
Efficient Deep Approximation of GMMs

Shirin Jalali, Carl Nuzman, Iraj Saniee
Bell Labs, Nokia

600-700 Mountain Avenue
Murray Hill, NJ 07974

{shirin.jalali,carl.nuzman,iraj.saniee}@nokia-bell-labs.com

Abstract

The universal approximation theorem states that any regular function can be ap-
proximated closely using a single hidden layer neural network. Some recent work
has shown that, for some special functions, the number of nodes in such an ap-
proximation could be exponentially reduced with multi-layer neural networks. In
this work, we extend this idea to a rich class of functions, namely the discriminant
functions that arise in optimal Bayesian classification of Gaussian mixture models
(GMMs) in Rn. We show that such functions can be approximated with arbitrary
precision using O(n) nodes in a neural network with two hidden layers (deep
neural network), while in contrast, a neural network with a single hidden layer
(shallow neural network) would require at least O(exp(n)) nodes or exponentially
large coefficients. Given the universality of the Gaussian distribution in the feature
spaces of data, e.g., in speech, image and text, our results shed light on the observed
efficiency of deep neural networks in practical classification problems.

1 Introduction

There is a rapidly growing literature which demonstrates the effectiveness of deep neural networks
in classification problems that arise in practice; e.g., in audio, image or text classification. The
universal approximation theorem, UAT, see [1, 2, 3, 4], states that any regular function, which for
example separates in the (high dimensional) feature space a collection of points corresponding to
images of dogs from those of cats, can be approximated by a neural network. But UAT is proven for
shallow, i.e., single hidden-layer, neural networks and in fact the number of nodes needed may be
exponentially or super exponentially large in the ambient dimension of feature space. Yet, practical
deep neural networks are able to solve such classification problems effectively and efficiently, i.e.,
using what amounts to a small number of nodes in terms of the size of the feature space of the data.
There is no theory yet as to why deep neural networks (DNNs from here on) are as effective and
efficient in practice as they evidently are. There are essentially two possibilities for this observed
outcome: 1) DNNs are always significantly more efficient in terms of the number of nodes used for
approximation of any relevant function than shallow networks, or 2) DNNs are particularly suited to
discriminant functions that arise in practice, e.g., those that separate in the feature space of images,
points representing dogs from points representing cats. If the latter proposition is true, then the
observed efficiency of DNNs is essentially due to the special form of the discriminant functions
encountered in practice and not to the universal efficiency of DNNs, which the former proposition
would imply.

The first alternative proposed above is a general question about function approximation given neural
networks as the collection of basis functions. As of today, there are no general results that show DNNs
(those with two or more hidden layers) require fundamentally fewer nodes for approximation of
general functions than shallow neural networks (or SNNs from here on, i.e., those with a single hidden
layer). In this paper, we focus on the second alternative and provide an answer in the affirmative; that

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

indeed many discriminant functions that arise in practice are such that DNNs require significantly, i.e.,
logarithmically, fewer nodes for their approximation than SNNs. To formalize what may constitute
discriminant functions that arise in practice, we focus on a versatile class of distributions often used
to model real-life distributions, namely Gaussian mixture model (GMM for short). GMMs have been
shown to be good models for audio, speech, image and text processing in the past decades, e.g., see
[5, 6, 7, 8, 9].

1.1 Background

The universal approximation theorem [1, 2, 3, 4] states that shallow neural networks (SNNs) can
approximate regular functions to any required accuracy, albeit potentially with an exponentially large
number of nodes. Can this number be reduced significantly, e.g., logarithmically, by deep neural
networks? As indicated above, there is no such result as of yet and there is scant literature that even
discusses this question. Some evidence exists that DNNs may in fact not be efficient in theory, see [10].
On the other hand, some special functions have been constructed for which DNNs achieve significant
and even logarithmic reduction in the number of nodes compared to SNNs, e.g., see [11, 12, 13]
for a special radial function, functions of the form f(x,x′) = g(〈x,x′〉) (f : Sn−1 × Sn−1 → R
and g : [−1, 1] → R), and polynomials, respectively. However, the functions considered in these
references are typically very special and have little demonstrated basis in practice. Perhaps the most
illustrative cases are the high degree polynomials discussed in [13], but the logarithmic reduction in
the number of nodes due to depth of the DNNs demonstrated in this work occurs only for very high
degrees of polynomials in the feature coordinate size.

