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1 Pre-trained Models

We adopt two groups of pre-trained models to validate the proposed method. The first group consists
of the pre-trained taskonomy models [24]. All the taskonomy models adopt an encoder-decoder
architecture. For all tasks, the encoders are identical and implemented by the modified ResNet-50.
The architectures of the decoders depend on the tasks. We adopt 20 trained models of single-image
tasks released by taskonomyﬂ Autoencoder, Curvature, Denoise, Edge 2D, Edge 3D, keypoint 2D,
Keypoint 3D, Colorization, Reshade, Rgb2depth, Rgb2minst, Rgb2sfnorm, RoomLayout, Segment
25D, Segment 2D, VanishingPoint, SegmentSemantic, Class 1000, Class Places and Inpainting Whole.
Please refer to [24] for more details about these models.

Table 1: Details of the collected models. “Layer Name” refers to the layers w.r.t. which the attribution
maps are computed. “Pre-Logits” indicates the layer previous to the one which produces logits.

Model Task Training Data Input Size Pre-trained Layer Name
Inception V3 [21] Classification ILSVRC2012 [14] 299 x 299 x 3 X Pre-Logits
Inception-ResNet V2 [20] Classification ILSVRC2012 [14] 299 x 299 x 3 X Pre-Logits
VGG 16 [19] Classification ILSVRC2012 [14] 224 x 224 x 3 X Pre-Logits
VGG 19 [19] Classification ILSVRC2012 [14] 224 x 224 x 3 X Pre-Logits
ResNet V1 50 [4] Classification ILSVRC2012 [14] 224 x 224 x 3 X Pre-Logits
ResNet V1 101 [4] Classification ILSVRC2012 [14] 224 x 224 x 3 X Pre-Logits
ResNet V1 152 [4] Classification ILSVRC2012 [14] 224 x 224 x 3 X Pre-Logits
Mobilenet V1 [5] Classification ILSVRC2012 [14] 224 x 224 x 3 X Pre-Logits
50% Mobilenet V1 [3] Classification ILSVRC2012 [14] 160 x 160 x 3 X Pre-Logits
25% Mobilenet V1 [3] Classification ILSVRC2012 [14] 128 x 128 x 3 X Pre-Logits
Generative Inpainting [23] Inpainting Places2 [25] 512 x 680 x 3 X “allconv12”t
Generative Inpainting [23] Inpainting CelebA [10] 256 X 256 X 3 X “allconv12”
Generative Inpainting [23] Inpainting CelebA-HQ [7] 256 X 256 X 3 X “allconv12”}
Generative Inpainting [23] Inpainting ILSVRC2012 [14] 256 X 256 X 3 X “allconv12”
FCRN [8] Depth Estimation NYU Depth v2 [17] 512 x 512 x 3 v “layer1”t
PRN [3] Face Alignment 300W-LP [26] 256 X 256 X 3 X “ResBlock10”}
FCN [11] Semantic Segmentation PASCAL VOC [2] 512 X 512 x 3 v “Conv8”t
Tiny Face Detector [[6] Face Detection WIDER FACE [22] 512 x 512 x 3 v “resdb”f

*': the name given in the source code.

To further validate our method, we also collect another 18 pre-trained models online beyond those
involved in taskonomy, including two VGGs [[19] (VGG16, VGG19), three ResNets [4] (ResNet50,
ResNet101, ResNet152), two Inceptions (Inception V3 [21], Inception ResNet V2 [20]), three
MobileNets [5] (MobileNet, 0.5 MobileNet, 0.25 MobileNet), four Inpaintings [23] (ImageNet,

"https://github.com/StanfordVL/taskonomy/tree/master/taskbank
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Figure S1: Visualization of attribution maps produced by saliency [[18] and gradient*input [15].

