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Abstract

We propose computationally efficient algorithms for online linear optimization
with bandit feedback, in which a player chooses an action vector from a given
(possibly infinite) set A ⊆ Rd, and then suffers a loss that can be expressed
as a linear function in action vectors. Although existing algorithms achieve an
optimal regret bound of Õ(

√
T ) for T rounds (ignoring factors of poly(d, log T )),

computationally efficient ways of implementing them have not yet been specified,
in particular when |A| is not bounded by a polynomial size in d. A standard way to
pursue computational efficiency is to assume that we have an efficient algorithm
referred to as oracle that solves (offline) linear optimization problems over A.
Under this assumption, the computational efficiency of a bandit algorithm can then
be measured in terms of oracle complexity, i.e., the number of oracle calls. Our
contribution is to propose algorithms that offer optimal regret bounds of Õ(

√
T )

as well as low oracle complexity for both non-stochastic settings and stochastic
settings. Our algorithm for non-stochastic settings has an oracle complexity of
Õ(T ) and is the first algorithm that achieves both a regret bound of Õ(

√
T ) and

an oracle complexity of Õ(poly(T )), given only linear optimization oracles. Our
algorithm for stochastic settings calls the oracle only O(poly(d, log T )) times,
which is smaller than the current best oracle complexity of O(T ) if T is sufficiently
large.
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1 Introduction

Online linear optimization with bandit feedback, or bandit linear optimization, is an important problem
that has a wide range of applications. In it, a player is given A ⊆ Rd, referred to as a set of action
vectors, and T , the number of rounds of decision-making. In each round t ∈ [T ] := {1, 2, . . . , T},
the player chooses an action at ∈ A, and then observes loss `>t at, where `t ∈ Rd is an unknown loss
vector that can change over rounds. The bandit linear optimization includes a variety of important
online decision-making problems as special cases. For example, given a graph G = (V,E) and
s, t ∈ V , by setting A ⊆ R|E| to be the set of all characteristic vectors of s-t paths, we can take
into account bandit shortest path or adaptive routing [9]. In this setting, `t ∈ R|E| corresponds to
(unknown) lengths of the edges, and bandit feedback `>t at represents the length of a chosen s-t path
at. In addition to this application, bandit linear optimization includes bandit versions of combinatorial
optimization problems such as minimum spanning tree, minimum cut, and knapsack problem, as well
as continuous optimization problems such as linear programming and semidefinite programming.

The performance of the player is evaluated in terms of regret RT (a∗), defined as RT (a∗) =∑T
t=1 `

>
t at −

∑T
t=1 `

>
t a
∗ for a∗ ∈ A, which represents the difference between the cumulative

loss for decision {at} of the player and that for an arbitrarily fixed strategy a∗. The primary goal in
bandit linear optimization is to achieve small regret for arbitrary a∗ ∈ A. Some existing algorithms
achieve regret bounds of Õ(

√
T ),1 as shown in Tables 1 and 2. In contrast, papers [6; 8; 12; 21]

showed that any algorithm will suffer at least Ω(
√
T ) regret in the worst case. Thus, algorithms with

Õ(
√
T )-regret bounds achieve optimal performance w.r.t. dependence on T .

Algorithms achieving an optimal Õ(
√
T )-regret, however, have computational issues, especially

when the action set A is exponentially large or is an infinite set. For example, well-known LinUCB
methods [1; 16; 29] need to solve quadratic programming over A, which has time complexity of
Ω(|A|) if there are no additional assumptions. The ComBand algorithm [11] runs efficiently if
there is an efficient sampling algorithm for A (such as k-sets, spanning trees, or bipartite perfect
matchings), but such sampling algorithms are open for many important examples, including s-t
paths. For the special case in which the convex hull of A can be expressed by c linear inequalities,
CombExp [13] runs in O(poly(c, d)T )-time. However, c (the size of the linear inequality expression)
can be exponentially large for many examples.

In this study, we aim to develop computationally efficient algorithms that achieve an Õ(
√
T ) regret

bound, under the assumption that we can call a linear optimization oracle. The oracle solves
offline linear optimization problems over A, i.e, given a loss vector ` ∈ Rd, the oracle outputs
a∗ ∈ arg min

a∈A
`>a. This assumption is standard in the context of online optimization [15; 23]. Under

it, the computational efficiency of online optimization algorithms is evaluated in terms of oracle
complexity: the number of oracle calls for the linear optimization oracle.

For online linear optimization with full information, in which a player can observe all entries of
`t ∈ Rd after choosing at, Kalai and Vempala [23] have proposed algorithms with an Õ(

√
T )-regret

bound and an oracle complexity of O(T ). Using this algorithm, McMahan and Blum [26] and Dani
and Hayes [15] showed that one can achieve Õ(T 2/3)-regret and O(T 1/2)-oracle complexity for
bandit linear optimization. However, it has been an open question as to whether or not we can
achieve Õ(

√
T )-regret and Õ(poly(T ))-oracle complexity for bandit linear optimization, with only

linear optimization oracles. In this study, we solve this open problem by proposing an algorithm that
achieves Õ(

√
T )-regret as well as Õ(T )-oracle complexity.

Here, we separately consider here two different settings for bandit linear optimization: a non-
stochastic setting and a stochastic setting. In the non-stochastic setting, we do not assume any
generative models, but `t may be chosen in an adversarial manner, depending on previous actions
a1, . . . , at−1. The performance of an algorithm is measured in terms of the expectation of regret
RT (a∗) w.r.t. the randomness of the algorithm’s internal randomness and `t. In the stochastic setting,
by way of contrast, the loss vectors `t are assumed to follow a probability distribution D over Rd,
i.i.d. for t = 1, . . . , T .

1 In Õ(·) notation, we ignore factors of polynomials in d and log(T ).
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1.1 Our Contribution

In this paper, we present computationally efficient algorithms that achieve O(poly(d)
√
T )-regret.

Specifically, we present algorithms with a small oracle complexity, i.e., algorithms that call the oracle
as infrequently as possible. Our contribution is summarized in Tables 1 and 2.