In this work we are motivated by model universality considerations. What models of data are typical
and what resulting discriminant functions do we typically need to approximate in practice? With
a plausible model, we can determine if the resulting discriminant function(s) can be approximated
efficiently by deep networks. To this end, we focus on data with Gaussian feature distributions, which
provide a practical model for many types of data, especially when the feature space is sufficiently
concentrated, e.g. after a number of projections to lower-dimensional spaces, e.g., see [14].

Our overall framework is based on the following set of definitions and demonstrations that we describe
in detail in the following sections. Section 1.2 defines an L-layer neural network. Section 1.3 reviews
the problem of optimal classification of a collection of high-dimensional GMMs. The classifier
function for GMMs is readily seen to be the maximum of multiple discriminant functions consisting
of sums of exponentials of quadratic functions in dimension n. Section 2 establishes connections
between approximating the defined discriminant functions with the described classification problem.
Section 3 demonstrates that DNNs can approximate general n-dimensional GMM discriminant
functions using O(n) nodes. In Section 4, we show that, in contrast to DNNs, SNNs need either an
exponential (in n) number of nodes, or exponentially large coefficients to approximate discriminant
functions of GMMs. In Section 5, we show sufficiency of an exponential number of nodes by studying
an SNN where the weights in the first layer are drawn from a random distribution.

Notation. Throughput the paper, bold letters, such as x and y, refer to vectors. Sets are denoted by
calligraphic letters, such as X and Y . For a discrete set X , |X | denotes its cardinality. 0n denotes the
all-zero vector in Rn. In denotes the n-dimensional identity matrix. For x ∈ Rn, ‖x‖2 =

∑n
i=1 x

2
i .

1.2 L-layer neural networks and the activation function σ

L-layer Neural Network. Consider a fully-connected neural network with L hidden layers. We refer
to a network with L = 1 hidden layer as an SNN and to a network with L > 1 hidden layers as
DNN. Let x ∈ Rn denote the input vector. The function generated by an L-layer neural network,
f : Rn → Rc, can be represented as a composition of affine functions and the non-linear function σ,
as follows f(x) = σ ◦T [L+1] ◦σ ◦T [L] . . . σ ◦T [1](x). Here, T [`] : Rn`−1 → Rn` denotes the affine
mapping applied at layer `, represented by linear transformation W [`] ∈ Rn`×n`−1 and translation
b[`]. Moreover, σ : R → R denotes the non-linear function that is applied element-wise. In this
definition, n`, ` = 1, . . . , L, denotes the number of hidden nodes in layer `. To make the notation
consistent, for ` = 0, let n0 = n, the dimension of the input data, and for ` = L+ 1, nL+1 = c, the
number of classes. We will occasionally use the notations dnn and snn to signify that the cases of
L > 1 and L = 1, respectively. In a classification task, the index of the highest value in the output
tuple determines the optimal class for x.

2

Non-linear activation function σ. As discussed later, for the two-layer construction in Section 3, we
require some regularity assumptions on the activation function σ, which are met by typical smooth
DNN activation functions such as the sigmoid function. In Section 7, we indicate how to refine
the proofs to accommodate the popular and simple ReLU activation function. The proof of the
inefficiency of SNNs in Section 4 applies to a very general class of activation functions.

1.3 GMMs and their optimal classification functions

Consider the problem of classifying points generated by a mixture of Gaussian distributions. Assume
that there are c classes and samples of each class are drawn from a mixture of Gaussian distributions.
Assume that there are overall k different Gaussian distributions to draw from. For j ∈ {1, . . . , k},
let µj ∈ Rn and Σj ∈ Rn×n denote the mean and the covariance matrix of Gaussian distribution j.
Each Gaussian distribution is assigned uniquely to one of the c classes. Assume that the assignment
of the Gaussian clouds to the classes is represented by sets T1, . . . , Tc, which form a partition of
{1, . . . , k}. (That is, Ti ∩ Tj = ∅, for i 6= j, and ∪ci=1Ti = {1, . . . , k}.) Set Ti represents the
indices of the Gaussian distributions corresponding to Class i. Let φi, i = 1, . . . , c, denote the
probability that a data point belongs to Class i. Finally, for Class i, let wj , j ∈ Ti, denote the
probability that within Class i, the data comes from Gaussian distribution j. Hence, for i = 1, . . . , n,∑
j∈Ti wj = 1. Under the described model, and with a slight abuse of notation, the data is distributed