CelebA, CelebA-HQ, Places), FCRN [[8]], FCN [11]], PRN [3]] and Tiny Face Detector [6]. Details of
these models are summarized in Table[I] These models can be further categorized into three groups:

e Classification models: trained on the same data ILSVRC2012 [14])), for the same task (1000-way
classification), but in different model architectures (Inception, ResNet, VGG, MobileNet). We
adopt the pre-trained models released by Tensorﬂow—Slinﬂ [16] Tib.

e Inpainting models: in the same model architecture, trained for the same task, but on different
datasets (Places2 [23]], CelebA , CelebA-HQ [7] and ILSVRC2012 [14]]). We adopt the
pre-trained models released by i

e Other models: models in this group are heterogeneous in architectures, tasks and training data.
This group consists of four models, including FCRN [8], FCN [11], PRN [3] and Tiny Face
Detector [6]. Pre-trained models can be found in their project pages.

In our experiments, we also merge the two groups of models to form a more comprehensive group.
Experiments on this new group will provide us more insights into the proposed method.

2 Probe Datasets

Here we provide more details about the three probe datasets used in the proposed method.

“https://github.com/tensorflow/models/tree/master/research/slim
*https://github.com/JiahuiYu/generative_inpainting
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Figure S2: Visualization of transferability matrices produced by saliency [18]], gradient*input [15]]
and -LRP [1]] on images randomly selected from taxonomy data [24]], indoor scene [13]], COCO

data [9]).

Taskonomy data On taskonomy data [24]], we construct the probe data by selecting images from the
validation data of the “Tiny” partition. In the validation set of Tiny partition, images are collected from
5 different buildings. We randomly select 200 images from each of these 5 buildings, constructing a
probe dataset consisting of 1,000 images.

Indoor Scene Indoor Scene is a dataset used for indoor scene recognition. The original
database contains 67 indoor categories, and a total of 15, 620 images. We randomly select 15 images
from each of these 67 categories, constructing a probe dataset consisting of 1, 005 images.

COCO The COCO [9] dataset is designed for several purpose such as detection, caption and so on.
On this dataset, we randomly select 1, 000 images from the 2014 Val dataset to construct the probe
dataset for evaluating the proposed method.

The styles of images in these three datasets are very different. Generally speaking, the textures of
images in taskonomy data are simple. However, the textures of images in Indoor Scene and COCO
are relatively more complex.

3 Visualization of Attribution Maps

In this section, we visualize attribution maps of examples from taskonomy data for better
understanding of our method. Here attribution maps are produced by saliency maps [18] and gradient
* input [15]]. Results are visualized in Figure[ST] It can be seen that some tasks tend to produce
much more similar attribution maps than others. For example, <Rgb2depth, Rgb2mist> and <Class
1000, Class Places>. These producing-similar-attribution tasks are proved to be highly related in the
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Figure S3: Task similar trees produced by our method with saliency [18]], gradient*input [[15] and
e-LRP [1] on images randomly selected from taxonomy data [24]], indoor scene [13]], COCO data [9].

task structure found in taskonomy and thus producing favorable transfer performance to each other.
Some examples may produce misleading results. However, the conclusions made by statistically
aggregating the results of all the randomly sampled examples become more reliable.

4 Visualization of Deep Model Transferability

In this section, we provide the results of deep model transferability found by the proposed method.
Here we show the model transferability in two way: visualization of the affinity matrix and the task
similarity tree. The visualization of attribution maps is provided in Figure[S2] In this figure, the
affinity matrices in each row are produced by the same attribution method which is listed on the left.
The probe data used for matrices in each column are listed on the top. The results demonstrate that:

e For each attribution method, no matter which probe data is adopted, the produced affinity matrixes
(in the same row) are highly similar. It implies that the proposed method is insensitive to the
choice of probe dataset to some degree, which renders our method robust and flexible.

e On each probe dataset, the transferability matrices produced by e-LRP are visually similar
to gradient * input. However, the saliency seems to produce visually more dissimilar results.
Actually, the transferability matrices produced by e-LRP and gradient*input are more consistent
with that produced by taskonomy than that produced by saliency. The fact accounting for this
phenomenon may be that saliency generate attributions entirely based on gradients which denote
the direction for optimization. However, the gradients can’t fully reflect the relevance between
the inputs and the outputs of the deep model, thus leading to inferior results in our method.