For the non-stochastic setting, we propose an algorithm (Algorithm 1) that achieves O(
√
d3T log T )-

regret in expectation and has O(poly(d, log T )T )-oracle complexity.

Theorem 1. For the non-stochastic setting, Algorithm 1 satisfies the following conditions:

• The output of the algorithm satisfies E[RT (a∗)] = O(
√
d3T log T ) for all a∗ ∈ A.

• The algorithm calls the linear optimization oracle O(poly(d, log T )T ) times.

• The computational time, except for that of the oracle, is of O(poly(d, T )).

As shown in Table 1, our Algorithm 1 achieves the smallest oracle complexity among algorithms
with Õ(

√
T )-regret. Noting that GeometricHedge assumes A to be a convex body, we can see that

Algorithm 1 is the first algorithm that is applicable to discrete A and that achieves Õ(
√
T )-regret and

Õ(poly(T ))-oracle complexity.

Although the first algorithm in Table 1 with Õ(T 2/3)-regret and O(T 2/3)-oracle complexity might
look incomparable to our results, algorithms with such bounds can be easily constructed from our
Algorithm 1. In fact, by dividing T rounds into T/B blocks of size B > 1 and regarding each block
as an individual round, we obtain the following statement:

Proposition 1. Suppose there exists an algorithm with O(f(T ))-regret and O(g(T ))-oracle com-
plexity. Then, for arbitrary positive integer B, there exists an algorithm with O(B · f(T/B))-regret
and O(g(T/B))-oracle complexity.

By setting the block size to be B = Θ(T 1/3) and applying Algorithm 1, we can achieve
O(B

√
T/B) = Õ(T 2/3)-regret and O(T/B) = Õ(T 2/3)-oracle complexity, which is equiva-

lent to the the uppermost result in Table 1. Note that Proposition 1 does not lead to an Õ(
√
T )-regret

algorithm given an Õ(T 2/3)-regret algorithm, conversely, since the block size B must be at least 1.

For the stochastic setting, we propose an algorithm (Algorithm 2) that achieves
O(
√
d3T log(d log T/δ))-regret with probability 1 − δ and has O(poly(d, log T ))-oracle

complexity, where δ ∈ (0, 1) is an arbitrary parameter.

Theorem 2. Suppose `t follows a distribution over Rd, i.i.d. for t = 1, 2, . . . , T . Algorithm 2 then
satisfies the following conditions:

• The output of the algorithm satisfies RT (a∗) = O(
√
d3T log(d log T/δ)) for all a∗ ∈ A,

with probability 1− δ.

• The algorithm calls the linear optimization oracle O(poly(d, log T )) times.

• The computational time, except for that of the oracle, is of O(poly(d, T )).

A complete description of Algorithm 2 and a proof of this theorem are given in Appendix B. As
shown in Table 2, all existing algorithms that achieve Õ(

√
T )-regret require at least Ω(T ) oracle

complexity, and our Algorithm 2 is the first with an Õ(
√
T )-regret bound and a sublinear oracle

complexity in T .

In both Algorithms 1 and 2, we use the well-known techniques [30] of reduction among linear
optimization, separation, and decomposition over a given convex body. Definitions of these three
problems are given in Section 4. The reduction algorithms enable us to solve separation and
decomposition problems by calling the linear optimization oracle O(poly(d)) times. Using these

2 In this algorithm, A is assumed to be a convex body, and a membership oracle for A is assumed. Because
we can construct a membership oracle from a linear optimization oracle and vice versa by a polynomial-time
reduction [30], the assumption regarding the oracle is equivalent to ours, modulo polynomial-time reduction.
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Table 1: Regret Bound and Oracle Complexity of Non-Stochastic Bandit Linear Optimization

Algorithm Regret Bound Oracle Complexity
MV algorithm [15; 26] with FPL [23] Õ(T 2/3) O(T 2/3)

ComBand [11], GeometricHedge [17], Exp2 [6] Õ(T 1/2) −
GeometricHedge with Volumetric Spanners2[19] Õ(T 1/2) Õ(T 7)

Algorithm 1 [This paper] Õ(T 1/2) Õ(T )

Table 2: Regret Bound and Oracle Complexity for Stochastic Bandit Linear Optimization

Algorithm Regret Bound Oracle Complexity
LinRel [7], LinUCB with `2-ball [1; 16; 29] Õ(T 1/2) −
LinUCB with `1-ball [16], Õ(T 1/2) O(T )

Linear Thompson sampling [2; 4] Õ(T 1/2) O(T )

Algorithm 2 [This paper] Õ(T 1/2) O(poly(d, log T ))

reduction techniques, Algorithms 1 and 2 maintain, respectively, supersets and subsets of the convex
hull of A (=: Conv(A)).

To construct Algorithm 1 for the non-stochastic setting, we extend a cutting-plane approach to our
bandit-feedback setting. The cutting-plane approach, a way of reducing oracle complexity, has been
applied only to full-information settings [20], not a bandit-feedback setting. A major difference
between bandit-feedback and full-information settings is that the former needs exploration, i.e.,
chosen actions should be randomized with sufficiently large variance, whereas the latter does not
need it and chooses actions deterministically. In full-information settings, hence, it suffices to focus
on a deterministically chosen action alone. In contrast to this, to deal with the bandit-feedback setting,
the difficulty lies in constructing a distribution of actions with sufficiently large variance, for which
cutting planes can be efficiently computed and the number of them can be bounded.

