
Appendices
A Proof of Proposition 1

Proof. Let f : Rd → R+ be a positive and bounded function. We have by definition, using the
expression of the density of the Dirichlet and Beta distributions, see [13], and setting ud = 1 −∑d−1
i=1 ui,
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where
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Then by symmetry, without loss of generality, we only need to consider A1. Using the
change of variable, (g, u1, u2, . . . , ud−1) 7→ (g, u1, gu2/u1, . . . , gud−1/u1), which is a C1-
diffeomorphism from ∆1 = {(g, u1, . . . , ud−1) ∈ [0, 1]

d
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that

A1 =

∫
∆1

f {g, . . . , gud/u1} ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, u2, . . . , ud−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

(u1w`/g)α`−1

Γ(α`)

}
uα1−1

1

Γ(α1)

(1− u1 −
∑d−1
i=2 u1wi/g)αd−1

Γ(αd)

gd−2

ud−2
1

Leb(g, u1, w2, . . . , wd−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

wα`−1
`

Γ(α`)

}
uα

?−2
1

Γ(α1)

(g/u1 − g −
∑d−1
i=2 wi)

αd

Γ(αd)
g−α

?+α1+1Leb(g, u1, w2, . . . , wd−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

wα`−1
`

Γ(α`)

}
gα1−1

Γ(α1)

(g/u1 − g −
∑d−1
i=2 wi)

αd−1

Γ(αd)
(u1/g)α

?−2Leb(g, u1, w2, . . . , wd−1) .

Now using the change of variable (g, u1, w2, . . . , wd−1) 7→ (g, g/u1 −
∑d−1
i=2 wi, w2, . . . , wd−1) =

(g, wd, . . . , wd−1), which is a C1-diffeomorphism from ∆̃1 to

∆̄1 = {(g, wd, w2, . . . , wd−1) : max
j∈{1,...,d}

wj 6 g} ,
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we obtain since g/u1 = g +
∑d
j=2 wj that

A1 =

∫
∆̄1

f(g, w2, . . . , wd−1, wd))g
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×
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Combining this result, (11) and (12) completes the proof.

B Butterfly rotation matrices

Suppose d = 2k for some k ∈ N and let ci = cos νi and si = sin νi. For d = 1, define R1 = [1].
AssumeRd has been defined. Then define

R2d =

[
Rdcd −Rdsd
R̃dsd R̃dcd

]
,

where R̃d has the same form as Rd except that the ci and si indices are all increased by d. So for
instance

R2 =

[
c1 −s1

s1 c1

]
, R̃2 =

[
c3 −s3

s3 c3

]
.

Suppose now that d is not a power of 2 and let k = dlog de. We construct Rd as a product of k
factors O1 · · · Ok as used in the construction of R2k . For any i ∈ {1, . . . k}, we then delete from
Oi the last 2k − d rows and columns. Then for every ci in the remaining d× d matrix that is in the
same column as a deleted si is replaced by 1. As an example, for d = 5, we have

R5 =


c1 −s1 0 0 0
s1 c1 0 0 0
0 0 c3 −s3 0
0 0 s3 c3 0
0 0 0 0 1



c2 0 −s2 0 0
0 c2 0 −s2 0
s2 0 c2 0 0
0 s2 0 c2 0
0 0 0 0 1



c4 0 0 0 −s4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
s4 0 0 0 c4

 .

C Optimization of the variational bound

Recall that for independent random variables Zi ∼ G(αi, 1), for i ∈ {1, . . . d}, we have(
Z1∑d
j=1 Zj

, . . . Zd∑d
j=1 Zj

)
∼ Dirichlet(α1, . . . , αd), cf. [13]. Similarly, for independent random

variables Zd+1 ∼ G(a, 1) and Zd+2 ∼ G(b, 1), it holds that Zd+1

Zd+1+Zd+2
∼ Beta(a, b). Recall

that the parameter of the rotated variational family is ξ = (θ, φ, δ), where θ is the parameter of
the copula-like base density, whereas φ = (φf , φR) denotes the parameters of the quantile trans-
formation and the rotation, respectively. Furthermore, the parameter δ of the transformation H
is kept fix. Using Proposition 1 and Algorithm 1 for some fixed δ, we can construct a function
(z, φ) 7→ fφ,δ(z), z = (z1, . . . zd+2), that is almost everywhere continuously differentiable such
that fφ,δ(Z1, . . . Zd+2) ∼ qξ, where qξ is the density of the proposed variational family with pa-
rameter ξ = (θ, φ, δ), that is the variational density qξ is the pushforward density of independent
Gamma densities with parameter θ through the transport map fφ,δ . Differentiability with respect to
φf can be achieved by a continuous numerical approximation for the quantile function of a stan-
dard Gaussian and applying appropriate (re)normalisation. Furthermore, there exists an invertible
standardization function Sθ with (z, θ) 7→ Sθ(z) = (P (Z1 6 z1) , . . . ,P (Zd+2 6 zd+2)) contin-
uously differentiable such that S−1

θ (H) is equal to (Z1, . . . Zd+2) in distribution, where H is a
(d + 2)-dimensional vector of iid random variables with uniform marginals on [0, 1]. In particular,
the distribution of H does not depend on ξ. The cumulative distribution function of Z1 say at the
point z1 is the regularised incomplete Gamma function γ(z1, α1) that lacks an analytical expression
though. However, one can apply automatic differentiation to a numerical method that approximates
γ(z1, α1) yielding an approximation of ∂γ(z1,α1)