as
∑c
i=1 φi

∑
j∈Ti wjN (µj ,Σj). Conditioned on being in Class i, the data points are drawn from a

mixture of |Ti| Gaussian distributions as
∑
j∈Ti wjN (µj ,Σj). For j = 1, . . . , k, let πj : Rn → R

denote the probability density function (pdf) of the Gaussian distribution with meanµj and covariance
matrix Σj .

An optimal Bayesian classifier1 C∗ : Rn → {1, . . . , c} for these c GMMs maximizes the probability
of membership across all classes. For Class i, define the i-th discriminant function di : Rn → R, as

di(x) , φi
∑
j∈Ti wjγj exp(−gj(x)), (1)

where gj(x) , 1
2 (x−µj)TΣ−1j (x−µj) and γj , (2π)−

n
2 |Σj |−

1
2 . Using this definition, the optimal

classifier C∗ can be characterized as

C∗(x) = arg maxi∈{1,...,c} di(x). (2)

2 Connection between classification and approximation

The main result of this paper is that the discriminant functions described in (1), required for computing
optimal classification function C∗(x), can be approximated accurately by a relatively small neural
network with two hidden layers, but that accurate approximation with a single hidden layer network is
only possible if either the number of the nodes or the magnitudes of the coefficients are exponentially
large in n. Before stating our main results, in this section, we establish a connection between the
accuracy in approximating the discriminant functions of a classifier and the error performance of a
classifier that employs these approximations.

Given a non-negative function d(x), d : Rn → R, and threshold t > 0, let Sd,t denote the superlevel
set of d(x) defined as

Sd,t , {x ∈ Rn : d(x) ≥ t} .

Definition 1 A function d̂ : Rn → R is a (δ, q)-approximation of a non-negative function d : Rn →
R under a pdf p, if there is a threshold t, such that Pp[Sd,t] ≥ 1− q, and

|d̂(x)− d(x)| ≤ δd(x), x ∈ Sd,t (3)

0 ≤ d̂(x) ≤ (1 + δ)t, x 6∈ Sd,t. (4)

Let td̂,δ,q denote the corresponding threshold. If there are multiple such thresholds, let td̂,δ,q denote
the infimum of all such thresholds.

1Throughout the paper, a Bayesian classifier refers to a classifier that has access to the distribution of the
data.

3

In this definition, d̂ closely approximates d in a relative sense, wherever d(x) exceeds threshold t.
The function d̂ is small (in an absolute sense), when d(x) is small, an event that occurs with low
probability under p. Although p and d need not be related in this definition, we will typically use it in
cases where d is just a scaled version of p.

Given two equiprobable classes with pdf functions p1 and p2, the optimal Bayesian classifier chooses
class 1, if p1(x) > p2(x), and class 2 otherwise. Let e21,opt = P1[p2(x) > p1(x)] denote the
probability of incorrectly deciding class 2, when the true distribution is class 1. If we classify using
approximate pdfs with relative errors bounded by α ≥ 1, then the probability of error increases to
e21,opt[α] := P1[p2(x) > p1(x)/α]. Under appropriate regularity conditions, e21,opt[α] approaches
e21,opt, as α converges to 1. Lemma 1 below shows that (δ, q)-approximations of p1 and p2 enable
us to approach e21,opt, by taking δ and q sufficiently small.

Lemma 1 Given pdfs p1 and p2, let d̂1 and d̂2 denote (δ, q)-approximations of discriminant functions
d1 = p1 and d2 = p2 under distributions p1 and p2, respectively. Define ti, i = 1, 2, as ti , td̂i,δ,q.

