
Model MSE(R) # RMSE(R) # MAE(R) # R2(R) " MSE(t) # RMSE(t) # MAE(t) # R2(t) "
Fixed � 13.661 3.696 1.659 0.919 0.0003 0.018 0.012 0.996
Annealed � 12.732 3.568 1.630 0.924 0.0003 0.017 0.011 0.996
Learned � 13.506 3.675 1.675 0.920 0.0003 0.018 0.012 0.996

Predicted � 10.235 3.199257 1.454 0.939 0.0003 0.016 0.010 0.997

Table 5: Choices of �

Supplementary

We provide more details of PRNet in this section.

Actor-Critic Closest Point. A shared DGCNN [22] is to use extract embeddings for X and Y
separately. The number of filters per layer are (64, 64, 128, 256, 512). We use BatchNorm and
LeakyReLU after each MLP in the EdgeConv layer. The local aggregation function of k-nn graph
is max, and there is no global aggregation function used in DGCNN. FX and FY denote the
representations learned by DGCNN.

After DGCNN, FX and FY are fed into the Transformer. The Transformer is an asymmetric function
that learns co-contextual representations �X and �Y . Transformer has only one encoder and one
decoder. 4-head self-attention is used in encoder and decoder. LayerNorm, instead of BatchNorm, is
used in the Transformer. Unlike the original implementation of Transformer, we do not use Dropout.
For detailed presentation of Transformer, we refer readers to the tutorial.1

There are two heads on top of the representations �X and �Y : a action head consisting of Gumbel-
Softmax and SVD; a value head to predict a � for Gumbel-Softmax in the action head. The value
head is parameterized by a 4-layer MLPs. The number of filters are (128, 128, 128, 1). BatchNorm
and ReLU are used after each linear layer in the MLPs.

Training Protocol. We train the model for 100 epochs. At epochs 30, 60, and 80, we divide the
learning rate by 10; it is initially 0.001. Each training pair X and Y is passed through PRNet three
times iteratively (the rigid alignment of X is updated three times). The final rigid transformation is
the combination of these three local rigid transformations. ↵ for cycle consistency loss and � for
feature alignment loss are both 0.1. The weight decay used is 10�4. The number of keypoints is 512
on training. For visualization purposes, however, we show 64 keypoints in Figure 4, Figure 5, and
Figure 6.

Our model is trained on a Google Cloud GPU instance with 4 Tesla V100 GPUs and takes 10 hours
to complete.

As for DCP-v2, we take the implementation from the authors’ released code 2 and train it as they
suggest.

Choices of �. We compare to alternative choices of ways to determine �: (1) fixing � manually; (2)
annealing � to near 0 as the training going; (3) including � as a variable during training. We train
the PRNet in the same way for each option, except the choice of � is different. Table 5 verifies our
choice of strategies for computing �.

Keypoint detection alternatives, experiments on full point clouds, effects of discount factor,

choice of k, robustness to data missing ratio, robustness to data noise. To understand the
effectiveness of each part, we conduct additional experiments in Table 6; to save space, we only show
MAE and R2. (a) First, we consider alternatives to keypoint selection: in the first alternative, the
two sets of keypoints are chosen independently and randomly on the two surfaces (X and Y); in
the second alternative, we use centrality to choose keypoints, keeping the k points whose average
distance (in feature space) to the rest in the point cloud is minimal. Empirically, the L

2 norm used in
our pipeline to select keypoints outperforms others. (b) Second, we compare our method to others
on full point clouds. In this experiment, 768 points are sampled from each point cloud to cover the

1http://nlp.seas.harvard.edu/2018/04/03/attention.html
2https://github.com/WangYueFt/dcp

14

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/WangYueFt/dcp

Method MAE(R) # R2(R) " MAE(t) # R2(t) "
Random sampling 1.689 0.927 0.011 0.997

Closeness to other points 2.109 0.861 0.013 0.995
L
2 Norm 1.454 0.939 0.010 0.997

(a) Different keypoint detection methods.