∂α1
. Let us define

l(z, φ, δ) =
logL(y1:n|fφ,δ(z)) + log π0(fφ,δ(z))

log qξ(fφ,δ(z))
.
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Then L(ξ) = E [l(Z, φ, δ)] = E
[
l(S−1

θ (H), φ, δ)
]
, where in the first expectation, the law of the

random variable Z depends on θ. For a differentiable function g : Rn → Rm, we denote by∇xg(x)

the Jacobian of g, that is ∇xg(x)ij = ∂gi(x)
∂xj

. Following the arguments in [14], we obtain for the
Jacobian of the variational bound

∇θ,φL(ξ) = E
[
∇θ,φl(S−1

θ (H), φ, δ)
]

= E
[
∇zl(S−1

θ (H), φ, δ)∇θ,φS−1
θ (H) +∇θ,φl(S−1

θ (H), φ, δ)
]

= E [∇zl(Z, φ, δ)∇θ,φZ +∇θ,φl(Z, φ, δ)] , (13)

where ∇φZ = 0 and ∇θZ = ∇θS−1
θ (H)|H=Sθ(Z) can be obtained by implicit differenti-

ation of Sθ(Z) = H which results in ∇θZ = −(∇zSθ(Z))−1∇θSθ(Z). So for instance
∂Z1

∂α1
= − 1

pα1
(Z1)

∂γ(Z1,α1)
∂α1

, with pα1 being the density function of Z1 and recalling that θ =

(a, b, α1, . . . αd). We can thus optimize the variational bound using stochastic gradient descent with
unbiased samples from (13). We remark that for instance in tensorflow probability [9], such implicit
gradients are used by default as long as one simulates from the copula-like density using Proposition
1, implements the density function cθ from (6) and applies the bijective transformations according
to Algorithm 1. In this case, optimization using the proposed density proceeds analogously as if one
would use any reparametrisable variational family such as Gaussian distributions.

D Additional details for Bayesian Neural Networks with Structured Priors

In the MNIST experiments, we train the network on 50000 training points out of 60000 and report
the prediction error rates for the test set of 10000 images. We used a batch-size of 200 and used
4 Monte Carlo samples to compute the gradients during training and 100 Monte Carlo samples for
the prediction on the test set. We used Adam with a learning rate in {0.0005, 0.0002} for 20000
iterations. The hyper-parameter for the Horseshoe prior were ν = 4, s = 1, so c ∼ IG(2, 8),
corresponding to a t4(0, 22) slab. Furthermore, for the global shrinkage factor, we have used bτ ∈
{0.1, 1}. The variational parameters of the copula-like density are restricted to be positive and we
have defined them as the softmax : x 7→ log(exp(x) + 1) of unconstrained parameters, initialised so
that softmax−1(αi) ∼ N (2, .01), softmax−1(a) = 15 and softmax−1(b) = 2. We have sampled δ
according to (8) and initialised νi ∼ U(−0.2, 0.2) and the log-standard deviations of the marginal-
like distribution as log σi = −3. We aimed for an initial mean of 0 for βli and of −3 for the log
of the remaining variables. We therefore choose µi so that the quantile of an initial Monte Carlo
estimate for the mean of Vi has the desired initial mean.
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E Additional results for Bayesian Neural Networks with Gaussian Priors

Table 6: Variational approximations with transformations and different base distributions. Test log-
likelihood for UCI regression datasets. Standard errors in parenthesis.

Copula-like Independent copula Copula-like Independent copula
with rotation with rotation with IAF with IAF

Boston -2.85 (0.07) -2.84 (0.09) -2.78 (0.1) -2.88 (0.09)
Concrete -3.29 (0.03) -3.30 (0.02) -3.22 (0.02) -3.26 (0.02)
Energy -1.04 (0.02) -2.34 (0.05) -0.93 (0.03) -1.78 (0.07)
Kin8nm 1.08 (0.01) 1.07 (0.01) 1.10 (0.01) 1.03 (0.01)
Naval 5.74 (0.05) 5.23 (0.05) 5.97 (0.05) 5.01 (0.05)
Power -2.82 (0.01) -2.85 (0.04) -2.83 (0.04) -2.85 (0.01)
Wine -1.01 (0.01) -1.02 (0.02) -1.02 (0.02) -1.02 (0.02)
Yacht -2.01 (0.04) -2.03 (0.06) -1.69 (0.06) -1.94 (0.07)
Protein -2.87 (0.00) -2.94 (0.00) -2.90 (0.01) -2.93 (0.01)

Table 7: Copula-like variational approximation without rotations and benchmark results. Test log-
likelihood for UCI regression datasets. Standard errors in parenthesis.

Copula-like Bayes-by-Backprop SLANG Dropout
without rotation results from [47] results from [47] results from [47]

Boston -2.79 (0.08) -2.66 (0.06) -2.58 (0.05) -2.46 (0.06)
Concrete -3.25 (0.03) -3.25 (0.02) -3.13 (0.03) -3.04 (0.02)
Energy -1.00 (0.03) -1.45 (0.02) -1.12 (0.01) -1.99 (0.02)
Kin8nm 1.09 (0.01) 1.07 (0.00) 1.06 (0.00) 0.95 (0.01)
Naval 5.45 (0.12) 4.61 (0.01) 4.76 (0.00) 3.80 (0.01)
Power -2.83 (0.01) -2.86 (0.01) -2.84 (0.01) -2.80 (0.01)
Wine -1.02 (0.01) -0.97 (0.01) -0.97 (0.01) -0.93 (0.01)
Yacht -1.92 (0.06) -1.56 (0.03) -1.88 (0.01) -1.55 (0.03)
Protein -2.89 (0.01) NA NA -2.87 (0.01)
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