Consider a classifier that declares class 1 when d̂1(X) > d̂2(X) and class 2 otherwise. Then, the
probability of error of this classifier, under distribution p1, is bounded by

e21 ≤ e21,opt[1+δ1−δ] + q + P1(Scd1,(1+δ)t2/(1−δ)),

where P1(E) measures the probability of event E under p1.

The proof of Lemma 1 is presented in Section 1 of the supplementary material (SM).

Note that as q converges to zero, both t1 and t2 converge to zero as well. Therefore, letting q converge
to zero ensures that P1((1 + δ)t2 ≥ (1− δ)d1(x)) also converges to zero. One way to construct a
nearly optimal classifier for two distributions is thus to independently build a (δ, q)-approximation
for each distribution, and then define the classifier based on maximum of the two functions.

With this motivation, in the rest of the paper, we focus on approximating the discriminant functions
defined earlier for classifying GMMs. In the next section, we show that using a two hidden-layer
neural network, we can construct a (δ, q)-approximation d̂ of the discriminant function of a GMM,
see (1), with input dimension n, with O(n) nodes, for any δ > 0 and any q > 0.

In the subsequent section, we show by contrast that even for the simplest GMM consisting of a single
Gaussian distribution, even a weaker approximation that bounds the expected `2 error cannot be
achieved by a single hidden-layer network, unless the (neural) network has either exponentially many
nodes or exponentially large coefficients. The weaker definition of approximation that we will use in
the converse result is the following.

Definition 2 A function d̂ : Rn → R is an ε-relative `2 approximation for a function d : Rn → R
under pdf p, if

Ep[(d̂(x)− d(x))2] ≤ εEp[(d(x))
2
].

The following lemma shows that if approximation under this weaker notion is impossible, then it is
also impossible under the stronger (δ, q) notion.

Lemma 2 If d̂ is a (δ, q)-approximation of a distribution d under distribution p, then it is also an
ε-relative `2 approximation of d, with parameter ε = δ2 + (1+δ)2q

1−q .

Proof of Lemma 2 is presented in Section 2 of the SM.

3 Sufficiency of two hidden-layer NN with O(n) nodes

We are interested in approximating the discriminant functions corresponding to optimal classification
of GMMs, as defined in Section 1.3. In this section, we consider a generic function for (1) as

d(x) =

J∑
j=1

βj exp (−gj(x)), (5)

4

where gj(x) = 1
2 (x−µj)TΣ−1j (x−µj) and βj = φwjγj with fixed prior φ, conditional probabilities

wj , and γj = (2π)−
n
2 |Σj |−

1
2 .

We first observe that the function gj(x) is a general quadratic form in Rn and thus consists of the
sum of O(n2) product terms of the form xixj . Since each such product term can be approximated
via four σ functions (see [15]), gj(x) can be approximated arbitrarily well using O(n2) nodes.
We can however reduce the number of nodes further by applying the affine transformation yj =

Σ
−1/2
j (x − µj) in the first layer, so that gj(x) is simply ‖yj‖2 =

∑n
i=1 y

2
j,i, i.e., it consists of n

quadratic terms, and can in turn can be approximated via O(n) nodes. This O(n2) to O(n) reduction
in the number of nodes is specific to quadratic polynomials which are generic exponents of GMMs
and their discriminant functions and we will take advantage of this reduction in our proofs.

In order to prove the main result of this section, we rely on the following regularity assumptions on the
activation function σ(x). All of the assumptions are satisfied by the sigmoid function σ(x) = 1

1+e−x ,
for example.

Assumption 1 (Curvature) There is a point τ ∈ R, and parameters r andM , such that σ(2)(τ) > 0,
such that σ(3)(x) exists and is bounded, |σ(3)(x)| ≤M , in the neighborhood τ − r ≤ x ≤ τ + r.

Assumption 2 (Monotonicity) The symmetric function σ(x + τ) + σ(−x + τ) is monotonically
increasing for x ≥ 0, with τ as defined in Assumption 1.

Assumption 3 (Exponential Decay) There is η > 0 such that |σ(x)| ≤ exp(ηx) and |1− σ(x)| ≤
exp(−ηx).