To this end, we design relevant probability distributions so that the cutting-plane approach works,
which successfully reduces oracle complexity. Specifically, the cutting-plane approach maintains
convex bodies Kt that include and approximate Conv(A), from which we choose candidates for
actions, employing the support of the probability distribution of actions to choose. It is only when
some candidates are invalid, i.e., when some are outside of Conv(A), that Kt is updated with a
cutting plane excluding such an invalid candidate. To bound the number of oracle calls, we design
candidates for actions that satisfy two conditions: the set of candidates has a bounded cardinality, and
each candidate is sufficiently close to the weighted center of Kt. Thanks to the first condition, we
can efficiently decide if invalid candidates exist. The second condition is essential for bounding the
number of oracle calls in each update of Kt.
Our Algorithm 2 for the stochastic setting is based on the framework of phased elimination of actions,
in which T rounds are divided into phases that are segments of consequent rounds, and, in each
phase, actions are eliminated so that only promising ones are left. Existing works employing this
framework [7; 24; 31] are computationally inefficient, mainly for the following two reasons: (i) We
need to maintain a set of promising actions that may be an exponentially large combinatorial set, and,
(ii) when choosing actions, we need to solve hard optimization problems, e.g., G-optimal design [24]
or quadratic programming [7].

Our idea for resolving the first computational issue is to maintain the set of promising actions
as a convex set instead of a subset of actions. The convex set here can be represented with only
O(poly(d) log T ) linear inequalities, which implies that operations over it can be conducted effi-
ciently. We resolve the second computational issue by combining barycentric spanners [9] and
the decomposition technique over convex bodies [30], both of which are efficiently computed with
O(poly(d)) oracle calls. We show that, thanks to these techniques, we can estimate the loss vector
with enough accuracy to achieve an Õ(

√
T )-regret bound. The oracle complexity is bounded as

follows: In our algorithm, all at chosen in each phase are determined at the beginning of the phase,
which means that the oracle complexity depends not on the number of rounds, but on the number
of phases. The number of phases is of O(poly(d) log T ) and that of oracle calls in each phase is of
O(poly(d, log T )), which results in overall O(poly(d, log T ))-oracle complexity.
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2 Related Work

For the full-information setting in which a player can observe `t ∈ Rd rather than `>t at, Follow
the Perturbed Leader (FPL) by Kalai and Vempara [23] achieves O(

√
T )-regret and O(T )-oracle

complexity. This algorithm is used as a subroutine in MV algorithm [15; 26] (see Table 2).

For a more general problem referred to as online improper learning, in which only an approximate
linear optimization oracle is given, Kakade et al. [22] have proposed the first efficient algorithms
that achieve approximate regret of O(

√
T ) for the full-feedback setting, and O(T 2/3) in the bandit-

feedback setting. Recent papers by Garber [18] and Hazan et al. [20] have improved oracle complexity.
Algorithms in [20] achieve oracle complexity of Õ(T ) in the full-feedback setting and Õ(T 2/3) in
the bandit feedback setting with the same regret bound as in Kakade et al. [22]. For online improper
learning with bandit feedback, however, constructing an efficient algorithm achieving Õ(

√
T ) poses

difficulties that have yet to be overcome.

In addition to the studies listed in Tables 1 and 2, there exist efficient algorithms for bandit linear
optimization that work under different assumptions. Abernethy et al. [3] proposed a computationally
efficient algorithm achieving O(

√
T )-regret under the assumption that A is a convex body and that

a self-concordant barrier [27] for A is given. However, constructing self-concordant barriers is not
always possible with a linear optimization oracle alone, and, hence, this algorithm does not always
work under our assumptions of linear optimization oracle and Assumption 1 given in the next section.

3 Problem Setting

The bandit linear optimization problem is a repeated game described as follows: Before the game
starts, a player is given the number T of rounds and the dimensionality d of the action set A ⊆ Rd.
In each round t = 1, 2, . . . , T , the player chooses at ∈ A while an environment chooses a loss vector
`t ∈ Rd, and then the player observes a loss `>t at. The goal of the player is to achieve a small regret
RT (a), which is defined for an arbitrary a ∈ A as RT (a) :=

∑T
t=1 `

>
t at −

∑T
t=1 `

>
t a.

We assume the action set A to be a compact set. Suppose that we have an algorithm for linear
optimization over A for any vector w ∈ Rd, which we call linear optimization oracle OA : Rd → A
that receives an inputw ∈ Rd and returns a pointOA(w) ∈ K satisfyingw>OA(w) = mina∈A w

>a.
Assumption 1. We assume that there exist positive real numbers L and R such that (a) ‖`t‖2 ≤ L for
all t ∈ [T ], and (b) ‖a‖2 ≤ R for all a ∈ A. In addition, we assume that (c) K := Conv(A) has a
positive volume, i.e., Vol(K) :=

∫
K 1dx > 0.

The first two assumptions (a) and (b) are standard in bandit linear optimization. If we are given
a linear optimization oracle over A, we can assume (c) without loss of generality. In fact, if A
is included in a subspace with a smaller dimension than d, we can then detect it by calling the
linear optimization oracle polynomial times (see, e.g., Corollary 14.1g in [30]), and we can make K
full-dimensional by ignoring redundant dimensions.

4 Preliminaries

4.1 Linear Optimization, Separation, and Decomposition

We define a linear optimization problem (LP), separation problem (SP), and decomposition problem
(DP) for a compact convex body P ⊆ Rd as follows:
Problem 1 (linear optimization problem, LP). Given a vector w ∈ Rd, find a vector x∗ ∈ P such that
w>x∗ = minx∈P w

>x.
Problem 2 (separation problem, SP). Given a vector y ∈ Rd, decide whether y belong to P or not,
and, in the latter case, find a vector w ∈ Rd such that w>y < minx∈P w

>x.
Problem 3 (decomposition problem, DP). Given a vector x ∈ P , find vertices x0, . . . , xd of P and
λ0, . . . , λd ≥ 0 such that x = λ0x0 + · · ·+ λdxd.

Ellipsoid methods provide reductions among these problems, which imply that

LP: solvable ⇐⇒ SP: solvable =⇒ DP: solvable.
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Theorem 3 (Corollaries 14.1a, 14.1b and 14.1g in [30]). Suppose that P ⊆ Rd is a polytope of
which each vertex can be expressed by rationals with bit-lengths of at most ϕ, and that each entry of
x, y, w ∈ Qd is also a rational, with bit-length of at most ϕ. Then, the following holds:

(a) If there is an algorithm SEP that solves the separation problem, we can solve the linear opti-
mization problem for w ∈ Qd by calling SEP at most poly(d, ϕ) times.

