized at the
same time. Apparently, the inequality holds and there will be δ → 0.
Theorem 4 (Theorem 2 with JS divergence). Let Hπ(s, a) and HE(s, a) denote the causal en-
tropies over the state-action occupancy measures of the agent and expert, respectively. When
DKL [ρπ(s, s′)||ρE(s, s′)] is minimized, we have

DJS [ρπ(a|s, s′)||ρE(a|s, s′)] 6 −Hπ(s, a) + Const. (22)

Proof. We will begin with the gap as the discrepancy between the inverse model of agent and expert

DJS [ρπ(a|s, s′)||ρE(a|s, s′)]

=

∫
S×A×S

1

2
ρπ(s, a, s′) log

2

1 + ρE(a|s,s′)
ρπ(a|s,s′)

dsdads′

+

∫
S×A×S

1

2
ρE(s, a, s′) log

2

1 + ρπ(a|s,s′)
ρE(a|s,s′)

dsdads′

= log 2−
∫
S×A×S

1

2
ρπ(s, a, s′) log

(
1 +

ρE(a|s, s′)
ρπ(a|s, s′)

)
dsdads′

−
∫
S×A×S

1

2
ρE(s, a, s′) log

(
1 +

ρπ(a|s, s′)
ρE(a|s, s′)

)
dsdads′

6 log 2 +

∫
S×A×S

1

2
ρπ(s, a, s′) log

ρπ(a|s, s′)
ρE(a|s, s′)

dsdads′

+

∫
S×A×S

1

2
ρE(s, a, s′) log

ρE(a|s, s′)
ρπ(a|s, s′)

dsdads′

=
1

2
DKL (ρπ(a|s, s′)||ρE(a|s, s′)) +

1

2
DKL (ρE(a|s, s′)||ρπ(a|s, s′)) + log 2

= DKL (ρπ(a|s, s′)||ρE(a|s, s′)) + δ︸ ︷︷ ︸
by Assumption 2

+ log 2

6 −Hπ(s, a) + Const︸ ︷︷ ︸
by Theorem 2

, (23)

where the first inequality is given by Jensen’s inequality, and as we demonstrated in Assumption 2,
the minor error δ will converge to 0 and thus can be omitted from the objective of minimizing
DJS (ρπ(a|s, s′)||ρE(a|s, s′)).

A.5 Gradient Estimation of Policy Entropy and Mutual Information

Here we provide the policy gradient formula for causal entropy Hπ(a|s) and mutual information
I(s; (s′, a)).
Proposition 1. The policy gradient of causal entropyHπ(a|s) is given by

∇θEπθ [− log πθ(a|s)] = Eθ
[
∇θ log πθ(a|s)QH(s, a)

]
,

where QH(s̄, ā) = Eπθ [− log πθ(a|s)|s0 = s̄, a0 = ā] .
(24)

6



Proof. Define ρ(s) =
∑
a ρ(s, a) as the state occupancy measure. Then we have

∇θEπθ [− log πθ(a|s)] = −∇θ
∑
s,a

ρπθ (s, a) log πθ(a|s)

= −
∑
s,a

(∇θρπθ (s, a)) log πθ(a|s)−
∑
s

ρπθ (s)
∑
a

πθ(a|s)∇θ log πθ(a|s)

= −
∑
s,a

(∇θρπθ (s, a)) log πθ(a|s)−
∑
s

ρπθ (s)
∑
a

∇θπθ(a|s)︸ ︷︷ ︸
=0

= −
∑
s,a

(∇θρπθ (s, a)) log πθ(a|s). (25)

This is exactly the policy gradient for RL with fixed cost function c(s, a) = log πθ(a|s). And the
resulting policy gradient (24) is given by the standard policy gradient with cost c(s, a).