Assumptions 1 and 2 can be used to construct an approximation of x2 using O(1) nodes for each
such term. They are satisfied for example by common activation functions such as the sigmoid and
tanh functions. Assumption 3 relied upon to construct an approximation of exp(x) in the second
hidden layer, with O(n) nodes in each of the J subnetworks. This assumption is met by the indicator
function u(x) = 1{x > 0}, and any number of activation functions that are smoother versions of
u(x), including piecewise linear approximations of u(x) constructed with ReLU, and the sigmoid
function.

The following is our main positive result about the ability to efficiently approximate GMM discrimi-
nant functions with two-layer neural networks.

Theorem 1 Consider a GMM with discriminant function d : Rn → R+ of the form (5), consisting
of Gaussian pdfs with bounded covariance matrices. Let the activation function σ : R→ R satisfy
Assumptions 1, 2, and 3 . Then for any given δ > 0 and any q ∈ (0, 1), there exists a two-hidden-layer
neural network consisting of M = O(n) instances of the activation function σ and weights growing
as O(n5), such that its output function d̂ is a (δ, q)-approximation of d, under the distribution of the
GMM.

The detailed proof of Theorem 1 is presented in Section 5 of the SM. The proof relies on several
lemmas that are stated and proved in Section 4 of the SM.

Remark 1 Applying Theorem 1 to a collection of c GMMs gives rise to a DNN with O(n) nodes that
approximates the optimal classifier of these GMMs via (2).

Remark 2 The construction of an O(n)-node approximation of the GMM discriminant function
assumes that the eigenvalues of the covariance matrices are bounded from above and also bounded
away from zero, by constants independent of n.

To prove Theorem 1, given d(x) =
∑J
j=1 βj exp (−gj(x)), we build a neural net consisting of

J sub-networks, with sub-network j approximating βj exp (−gj(x)). For convenience, denote by
cj(x) = βj exp(−gj(x)), the desired output of the j-th subnetwork. The J subnetwork function
approximations ĉj(x), j = 1, . . . , J , are summed up to get the final output d̂(x) =

∑
j ĉj(x).

Lemma 3 Given δ > 0, q > 0, and the GMM discriminant function d(x) =
∑J
j=1 cj(x), let t∗ be

such that P[Sd,t∗] ≥ 1− q under pdf p(x) = d(x)/φ . Define λ = (t∗δ)/(2J(1 + δ)), and for each

5

j, suppose we have an approximation function ĉj of cj such that

|ĉj(x)− cj(x)| ≤ δ/2cj(x), if cj(x) ≥ λ,
0 ≤ ĉj(x) ≤ λ(1 + δ), otherwise

Then d̂(x) =
∑
j ĉj(x) is a (δ, q)-approximation of d(x) under p(·).

The proof is presented in Section 3 of the SM. This lemma establishes a sufficient standard of accuracy
that we will need for the subnetwork associated with each Gaussian component. In particular, there is
a level λ such that we need to have relative error better than δ/2 when the component function is
greater than λ. Where the component function is smaller than λ, we require only an upper bound
on the approximation function. The critical level λ is proportional to t∗, which is a level achieved
with high probability by the overall discriminant function d. The scaling of the level t∗ with n is an
important part of the proof, analyzed later in Lemma 5 of the SM.

4 Exponential size of SNNs for approximating the GMM discriminant
functions

In the previous section, we showed that a DNN with two hidden layers, and O(n) hidden nodes is
able to approximate the discriminant functions corresponding to an optimal Bayesian classifier for a
collection of GMMs. In this section, we prove a converse result for SNNs. More precisely, we prove
that for an SNN to approximate the discriminant function of even a single Gaussian distribution, the
number of nodes needs to grow exponentially with n.

Consider a neural network with a single hidden layer consisting of n1 nodes. As before, let σ : R→ R
denote the non-linear function applied by each hidden node. For i = 1, . . . , n1, let wi ∈ Rn, and
bi ∈ R denote the weight vector and the bias corresponding to node i, respectively. The function
generated by this network can be written as

f(x)=
∑n1

i=1 aiσ(〈wi,x〉+ bi) + a0. (6)

Suppose that x ∈ Rn is distributed asN (0n, sxIn), with pdf µ : Rn → R. Suppose that the function
to be approximated is

µc(x) ,

(
sf + 2sx

sf

)n
4

e
− 1

2sf
‖x‖2

, (7)

which has the form of a symmetric zero-mean Gaussian distribution with variance sf in each direction,
and has been normalized so that E[µ2

c(x)] = 1. Our goal is to show that unless the number of nodes
n1 is exponentially large in the input dimension n, the network cannot approximate the function µc
defined in (7) in the sense of Definition 2.