(b) If there is an algorithm OPT that solves the linear optimization problem, we can solve the
separation problem for y ∈ Qd by calling OPT at most poly(d, ϕ) times.

(c) If there is an algorithm OPT that solves the linear optimization problem, we can solve the
decomposition problem for x ∈ P by calling OPT at most poly(d, ϕ) times.

Remark 1. For any ε > 0 and any real number x ∈ [−1, 1], we can approximate x by a rational
x̂ ∈ Q with a bit-length of at most O(log(1/ε)) so that |x− x̂| ≤ ε. Hence, we can assume that ϕ
in Theorem 3 is bounded as ϕ = O(log T ) by ignoring O(1/T ) errors. This implies that the above
reductions can be computed in O(poly(d, log T )) time.

4.2 Algorithms for Logconcave Distributions

If a probability distribution over convex body P ⊆ Rd has a probability density function (PDF)
p : P → R>0 such that log p is a concave function, we refer to it as a logconcave distribution. The
following theorem means that, given the value oracle of a convex function f : P → R, we can
approximately sample a vector in P from a logconcave distribution p(x) ∝ exp(−f(x)).

Theorem 4 (Theorems 2.1 and 2.2 in [25], Lemma 10 in [19]). Let P ⊆ Rd be a convex body with
non-zero Lubesgue measure, and let f : P → R be a convex function and let p be a logconcave
distribution proportional to exp(−f(x)). Suppose ε > 0 and δ ∈ (0, 1). Then, given access to the
membership oracle of P and the value oracle of f , there is an algorithm that samples approximately
from p such that (i) the total variation distance between the produced distribution and p is at most ε,
and (ii) after preprocessing for a time of O(d5(log d)O(1)), each sample can be produced in a time of
O(d4/ε4 · (log(d/ε))O(1)).

As an implication of this theorem, we can efficiently approximate mean µ(p) ∈ Rd and covariance
matrix Cov(p) ∈ Rd×d of distribution p. In fact, from Corollary 5.52 in [32] and standard concentra-
tion of logcancave distribution (see, e.g., Lemma 5.17 in [25]), it takes (n log(1/δ)/ε)O(1) samples
to get a matrix Σ̂ such that (1− ε)Cov(p) � Σ̂ � (1 + ε)Cov(p) with probability of at least 1− δ.3

Similarly, we can get µ̂ ∈ Rd such that ‖µ̂− µ(p)‖Cov(p)−1 ≤ ε from (n log(1/δ)/ε)O(1) samples.4
Accordingly, we obtain the following corollary:

Corollary 1. Suppose the same assumption as in Theorem 4. There is an algorithm that outputs
a vector µ̂ ∈ Rd and a symmetric matrix Σ̂ ∈ Rd×d satisfying 1

2Cov(p) � Σ̂ � 2Cov(p) and
‖µ̂− µ(p)‖Cov(p)−1 ≤ ε with a probability of at least 1− δ. The computational time, the number of
calls for the membership oracle of P , and the value oracle of f are bounded by poly(d, 1

ε , log 1
δ ).

5 Algorithm for Non-stochastic Bandit Linear Optimization

Our algorithm uses the framework of a continuous multiplicative weight update (CMWU) [5; 14; 33].
A straightforward way of applying CMWU is to maintain probability distributions over K :=
Conv(A), which, however, requires a large number of oracle calls. In fact, the algorithm by Hazan
and Karnin [19] for bandit linear optimization over convex bodies calls an oracle Õ(T 7) times. This
inefficiency is due to that we need to sample from K; the sampling algorithm in Theorem 4 requires
O(d4/ε4)-oracle complexity.

We reduce oracle complexity by means of a cutting-plane approach [20]. In this approach, we
maintain convex bodies K(j)

t that include and approximate K, and we update a distribution over
K(j)
t instead of K. The advantage of this approach is that we can sample from K(j)

t without calling

3A similar argument can be found in Section 6.3 in [10].
4 For a vector x ∈ Rd and a positive semidefinite matrix A ∈ Rd×d, denote ‖x‖A :=

√
x>Ax.
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an oracle. On the other hand, updating K(j)
t requires oracle calls; therefore, we need to bound the

number of the updates as well as the number of oracle calls in each update. We design a strategy
achieving these as follows: We set candidates of actions E(j)

t ⊆ K(j)
t , from which we choose action.

When some actions among the candidates are invalid, i.e., outside of K, we then reduce K(j)
t by a

cutting plane excluding such an invalid candidate. With this strategy, we need oracle calls to check if
invalid candidates exist. Our algorithm bounds the oracle complexity here by setting E(j)

t to have
O(d) elements. Further, we design E(j)

t so that its elements are sufficiently close to the weighted
center ofK(j)

t . This plays an important role in bounding the number of updates ofK(j)
t . Indeed, when

a convex body is updated by a cutting plane that excludes a point close to its center, its volume then
decreases by a constant factor less than 1 (see, e.g., [25]). On the other hand, K(j)

t always includes K
with a positive volume; hence, the volume of K(j)

t cannot be smaller than that of K, which implies
that the number of updates is bounded.

5.1 Algorithm

Our algorithm maintains a convex body K(j)
t ⊆ Rd such that K(0)

1 ⊇ K(1)
1 ⊇ · · · ⊇ K(s1)

1 =

K(0)
2 ⊇ K(1)

2 ⊇ · · · ⊇ K(s2)
2 ⊇ · · · ⊇ K(sT )

T ⊇ K = Conv(A), where t corresponds to the round,
j ∈ {0, 1, . . .} is an index, and st ∈ {0, 1, . . . , T} will be defined later. It also updates a logconcave
function zt : Rd → R>0 in each round t based on the multiplicative weight update [5; 14; 33]. Before
the first round, zt is initialized to be a constant function z1(x) = 1. Let q(j)

t denote the PDF of a
distribution over K(j)

t that is proportional to the function zt, i.e.,

Z
(j)
t =

∫
K(j)

t

zt(x)dx, q
(j)
t (x) =

{
zt(x)

Z
(j)
t

if a ∈ K(j)
t ,

0 if a ∈ Rd \ K(j)
t .

