
SUPPLEMENTARY MATERIAL for "A Linearly Convergent Proximal
Gradient Algorithm for Decentralized Optimization"

A Existence of a Fixed Point Proof for Lemma 1

To establish existence we will construct a point (W?, Y?,Z?) that satisfies equations (16a)–(16c).
From assumption (1), there exists a unique solutionw? for problem (2). From the optimality condition,
there must exist a subgradient r? ∈ ∂R(w?) such that

1

K

K∑
k=1

∇Jk(w?) + r? = 0 (45)

We see from the above equation that r? is unique due to the uniqueness of w?. Now define z? ∆
=

µr? + w?. It holds that (z? − w?) = µr?, i.e., (z? − w?) ∈ µ∂R(w?). This implies that

w? = arg min
w

{
R(w) +

1

2µ
‖w − z?‖2

}
. (46)

We next define W? = 1K ⊗ w? and Z? = 1K ⊗ z?. Relation (46) implies that equation (16c) holds.
Also, since Z? = 1K ⊗ z?, it belongs to the null space of B 1

2 so that B 1
2Z? = 0. It remains to

construct Y? that satisfies equation (16a). Note that ∇Jµ(W?) = ∇J (W?) + 1
µBW

? = ∇J (W?)

due to the fact that W? lies in the null space of B, and therefore

(1N ⊗ IM )T
(
W? − Z? − µ∇Jµ(W?)

)
= −µKr? − µ

K∑
k=1

∇Jk(w?)
(45)
= 0, (47)

where the last equality holds because of (45). Equation (47) implies that(
W? − Z? − µ∇Jµ(W?)

)
∈ Null(1N ⊗ IM ) = Null(B 1

2 )⊥ = Range(B 1
2 ) (48)

where ⊥ denotes the orthogonal complement of a set. As a result, there must exist a vector Y? that
satisfies equation (16a).

B Numerical Simulations

In this section we verify our results with numerical simulations. We consider the decentralized sparse
logistic regression problem for three real datasets4: Covtype.binary, MNIST, and CIFAR10. The last
two datasets have been transformed into binary classification problems by considering digital two
and four (‘2’ and ‘4’) classes for MNIST, and cat and dog classes for CIFAR-10. In Covtype.binary
we used 50,000 samples as training data and each data has dimension 54. We used 10,000 samples as
training data from MNIST (with labels ‘2’ and ‘4’) and each data has dimension 784. In CIFAR-10
we used 10,000 training data (with labels ‘cat’ and ‘dog’) and each data has dimension 3072. All
features have been preprocessed by normalizing them to the unit vector with sklearn’s normalizer5.
For the network, we generated a randomly connected network with K = 20 nodes – see Fig. 1.
The associated combination matrix A is generated according to the Metropolis rule [14, 47]. The
decentralized sparse logistic regression problem takes the form

min
w∈RM

1

K

K∑
k=1

Jk(w) + ρ‖w‖1 where Jk(w) =
1

L

L∑
`=1

ln(1 + exp(−yk,`xTk,`w)) +
λ

2
‖w‖2

where {xk,`, yk,`}L`=1 are local data kept by agent k and L is the size of the local dataset. For all
simulations, we assign data samples evenly to each local agent. We set λ = 10−4 and ρ = 0.002 for
Covtype, λ = 10−2 and ρ = 0.0005 for CIFAR-10, and λ = 10−4 and ρ = 0.002 for MNIST. We
compare the proposed P2D2 method against two well-know proximal gradient-based decentralized
algorithms that can handle non-smooth regularization terms: PG-EXTRA [23] and decentralized

4Covtype: www.csie.ntu.edu.tw, MNIST: yann.lecun.com, CIFAR10: www.cs.toronto.edu.
5https://scikit-learn.org
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linearized ADMM (DL-ADMM) [22, 42]. For each algorithm, we tune the step-size to the best
possible convergence rate. The step-sizes employed in each method for each dataset are listed in
Table 1. Also, the proposed method employs an additional step-size α which is set as 1, 0.8 and
1 for Covtype, CIFAR-10 and MNIST, respectively. Figure 2 shows that each local variable wk,i
converges linearly to the global solution w? for the proposed method (14a)–(14b), which is consistent
with Theorem 1. The proposed method is slightly faster than DL-ADMM and PG-EXTRA due
to the additional tunable parameter α. Note that while DL-ADMM and PG-EXTRA are observed
to converge linearly, no theoretical guarantees are shown in [22, 23, 42]. The simulation code is
provided in the supplementary material.

Covtype CIFAR-10 MNIST
DL-ADMM 0.0022 0.075 0.21
PG-EXTRA 0.002 0.07 0.20

P2D2 (Proposed) 0.0024 0.08 0.24
Table 1: Step-sizes used in the simulation.

Figure 1: The network topology used in the simulation.

13



0 50 100 150 200 250 300 350 400

iteration

10-23

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

S
q
u
a
re

 E
rr

o
r

Covtype

DL-ADMM

PG-EXTRA

Proposed

0 50 100 150 200 250 300 350 400

iteration

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

S
q
u
a
re

 E
rr

o
r

CIFAR10

DL-ADMM

PG-EXTRA

Proposed

0 200 400 600 800 1000 1200 1400 1600 1800

iteration

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

S
q
u
a
re

 E
rr

o
r

MNIST

DL-ADMM

PG-EXTRA

Proposed

Figure 2: Simulation Results. The y-axis indicates the relative squared error∑K
k=1 ‖wk,i − w?‖2/‖w?‖2.
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