Our result applies to very general activation functions, and allows a different activation function in
every node; essentially all we require is that i) the response of each activation function depends on its
input x through a scalar product 〈wi,x〉, and ii) the output of each hidden node is square-integrable
with respect to the Gaussian distribution µ(x). Incorporating the constant term into one of the
activation functions, we consider a more general model

f(x) =
∑n1

i=1 aihi(〈wi,x〉) (8)

for a set of functions hi : R → R. To avoid scale ambiguities in the definition of the coefficients
ai and the functions hi, we scale hi as necessary so that, for i = 1, . . . , n1, ‖wi‖ = 1 and
E[(hi(〈wi,x〉))2] = 1.

Our main result in this section shows the connection between the number of nodes (n1) and the
achievable approximation error E[|µc(x)− f(x)|2]. We focus on approximation under Definition 2,
which, as shown in Lemma 2, is weaker than the notion used in Theorem 1. Therefore, proving the
lower bound under this notion, automatically proves the same bound under the stronger notion too.

Theorem 2 Consider µc : Rn → R and f : Rn → R defined in (7) and (8), respectively, for some
sf > 0. Suppose that random vector x ∼ N (0n, sxIn), where sx > 0. For i = 1, . . . , n1, assume
that ‖wi‖ = 1, and E[(hi(〈wi,x〉))2] = 1, for activation function hi : R→ R. Then,

E[|µc(x)− f(x)|2] ≥ 1− 2
√
n1‖a‖ (1 + sx/sf)

1/4
ρ−n/4, (9)

6

where

ρ , 1 +
s2x

s2f + 2sxsf
> 1. (10)

The proof of Theorem 2 is presented in Section 6 of the SM. This result shows that if we want
to form an ε-relative `2 approximation of µc, in the sense of Definition 2, with an SNN, n1 must
satisfy n1 ≥ 1−ε

2A(1+sx/sf)
1/4 ρ

n/4, where A = 1√
n1
‖a‖ denotes the root mean-squared value of a.

That is, the number of nodes need to grow exponentially with n, unless the norm of the final layer
coefficients vector ‖a‖ grows exponentially in n as well. Note that in the natural case sf = sx where
the discriminant function to be approximated matches the distribution of the input data, the required
exponential rate of growth is ρn/4 = (4/3)n/4.

Remark 3 The generalized model (8) covers a large class of activation functions. It is straightfor-
ward to confirm that the required conditions are satisfied by bounded activation functions, such as
the sigmoid function or the tanh function, with arbitrary bias values. For the popular ReLU function,
hi(〈wi,x〉) = max(|〈wi,x〉+ bi|, 0). Therefore, E[|hi(〈wi,x〉)|2] ≤ E[(〈wi,x〉+ bi)

2] = sx + b2i ,
which again confirms the desired square-integrability property.

Remark 4 From the point of numerical stability, it is natural to require the norm of the final layer
coefficients, ‖a‖, to be bounded, as the following simple argument shows. Suppose that network
implementation can compute each activation function hi(x) exactly, but that the implementation
represents each coefficient ai in a floating point format with a finite precision. To gain intuition on
the effect of this quantization noise, consider the following modeling. The implementation replaces ai
with ai + zi, where E[zi] = 0 and E[z2i] = ν|ai|2. Further assume that z1, . . . , zn1

are independent
of each other and of x. In this model, ν reflects the level of precision in the representation. Then, the
error due to quantization can be written as

E

[∑
i

z2i (hi(〈wi,x〉))2
]

=
∑
i

ν|ai|2 E
[
(hi(〈wi,x〉))2

]
= ν‖a‖2 (11)

In such an implementation, in order to keep the quantization error significantly below the targeted
overall error ε, we need to have ‖a‖ �

√
ε/ν. Unless the magnitudes of the weights used in the

output layer are bounded in this way, accurate computation is not achievable in practice.