(1)

Let us denote the mean and the covariance matrix for distribution of q(j)
t by µ(j)

t ∈ Rd and Σ
(j)
t ∈

Rd×d, respectively: µ(j)
t = E a∼q(j)

t
[a], Σ

(j)
t = E a∼q(j)

t
[(a−µ(j)

t )(a−µ(j)
t )>]. From Corollary 1,

we can compute estimators µ̂(j)
t and Σ̂

(j)
t of µ(j)

t and Σ
(j)
t , respectively, such that

1

2
Σ

(j)
t � Σ̂

(j)
t � 2Σ

(j)
t , ‖µ̂(j)

t − µ
(j)
t ‖(Σ(j)

t )−1 ≤ ε (2)

with probability of at least 1− δ(j)
t , where ε > 0 and δ(j)

t ∈ (0, 1), which will be defined later. Let
B

(j)
t = (b

(j)
t1 , . . . , b

(j)
td ) ∈ Rd×d be a matrix such that B(j)

t B
(j)>
t = Σ̂

(j)
d . Define E(j)

t ⊆ Rd as

E(j)
t =

{
µ̂

(j)
t +

1

4e
b
(j)
ti

∣∣∣∣ i ∈ [d]

}
∪
{
µ̂

(j)
t −

1

4e
b
(j)
ti

∣∣∣∣ i ∈ [d]

}
. (3)

In each round t, our algorithm checks if E(j)
t is included in K, and if not, it updates K(j)

t , as described
in Step 7 of Algorithm 1, to exclude an element in E(j)

t \K. Set E(j)
t is designed so that the following

four conditions are satisfied:

1. The cardinality of E(j)
t is bounded as |E(j)

t | = O(d). Hence, we can decide if E(j)
t ⊆ K by

O(poly(d)) oracle calls.

2. Each y ∈ E(j)
t is sufficiently close to µ(j)

t , i.e., it satisfies ‖y−µ(j)
t ‖(Σ(j)

t )−1 ≤ 1/(2e). This
is important to bound the number of oracle calls.

3. The mean of E(j)
t is equal to µ̂(j)

t . This implies that if y follows a uniform distribution over
E(j)
t , we then have E[`>t y] = `>t µ̂

(j)
t ≈ `>t µ

(j)
t = E[`>t x] for x ∼ q(j)

t .

4. The covariance matrix Σ of a uniform distribution over E(j)
t satisfies Σ � O(1/d2) · Σ(j)

t .
Thanks to this, empirical estimates of `t based on E(j)

t will have a sufficiently small variance.

The conditions 1 and 2 are used to bound the oracle complexity, and 3 and 4 are necessary to bound
the regret. Once E(j)

t is included in K, our algorithm escapes the loop of updating K(j)
t . An integer st

7



Algorithm 1 An oracle efficient algorithm for non-stochastic bandit linear optimization
Require: Learning rate η > 0, error bound ε > 0, time horizon T ∈ N, R > 0 satisfying

Assumption 1.
1: Set K(0)

1 = B∞(0, R) = {x ∈ Rd | ‖x‖∞ ≤ R} and define z1 : Rd → R>0 by z1(x) = 1.
2: for t = 1, 2, . . . , T do
3: for j = 0, 1, 2, . . . do
4: Compute E(j)

t on the basis of (1) ∼ (3).
5: Solve SP for P = K and for each y ∈ E(j)

t .
6: if There is a hyperplane w ∈ Rd s.t. w>y < minx∈K w

>x for some y ∈ E(j)
t then

7: Update K(j)
t by K(j+1)

t = K(j)
t ∩ {x ∈ Rd | w>x ≥ w>y}.

8: else
9: Set st = j and Kt = K(st)

t . Break the for loop w.r.t. the index j.
10: end if
11: end for
12: Let µ̂t = µ̂

(st)
t and bti = b

(st)
ti for i ∈ [n], which are defined in (1) – (3).

13: Choose it ∈ [d] and σt ∈ {1,−1} uniformly at random.
14: Solve DP for P = K and x = µ̂t + σt

4e btit to get a decomposition xt0, . . . , xtd ∈ A and
λt0, . . . , λtd such that µ̂t + σt

4e btit = λt0xt0 + · · ·+ λtdxtd.
15: Play at = xts with probability λts (s = 0, . . . , d), and receive loss `>t at.
16: Set ˆ̀

t by (4) and update zt by zt+1(x) = zt(x) exp(−η ˆ̀>
t (x− µ̂t)).

17: Set K(0)
t+1 = K(st)

t .
18: end for

denotes the number of the updates in the round t. We denote Et = E(st)
t , Σ̂t = Σ̂

(st)
t , µ̂t = µ̂

(st)
t , and

Bt = B
(st)
t . We randomly choose x from Et as follows: choose σt ∈ {−1, 1} and it ∈ [d] uniformly

at random, and define x = µ̂t + σt

4e btit . If we can play this x, then we can construct a good estimate
of `t from the above condition 4, which leads to a small degree of regret. However, x ∈ Et does not
always belong to A, particularly when A is discrete. To address this issue, we solve DP for this x
and P = K to derive a decomposition of x, i.e., compute xt0, . . . , xtd ∈ K and λt0, . . . , λtd ≥ 0 as
in Step 14. Then, the algorithm plays at = xti with probability λti, and obtains feedback of `>t at.
Based on this feedback, we compute an estimator ˆ̀

t of the loss vector `t as

ˆ̀
t = 4edσt`

>
t atΣ̂

−1
t btit . (4)

This is an unbiased estimator of `t, i.e., we have E[ˆ̀t] = `t. The existence of Σ̂−1
t follows from the

definition of Σ̂ and Assumption 1. In fact, from A ⊆ K(j)
t and Assumption 1, K(j)

t has a positive
volume and q(j)

t has a positive density over K(j)
t , which implies that the covariance matrix Σ

(j)
t of

q
(j)
t is positive definite. From this and (2), Σ̂

(j)
t is positive definite for all t and j. The function zt is

updated by zt+1(x) = zt(x) exp(−η ˆ̀>
t (x − µ̂t)), where η > 0 is an input parameter standing for

the learning rate, which will be optimized later. Let

δ
(j)
t = 1/(T (j + 2 +

∑t−1
i=1(si + 1))(j + 3 +

∑t−1
i=1(si + 1))). (5)

To compute Σ̂
(j)
t and µ̂(j)

t satisfying (2) with probability at least 1− δ(j)
t , we use the algorithm in

Corollary 1.