Different k MAE(R) # R2(R) " MAE(t) # R2(t) "
16 27.843 -14.176 0.136 0.326
32 8.293 -1.848 0.048 0.892
64 3.129 0.563 0.024 0.979
128 2.007 0.879 0.016 0.991
256 1.601 0.932 0.012 0.996
384 1.508 0.934 0.011 0.997

512 1.454 0.939 0.010 0.997

(d) Different number of keypoints (k).

Model MAE(R) # R2(R) " MAE(t) # R2(t) "
ICP 25.165 -5.860 0.250 -0.045
Go-ICP 2.336 0.308 0.007 0.994
FGR 2.088 0.393 0.003 0.999
PointNetLK 3.478 0.051 0.005 0.994
DCP 2.777 0.887 0.009 0.998

PRNet (Ours) 0.960 0.979 0.006 1.000

(b) Experiments on full point clouds.

Data Missing Ratio MAE(R) # R2(R) " MAE(t) # R2(t) "
75% 6.447 0.028 0.042 0.921
50% 3.939 0.623 0.0288 0.969
25% 1.454 0.939 0.010 0.997

(e) Data missing ratio.
Discount Factor � MAE(R) # R2(R) " MAE(t) # R2(t) "
0.5 1.921 0.917 0.014 0.995
0.7 1.998 0.884 0.014 0.995
0.9 1.454 0.939 0.010 0.997

0.99 1.732 0.915 0.012 0.996

(c) Different discount factors (�).

Data Noise MAE(R) # R2(R) " MAE(t) # R2(t) "
N (0, 0.01

2
) 2.051 0.889 0.012 0.995

N (0, 0.1
2
) 5.013 0.617 0.020 0.991

N (0, 0.5
2
) 21.129 -2.830 0.064 0.917

(f) Data noise.
Table 6: Ablation studies.

points ICP Go-ICP FGR PointNetLK DCP PRNet

512 0.134 14.763 0.230 0.049 0.014 0.042
1024 0.170 14.853 0.250 0.061 0.024 0.073
2048 0.242 14.929 0.248 0.069 0.058 0.152

Table 7: Inference time (in seconds).

full shape using farthest-point sampling. In the full point cloud setting, PRNet still outperforms
others. (c) Third, we verify our choice of discount factor �; small large discount factors encourage
alignment within the first few passes through PRNet while large discount factors promote longer-term
return. (d) Fourth, we test the choice of number of keypoints: the model achieves surprisingly good
performance even with 64 keypoints, but performance drops significantly when k < 32. (e) Fifth, we
test its robustness to missing data. The missing data ratio in original partial-to-partial experiment is
25%; we further test with 50% and 75%. This test shows that with 75% points missing, the method
still achieves reasonable performance, even compared to other methods tested with only 25% points
missing. (f) Finally, we test the model robustness to noise level. Noise is sampled from N (0,�

2
).

The model is trained with � = 0.01 and tested with � 2 [0.01, 0.1, 0.5]. Even with � = 0.1, the
model still performs reasonably well.

Efficiency. We benchmark the inference time of different methods on a desktop computer with an
Intel 16-core CPU, an Nvidia GTX 1080 Ti GPU, and 128G memory. Table 7 shows learning based
methods (on GPUs) are faster than non-learning based counterparts (on CPUs). PRNet is on a par
with PointNetLK while being slower than DCP.

More figures of keypoints and correspondences. In Figure 7 and Figure 8, we show more visual-
izations of keypoints and correspondences for different pairs of objects.

15

Figure 7: Keypoint detection for different pairs of objects.

Figure 8: Correspondence prediction for different pairs of objects.

16

	Introduction
	Related Work
	Method
	Preliminaries: Registration, ICP, and DCP
	Partial Registration Network

	Experiments
	Partial-to-Partial Registration on ModelNet40
	Partial-to-Partial on Real Data
	Keypoints and Correspondences
	Transfer to Classification

	Conclusion
	Acknowledgements