5 Sufficiency of exponentially many nodes

In Section 4, we studied the ability of an SNN in approximating function µc defined as (7) and
showed that such a network, if the weights are not allowed to grow exponentially with n, requires
exponentially many nodes to make the error small. Clearly, Theorem 2 is a converse result, which
implies that the number of nodes n1 should grow with n, at least as ρ

n
4 (ρ > 1). The next natural

question is the following: Would exponentially many nodes actually suffice in order to approximate
function µc? In this section, we answer this question affirmatively and show a simple construction
with random weights that, given enough nodes, is able to well approximate function µc defined in (7),
within the desired accuracy. Recall that µc(x) = α

n
4 exp(− 1

2sf
‖x‖2), where α , sf+2sx

sf
. Consider

the output function of a single-hidden layer neural network with all biases set to zero. The function
generated by such a network can be written as

f(x)=
∑n1

i=1 aiσ(〈wi,x〉). (12)

As before, here, σ : R→ R denotes the non-linear function and wi ∈ Rn, ‖wi‖ = 1, denotes the
weights used by hidden node i. To show sufficiency of exponentially many nodes, we consider a
special non-linear function σ(x) = cos(x/

√
sf).

Theorem 3 Consider function µc : Rn → R, defined in (7), and n-dimensional random vector
x ∼ N (0n, sxIn). Consider function f : Rn → R defined in (12). Let σ(x) = cos(x/

√
sf), and,

for i = 1, . . . , n1, ai = α
n
4 /n1, where α = 1 + 2sx/sf . Given ε > 0, assume that n1 > 1

εα
n
2 . Then,

there exists weights w1, . . . ,wn1
such that Ex[(f(x)− µc(x))2] ≤ ε.

7

The Proof of Theorem 3 is presented in Section 7 of the SM. To better understand the implications
of Theorem 3 and how it compares against Theorem 2, define m1 = ρ = 1 + sx

2sf
(1 − sf

sf+2sx
)

and m2 = α2 = 1 + 4sx
sf

(1 + sx
sf

), where ρ is defined in (10). It is straightforward to see that
1 < m1 < m2, for all positive values of (sx, sf). Theorems 2 and 3 show that there exist constants
c1 and c2, such that if the number of hidden nodes in a single-hidden-layer network (n1) is smaller
than c1m

n/4
1 , the expected error in approximating function µc(x) must get arbitrarily close to one.

On other hand, if n1 is larger than c2m
n/4
2 , then there exists a set of weights such that the error

can be made arbitrary close to zero. In other words, it seems that there is a phase transition in the
exponential growth of the number of nodes, below which, the function cannot be approximated with
a single hidden layer. Characterizing that phase transition is an interesting open question, which we
leave to future work.

6 Related work

There is a rich and well-developed literature on the complexity of Boolean circuits, and the important
role depth plays in them. However, since it is not clear to what extend such results on Boolean circuits
has a consequence for DNNs, we do not summarize this literature. The interested reader may wish to
start with [16]. A key notion for us is that of depth, that is to so say, the number of (hidden) layers
of nodes in a neural network as defined in Section 1.2. We are interested to know to what extent, if
any, depth reduces complexity of the neural network to express or approximate functions of interest
in classification. It is not the complexity of the function that we want to approximate that matters,
because the UAT already tells us that regular functions, which include discriminant functions we
discuss in Section 1.3, can be approximated by SNNs, shallow neural networks. But the complexity
of the NNs, as measured by the number of nodes needed for the approximation is of interest to
us. In this respect, the work of [17, 18, 19] contain approximation results for neural structures for
certain polynomials and tensor functions, in the spirit of what we are looking for, but as with Boolean
circuits, these models deviate substantially from the standard DNN models we consider here, those
that represent the neural networks that have worked well in practice and for whose behavior we wish
to obtain fundamental insights.