Let ST =
∑T
t=1 st denote the number of updates of K(j)

t . We show the following regret bound.

Theorem 5. Define ψ = 1
d log Vol(B∞(0,R))

Vol(K) . Suppose at is given by Algorithm 1 with parameters

ε = 1
12eT and η = 1

2eLR min{
√

1+ψ+log T
dT , 1

24d3/2(1+ψ+log T )
}. Then, for all a∗ ∈ A, we have

E[RT (a∗)] ≤ 27eLRd3/2 max{
√
T (1 + ψ + log T ), d(1 + ψ + log T )2}

(
1− ST /210

)
. (6)

We note that ψ in the above theorem satisfies ψ ≤ log R
r if K includes an `∞-ball of radius r > 0.

The proof of this theorem is given in Appendix A.
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5.2 Oracle Complexity Analysis

Here, we show that Algorithm 1 calls the linear optimization oracles only O(poly(d)T ) times.

To implement Algorithm 1, the linear optimization oracle is required only in Steps 5 and 14. In Step
5, we need to solve SP to decide if there exists x ∈ E(j)

t such that x /∈ K. From the definition (3) of
E(j)
t , the number of elements in E(j)

t is equal to 2d for each t and j, and, accordingly, the total number
of solutions of SP is

∑T
t=1

∑st
j=0 |E

(j)
t | = 2d

∑T
t=1(st + 1) = 2d(T + ST ). The number ST can be

bounded as ST = O(T ). Indeed, from Theorem 5, if ST > 210(1+T ) then E[RT (a∗)] < −27eLRT ,
which contradicts to RT (a∗) =

∑T
t=1 `

>
t (at − a∗) ≥ −2LRT . Consequently, the total number

of solutions of SP is O(dT ). In Step 14, we solve DP in each round t; hence the total number of
solutions of DP is equal to T . Because we can solve SP and DP by calling the linear optimization
oracle poly(d, log T ) times from Theorem 4 and Remark 1, we can implement Algorithm 1 so that it
calls the linear optimization oracle O(poly(d, log T )T ) times.
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A Regret Analysis of Algorithm 1

We use the following two lemmas to prove Theorem 5

Lemma 1. The conditional expectation of ˆ̀
t defined by (4), given `t and Et, satisfies

E[ˆ̀t] = `t.

Proof. Because
∑d
s=0 λtsxts = µ̂t + σt

4e btit , the expectation of at given σt, it satisfies

E[at] = µ̂t +
σt
4e
btit .

Hence, we have

E[σtbtita
>
t ] = E

[
σtbtit

(
µ̂t +

σt
4e
btit

)>]
=

1

4e
E[btitb

>
tit ] =

1

4ed

d∑
i=1

btib
>
ti =

1

4ed
Σ̂t,

where the second equality comes from E[σt] = 0 and σ2
t = 1, the third equality holds because it

follows a uniform distribution over [d], and the last equality follows from the definition of {bti}di=1.
From the above equation and definition (4) of ˆ̀

t, we have

E[ˆ̀t] = 4edΣ̂−1
t E[σtbtita

>
t ]`t = `t.

Lemma 2. Suppose that a random variable X follows a logconcave distribution and that E[X2] ≤
1/α2 holds for given α ≥ 1. Then, we have

E[exp(X)1X>1] ≤ exp(3− α)

1− exp(1− α)
.

Proof. From Lemma 5.7 in [25], we have

Prob[|X| ≥ i] ≤ exp(−αi+ 1)

for all i ≥ 1. Hence, we have

E[exp(X)1X>1] =

∞∑
i=1

E[exp(X)1i≤X≤i+1] ≤
∞∑
i=1

Prob[i ≤ X ≤ i+ 1] exp(i+ 1)

≤
∞∑
i=1

Prob[|X| ≥ i] exp(i+ 1) ≤
∞∑
i=1

exp((1− α)i+ 2) =
exp(3− α)

1− exp(1− α)
.

To prove Theorem 5, we introduce some notations. In the following, we denote

ft(x) = `>t (x− µ̂t), f̂t(x) = ˆ̀>
t (x− µ̂t). (7)

Then, we can express zt as

zt(x) = exp

(
−η

t−1∑
i=1

f̂i(x)

)
. (8)

Then, the regret can be bounded by means of Z(0)
T+1 defined in (1), as follows:

Lemma 3. For all a∗ ∈ A and γ ∈ (0, 1), we have

E[RT (a∗)] ≤ 1

η(1− γ)

(
E logZ

(0)
T+1 − log Vol(K) + ηγLRT − d log γ

)
. (9)
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Proof. From E[at|µ̂t] = µ̂t and E[ˆ̀t|µ̂t] = `t, we have

ERT (a∗) = E

T∑
t=1

`>t (at − a∗) = E

T∑
t=1

`>t (µ̂t − a∗) = E

T∑
t=1

ˆ̀>
t (µ̂t − a∗) = −E

T∑
t=1

f̂t(a
∗).