Proposition 2. The policy gradient of mutual information I(s; (s′, a)) is given by

∇θIπθ (s; (s′, a)) = Eθ
[
∇θ log πθ(a|s)QI(s, a)

]
,

where QI(s̄, ā) = Iπθ (s; (s′, a)|s0 = s̄, a0 = ā) .
(26)

Proof. Note that Iπ(s; (s′, a)) = Hπ(s)−Hπ(s|s′, a). The same as the proof for Proposition 1, we
have

∇θIπθ (s; (s′, a)) = −∇θ
∑
s

ρπθ (s) log πθ(s)−∇θ
∑
s,a,s′

ρπθ (s, a, s
′) log πθ(s|s′, a)

= −
∑
s

(∇θρπθ (s)) log πθ(s)−
∑
s,a,s′

(∇θρπθ (s, a, s′)) log πθ(s|s′, a). (27)

We can thus see Iπ(s; (s′, a)) as a fixed cumulative cost sum of a MDP, thus the resulting policy
gradient will be (26).
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B Specifications

B.1 Hyperparameters

Tab. 1 lists the parameters for BCO [8], DeepMimic [5], GAIL [3], GAIfO [9] and proposed method
used in the comparative evaluation.

Table 1: Hyperparameters for Evaluated Algorithms

Parameter Value

Shared
Optimizer Adam [4]
Learning rate 3e−4

Batch size 512
Discount (γ) 0.99
Architecture of policy, value and discriminator networks (300, 400)
Nonlinearity Tanh

BCO
Inverse model training epoches 50

DeepMimic
Reward type Joint angle qt and Joint velocity q̇t
Reward design rt = wp exp(−2(

∑
j ‖q̂

j
t − qjt‖2))

+ wv exp(−0.1(
∑

j ‖ˆ̇q
j
t − q̇jt‖2))

Reward weight (wp,wv) (0.8,0.2)

GAIL
Weight of policy entropy 0.01

Ours
Weight of policy entropy (λp) 0.01
Weight of state entropy (λs) 0.1
Pretrained MI estimator steps 10000
Update MI estimator steps 50
Architecture of MI estimator network (512, 512)

B.2 Gridworld Environment and Inverse Dynamics Disagreement

We will first demonstrate how our Gridworld environments are motivated by illustrating the relation
between inverse dynamics disagreement and possible functional-equivalent action choices. Then we
will provide the detailed specifications of our Gridworld environment.

The intuition behind the design of these experiments is that the complexity of the dynamics shows
positive correlation with inverse dynamics disagreement. Under the deterministic dynamics, the
complexity will be mainly dominated by the numbers of action choices (or size of state space, but we
override it as we adopt a fixed size maze). Consider a MDP with two state s0, s1 and a set of actions
{a(0)01 , a

(1)
01 , a

(2)
01 , · · · } that can let the agent transform from s0 to s1. To approximately compute

inverse dynamics disagreement, we denote π(a|s = s0) ∼ Categorical(p1 = p2 = · · · = pk) is a
uniformed initialized policy on a discrete action space with size k, πθ(a|s = s0) is a θ-parameterized
expert policy. Without loss of generality, we assume θ has a prior of normal distribution θ ∼
N (0k,1k). Therefore, we can approximately compute inverse dynamics disagreement as follows.

Inverse Dynamics Disagreement
≈ Eθ∼N (0k,1k) [DKL (π(a|s = s0)p(s = s0)||πθ(a|s = s0)p(s = s0))] , (28)
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where p(s = s0) is the distribution of state. Since there is only two states available, p(s = s0) = 1.
Fig. 1a in the main paper are plotted with (28). As we can see, inverse dynamics disagreement does
show a growing trend as the number of possible action choices increases.