Remarkably, there is a small collection of recent results which, as in this paper, show that adding a
single layer to an SNN reduces the number of nodes by a logarithmic factor for approximation of
some special functions: see [13, 11, 12, 20] for approximation of high-degree polynomials, a certain
radial function, special functions of the inner products of high-dimensional vectors, and saw-tooth
functions, respectively. Our work is therefore in the same spirit as these, showing the power of two
in the reduction of complexity of DNNs, and is therefore, the continuation and generalization of
the said set of results and is especially informed by [11]. For a specialized radial function in Rn,
[11] shows that while any SNN would require at least exponentially many nodes to approximate the
function, there exists a DNN with two hidden layers and O(n19/4) nodes that well approximates
the same function. In the present work, for a general class of widely-used functions viz GMM
discriminant functions, we show that while SNNs require at least exponentially many nodes, for any
GMM discriminant function there exists a DNN with two hidden layers and only O(n) nodes that
approximates it.

7 Remarks and conclusion

It is worth noting that even though to prove Theorem 1 we used a variety of sufficient regularity
assumptions for the non-linear function σ, these assumptions are not necessary to construct an
efficient two-layer network. For example, to construct a network using the commonly used Rectifier
Linear Unit (ReLu) activation, in the first layer we can form n super-nodes, each of which has a
piecewise constant response hi(x) that approximates x2 with the accuracy specified in Lemma 1
of the SM. The number of basic nodes needed in each super-node in this construction is 2R/

√
ν,

where R and ν denote the range and the accuracy for approximating x2 in layer one, respectively.
The analysis of R and ν in Lemmas 3 and 5 in the SM show that R is O(

√
n) and ν is O(1/n), so

that the number of nodes needed per super-node in the first layer is now O(n), compared to O(1) in
the construction presented in Section 3. Since there are n such nodes, the total number of basic nodes
in the network becomes O(n2) - still an exponential reduction compared with a single layer network.

8

References
[1] G. Cybenko. Approximations by superpositions of a sigmoidal function. Math. of Cont., Sig. and Sys.,

2:183–192, 1989.

[2] K.I. Funahashi. On the approximate realization of continuous mappings by neural networks. Neu. net.,
2(3):183–192, 1989.

[3] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neu. Net., 2(5):359–366, 1989.

[4] A. R. Barron. Approximation and estimation bounds for artificial neural networks. Mach. lear., 14(1):115–
133, 1994.

[5] J.L. Gauvain and C.H. Lee. Maximum a posteriori estimation for multivariate Gaussian mixture observa-
tions of Markov chains. IEEE Trans. on Speech and Aud. Proc., 2(2):291–298, 1994.

[6] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted Gaussian mixture
models. Dig. Sig. Proc., 10(1-3):19–41, 2000.

[7] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using scale mixtures of
gaussians in the wavelet domain. IEEE Trans. on Ima. Proc., 12(11):1338–1351, 2003.

[8] Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In Proc. of the 17th
Int. Conf. on Pat. Rec., volume 2, pages 28–31. IEEE, 2004.

[9] N. Indurkhya and F. J. Damerau. Handbook of natural language processing, volume 2. CRC Press, 2010.

[10] E. Abbe and C. Sandon. Provable limitations of deep learning. arXiv preprint arXiv:1812.06369, 2018.

[11] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conf. on Lear. Theory,
pages 907–940, 2016.

[12] A. Daniely. Depth separation for neural networks. arXiv preprint arXiv:1702.08489, 2017.

[13] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural functions. In Int. Conf.
on Lear. Rep., 2018.

[14] E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and
text data. In Proc. of ACM SIGKDD Int. Conf. on Know. Dis. and Data Min., pages 245–250. ACM, 2001.

[15] H. W Lin, M. Tegmark, and D. Rolnick. Why does deep and cheap learning work so well? J. of Stat. Phy.,
168(6):1223–1247, 2017.

[16] A. Shpilka and A. Yehudayoff. Arithmetic Circuits: A Survey of Recent and Open Questions. Now, 2010.

[17] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. In Adv. in Neu. Inf. Proc. Sys., pages
666–674, 2011.

[18] J. Martens and V. Medabalimi. On the expressive efficiency of sum product networks. arXiv preprint
arXiv:1411.7717, 2014.

[19] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor analysis. arXiv
preprint arXiv:1509.05009, 2015.

[20] M. Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint arXiv:1509.08101,
2015.

9