(10)

We consider evaluating the rightmost-hand side, by using Z
(0)
T+1. Define a convex body K̄ by

K̄ := (1−γ)a∗+γK. BecauseK is convex and a∗ ∈ K, we have K̄ ⊆ K. Hence, we have K̄ ⊆ K(j)
t

for all t and j. Then, we have

E logZ
(0)
T+1 = E log

∫
KT

zT+1(x)dx ≥ E log

∫
K̄
zT+1(x)dx

= E log

∫
K
γdzT+1((1− γ)a∗ + γx)dx

= d log γ + E log

∫
K

exp

(
−η

T∑
t=1

((1− γ)f̂t(a
∗) + γf̂t(x))

)
dx

= d log γ − η(1− γ)E

T∑
t=1

f̂t(a
∗) + E log

∫
K

exp(−ηγ
T∑
t=1

f̂t(x))dx. (11)

The factor γd in the second equality comes from the change of variables x← (1− γ)a∗ + γx. The
last term in (11) can be bounded from below by means of x̄ :=

∫
K xdx∫
K 1dx

∈ K. Indeed, because f̂t is an
affine function and exp is a convex function, from Jensen’s inequality, we have

E log

∫
K

exp(−ηγ
T∑
t=1

f̂t(x))dx ≥ E log

∫
K

exp(−ηγ
T∑
t=1

f̂t(x̄))dx

= −ηγE
T∑
t=1

f̂t(x̄) + log

∫
K

1dx = −ηγE
T∑
t=1

ft(x̄) + log

∫
K

1dx ≥ −ηγLRT + log Vol(K).

By combining this and (11), we obtain

−η(1− γ)E

T∑
t=1

f̂t(a
∗) ≤ E logZ

(0)
T+1 − log Vol(K) + ηγLRT − d log γ.

From this and (10), we have (9).

The value E logZ
(0)
T+1 can be expressed as

E logZ
(0)
T+1 = logZ

(0)
1 +

T∑
t=1

E log
Z

(0)
t+1

Z
(0)
t

≤ logZ
(0)
1 +

T∑
t=1

(
E log

Z
(0)
t+1

Z
(st)
t

+ E log
Z

(st)
t

Z
(0)
t

)
. (12)

We can evaluate E log
Z

(0)
t+1

Z
(st)
t

and E log
Z

(st)
t

Z
(0)
t

as in Lemmas 4 and 5, respectively.

Lemma 4. Under the assumption that (2) and η ≤ 1
23eLRd3/2(4+log T )

holds for all t ∈ [T ], we have

E log
Z

(0)
t+1

Z
(st)
t

≤ LRεη + 25(edLRη)2 +
1

T
. (13)

Proof. We denote qt := q
(st)
t , which is defined in (1). Let µt ∈ Rd and Σt ∈ Rd×d denote the mean

and the covariance matrix of qt, respectively. Define f̃t : Rd → R by f̃t(x) = ˆ̀>
t (x − µt). From
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definition (7) of f̂t, we have f̂t(x) = f̃t(x) + ˆ̀>
t (µt − µ̂t). From definitions (8) and (1) of zt and

Zjt , we can express
Z

(0)
t+1

Z
(st)
t

as follows:

Z
(0)
t+1

Z
(st)
t

=

∫
Kt

zt+1(x)

Z
(st)
t

dx =

∫
Kt

zt(x)

Z
(st)
t

exp(−ηf̂t(x))dx

= E
x∼qt

exp(−ηf̂t(x)) = exp(−η ˆ̀>
t (µt − µ̂t)) · E

x∼qt
exp(−ηf̃t(x)). (14)

Because exp(x) ≤ 1 + x+ x2 holds for x ≤ 1, E
x∼qt

exp(−ηf̃t(x)) can be bounded as

E
x∼qt

exp(−ηf̃t(x)) ≤ E
x∼qt

[(1− ηf̃t(x) + η2f̃t(x)2)1−ηf̃t(x)≤1] + E
x∼qt

[exp(−ηf̃t(x))1−ηf̃t(x)>1]

≤ E
x∼qt

[(1− ηf̃t(x) + η2f̃t(x)2)] + E
x∼qt

[exp(−ηf̃t(x))1−ηf̃t(x)>1]. (15)

The first term in (15) can be, from definition of µt, Σt, and f̃t, expressed as follows:

E
x∼qt

[(1− ηf̃t(x) + η2f̃t(x)2)] = 1− η E
x∼qt

[ˆ̀>t (x− µt)] + η2
E
x∼qt

[ˆ̀>t (x− µt)(x− µt) ˆ̀
t
>

]

= 1 + η2 ˆ̀>
t Σt ˆ̀t. (16)

To bound the second term in (15), we use Lemma 2 with X = −ηf̃t(x): If x follows qt, a log-
concave distribution, and if ˆ̀

t is fixed, i.e., `t, σt, it and at are fixed, then f̃t(x) = ˆ̀
t(x − µt) =

4edσt`
>
t atbtitΣ̂

−1
t (x − µt) follows a logconcave distribution, because logconcavity is preserved

under linear transformations (see, e.g., [28]). Furthermore, we have5

E
x∼qt

[(ηf̃t(x))2] = η2
E
x∼qt

[ˆ̀>t (x− µt)(x− µt)> ˆ̀
t] = η2 ˆ̀>

t Σt ˆ̀t = (4edη`>t at)
2b>titΣ̂

−1
t ΣtΣ̂

−1
t btit

≤ 2(4edηLR)2b>titΣ̂
−1
t btit = 2(4edηLR)2Σ̂−1

t • (btitb
>
tit) ≤ 25(edηLR)2Σ̂−1

t • Σ̂t = 25(eηLR)2d3,

where the first, second, and third equalities come from the definitions of f̃t, Σt, and ˆ̀
t, respectively,

the first inequality follows from the condition Σt � 2Σ̂t given in (2), and the second inequality
follows from that Σ̂t =

∑d
i=1 btib

>
ti . Hence, under the assumption that 25(eηLR)2d3(4+log T )2 ≤ 1

holds, it follows from Lemma 2 that

E
x∼qt

[exp(−ηf̃t(x))1−ηf̂t(x)>1] ≤ exp(−1− log T )

1− exp(−3− log T )
≤ 1

T
.