To this end, we design several simple Gridworld environments (see Fig. 1) to help understand how
inverse dynamics disagreement affects the imitation learning algorithms. The red block is the start-
ing point of the agent, while the agent is encouraged to move toward the target green block. All the
black and dark grey block are permitted to move through, while the grey block represents wall. The
action that the agent may conduct including four basic ones: moving left, moving right, moving up,
moving down when the number of possible action choices is one. If the number of possible action
choices is larger than one (e.g. n choices), there will be n−1 functional equivalent choices added to
each original moving action, i.e., now there will be n action choices for moving left/right/up/down.
For the reward strategy, once the agent successfully reaches the green target block, it will receive a
reward of 100, and the game will immediately come to an end. When the agent takes an original
moving action, it will receive a penalty of −1, but when the agent chooses an action choice that is
other than the original one, it will receive a penalty of −5. All the numerical evaluation results are
under this strategy.

img/gridworld_sup.pdf

Figure 1: Gridworld environment.

B.3 Other Environments

Tab. 2 lists the specifications about the benchmark environments and number of state transition pairs
(state-action pairs for GAIL) in demonstration for each environment.

Table 2: Specifications for Evaluated Environments

Environment S A Max-Step Demonstration Size

CartPole R4 {0, 1} 200 5000
Pendulum R4 R1 1000 50000

DoublePendulum R11 R1 1000 50000
Hopper R11 R3 1000 50000

Halfcheetah R17 R6 1000 50000
Ant R111 R8 1000 50000

C Additional Empirical Results

C.1 Quantitative Results of Toy Example

Tab. 3 lists the quantitative results of the toy Gridworld experiments.
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Table 3: Quantitative Results of GAIL, GAIfO and our method in Gridworld Environment.

Num. of Action 1 2 4 11

GAIL [3] 86.0±3.0 70.4±6.4 68.7±5.8 69±4.0
GAIfO [9] 86.8±1.3 55.7±11.9 48.3±9.3 28.3±6.2

Ours 87.3±1.8 65.0±3.3 56.0±5.0 49.0±8.6

C.2 Comparative Evaluations

On the differences on results compared with [9] For the baseline results of GAIfO [9], we notice
that there are some differences between the results reported in [9] and our paper (Tab. 2 and Fig.
2 in the main paper). We hypothesis that the reason is twofold. First, different physics engine.
Referring to the footnote 2 in page 5 of [10], the experiments in [9] are conducted with PyBullet [2]
physics engine, while we use MuJoCo [7] instead since it is the default physics engine in OpenAI
Gym [1] benchmark. Second, different expert demonstrations. As [9] does not provide the expert
demonstrations used for imitation learning, we collect the demonstrations for all the baselines and
our method by training an expert with PPO [6], which may lead to different imitation learning
results.

C.3 Quantitative Results of Ablation Study

Tab. 4 and Tab. 5 list the quantitative results of the ablations analysis (sensitivity to policy entropy
and mutual information), while the corresponding learning curves can be found in Fig. 2a and Fig. 2b
respectively.

Table 4: Quantitative results about λp on HalfCheetah task.

hyperparameters Averaged return

λp = 0.0, λs = 0.01 4882.8± 40.1
λp = 0.0005, λs = 0.01 5526.2± 95.6
λp = 0.001, λs = 0.01 5343.2± 88.5
λp = 0.01, λs = 0.01 5404.8± 103.7

Table 5: Quantitative results about λs on HalfCheetah task.

hyperparameters Averaged return

λp = 0.001, λs = 0.0 4658.0± 90.2
λp = 0.001, λs = 0.001 5189.7± 77.2
λp = 0.001, λs = 0.01 5343.2± 88.5
λp = 0.001, λs = 0.1 5540.5± 100.3

To further illustrate how our method can benefit from the two components (policy entropy and MI
terms), here we also provide the results of performing a grid search on λp and λs in Fig. 3. All the
numerical results are evaluated under the same criteria as other experiments.

The results read that, adding MI term can always promote the imitation performances, and the
improvement can be more significant as the value of λs increases. And the promotions it obtains are
robust to the changes of λp. On the other hand, imitation performance can also benefit from adding
policy entropy, while different λp may lead to different improvements over the GAIfO baseline (the
left-bottom block, with λs = λp = 0).
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