To better understand the results produced by different attribution methods and probe data, we construct
the task similar trees by agglomerative hierarchical clustering. The constructed task similar trees are
depicted in Figure@} To be consistent with taskonomy [24], 3D, 2D, geometric and semantic tasks
are listed in different fonts. Taskonomy has shown that the tasks in the same font plays similar roles
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Figure S4: Model transferability matrices and the task similar trees produced by our method with
e-LRP on various size (listed below the subfigures) of probe data randomly selected from COCO.

in transferring to other tasks, thus they should be clustered together. The results shown in Figure[S3]

indicate that:

e For each attribution method, the task similar trees obtained on the three probe datasets are highly
similar. It again verifies that our method is insensitive to the choice of the probe data.

e For gradient * input [15]] and ¢-LRP [1]], the tasks of the same type are grouped into the same
cluster with few exceptions. These results are highly similar to that produced by taskonomy.
Considering that our method is much more computation efficient, we argue that our method is
much more scalable and practical.

o If we adopt saliency for attribution in our method, the constructed similar trees are a little different,
where the 2D tasks tend to be clustered into two groups: <Inpainting, Edge2D, Colorization> and

<Keypoint2D, Autoencoder, Segment2D>.

We also investigate how the size of the probe data affects the results. Towards this end, we randomly
sample {100, 400, 800, 1200, 1600, 2000} images from taskonomy to produce the model transfer-
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Figure S5: The model transferability matrix (left) and the task similar tree (right) produced by
saliency.
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Figure S6: The model transferability matrix (left) and the task similar tree (right) produced by
gradient*input.

ability. Results are provided in Figure[S4] It can be seen that with the increasing probe data, the
constructed relatedness (shown in task similar trees and the visualization of transferability matrices)
keeps almost unchanged. This result indicates that the proposed method is also insensitive to the size
of the probe data. A few hundreds of images are sufficient for the proposed method.

S Experiments on the Merged Group

To better understand our method, we also merge the two groups (taskonomy models and the pre-
trained models collected outside taskonomy) to form a comprehensive group, which consists of totally
38 models. Experiments are conducted on the taskonomy data with saliency, gradient*input and
-LRP, of which results are shown in Figure[S3] [S6]and [S7} respectively. By comparing the results of
the three attribution methods, we make the following three observations or analysis:

e ¢-LRP and saliency produce highly similar results. However, the results of saliency are a little
different. These results are consistent with results on taskonomy models or collected models
alone, which implies that the proposed method can be scalable to model library of larger size.

e The same-task models, although trained on data from different domains, tend to cluster together.
These can be verified by the inpainting models which cluster together in our experiments. Further-
more, we additionally conduct an experiment (not shown in the figure) on another colorization
model [12]]. The model affinity obtained by our method ranks the taskonomy colorization model
first among all others, which again verifies our conclusion.



Autoencoder SR £ 00 2 0 B D o
re -6 G O O8] N 0.3

Denmselmll' E I

Edge 026K

Colorization
4 o2 Face Detection
E§¥§3:"§ gggg;mﬁ L peo7b I Semanul%gegmem
Colgription T Ew om0 SNeE:
Tm ResNet10T
ResNet50
VGG19
VGG16
Eencls
utoencoder
Ke){)polnt 2D
MabileNet
5 MohileNet
ace Alignmen
ey
2 ass Places
Inception ResNeth EE! i i b L | Inception v3

Inception ResNet V2
S (S antic

0.25 M:

Rgb2m

Room Layout
n 13D

deZD

ﬁ"\mg Boint

Figure S7: The model transferability matrix (left) and the task similar tree (right) produced by e-LRP.

We

In most cases, the global task structure (all models are considered) preserves the local task
structure (only a fraction of models are considered). For example, when removing the taskonomy
models from the task similar tree, the remaining tree structure is highly similar with that of
collected models.

argue all these observations are not trivial and providing us more insights into deep models and

transfer learning.
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