Combining this, (15), and (16), we obtain

E
x∼qt

exp(−ηf̃t(x)) ≤ 1 + η2 ˆ̀>
t Σt ˆ̀t +

1

T
.

From this, (14), Lemma 1, and the fact that log(1 + x) ≤ x holds for x ≥ 0, we have

E log
Z

(0)
t+1

Z
(st)
t

≤ −ηE ˆ̀>
t (µt − µ̂t) + E log

(
1 + η2 ˆ̀>

t Σt ˆ̀t +
1

T

)
≤ −ηE `>t (µt − µ̂t) + E

[
η2 ˆ̀>

t Σt ˆ̀t

]
+

1

T
.

From (2), we have
|`>t (µt − µ̂t)| ≤ ‖`t‖2‖µt − µ̂t‖2 ≤ L‖µt − µ̂t‖Σ−1

t
‖Σt‖2 ≤ LRε,

where ‖Σt‖2 stands for the `2 operator norm, i.e., the largest eigenvalue of Σt, and the last inequality
holds because Σt is the covariance matrix of distribution over a region included in B∞(0, R).
Furthermore, we have

E
[
ˆ̀>
t Σt ˆ̀t

]
≤ (4edLR)2Σ−1

t •E[btitb
>
tit ] = (4edLR)2Σ−1

t •

(
1

d

d∑
i=1

btib
>
ti

)

= (4edLR)2Σ−1
t •

(
1

d
Σ̂t

)
≤ 2(4edLR)2.

By combining the above three inequalities, we obtain (13).
5 A •B means the Frobenius inner product of matrices A and B, i.e., its value is defined to be the trace of

A>B.
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Lemma 5. Suppose ε ≤ 1/(12e). For all t ∈ [T ] and j ∈ {0, 1, . . . , st − 1}, under the assumption
of (2), we have

Z
(j+1)
t

Z
(j)
t

≤
(

1− 1

2e

)
. (17)

Proof. Let (w, b) denote the hyperplane that the algorithm chooses for updating K(j)
t , which means

that K(j+1)
t = K(j)

t ∩ {x ∈ Rd | w>x ≥ b}. Then, we have

1− Z
(j+1)
t

Z
(j)
t

=

∫
K(j)

t \K
(j+1)
t

zt(a)da∫
K(j)

t
zt(a)da

= Prob
x∼q(j)

t

[w>x < b].

Because (w, b) satisfies w>x ≤ b for some x ∈ E(j)
t , there exists i ∈ [d] and σ ∈ {1,−1} such that

w>
(
µ̂

(j)
t +

σ

4e
b
(j)
ti

)
≤ b.

Combining the above equality and inequality, we obtain

1− Z
(j+1)
t

Z
(j)
t

≥ Prob
x∼q(j)

t

[
w>x < w>

(
µ̂

(j)
t +

σ

4e
b
(j)
ti

)]
= Prob
x∼q(j)

t

[
w>

(
x− µ(j)

t

)
< w>

(
µ̂

(j)
t − µ

(j)
t +

σ

4e
b
(j)
ti

)]
.

The value w>
(
µ̂

(j)
t − µ

(j)
t + σ

4eb
(j)
ti

)
can be bounded as∣∣∣w> (µ̂(j)

t − µ
(j)
t +

σ

4e
b
(j)
ti

)∣∣∣ ≤ ‖w‖Σ̂(j)
t

(
‖µ̂(j)

t − µ
(j)
t ‖Σ̂(j)−1

t
+

1

4e
‖b(j)ti ‖Σ̂(j)−1

t

)
≤ ‖w‖

Σ̂
(j)
t

(
ε+

1

4e

)
≤
√

2‖w‖
Σ

(j)
t

(
ε+

1

4e

)
≤
‖w‖

Σ
(j)
t

2e
,

where the first inequality comes from the Cauchy–Schwarz inequality, the second inequality follows
from (2) and that Σ

(j)
t =

∑d
i=1 b

(j)
ti b

(j)>
ti , the third inequality follows from Σ̂

(j)
t � 2Σ

(j)
t in (2), and

the last inequality comes from the assumption of ε < 1/(12e). From the above two inequations, we
have

1− Z
(j+1)
t

Z
(j)
t

≥ Prob
x∼q(j)

t

[
w>(x− µ(j)

t )

‖w‖
Σ

(j)
t

< − 1

2e

]
.

When x follows q(j)
t , y :=

w>(x−µ(j)
t )

‖w‖
Σ

(j)
t

follows a distribution with mean 0 and variance 1, because

w>x has mean w>µ(j)
t and variance w>Σ

(j)
t w. Moreover, the PDF of y is a logconcave function,

because logconcavity is preserved under linear transformations [28]. Because we have Prob[y ≤
0] ≥ 1/e from Lemma 5.4 in [25] and Prob[−1/(2e) ≤ y ≤ 0] ≤ 1/(2e) from Lemma 5.5 in [25],
we have Prob[y < −1/(2e)] ≥ 1/(2e).

Combining (12) and Lemmas 4 and 5, under the assumption that (2) holds for all t ∈ [T ] and
j ∈ {0, 1, . . . , st}, we have

E logZ
(0)
T+1 ≤ logZ

(0)
1 + T

(
LRεη + 25(edLRη)2 +

1

T

)
+

T∑
t=1

st log

(
1− 1

2e

)
≤ logZ

(0)
1 + LRTεη + 25T (edLRη)2 + 1− ST

5
, (18)

where we denote ST =
∑T
t=1 st and the second inequality follows from log

(
1− 1

2e

)
≤ 1

5 . Define
δ := Prob[ there exists t ∈ [T ] and j ≤ st such that (2) does not hold ]. From definition (5) of δ(j)

t ,

14



we have δ ≤
∑T
t=1

∑st
j=0 ≤

∑∞
k=2

1
Tk(k+1) = 1

2T . Because (18) holds with probability at least
1− δ, and it always holds that RT (a∗) ≤ 2LRT , from Lemma 3, we have

E[RT (a∗)] ≤ 1− δ
1− γ

(
25T (edLR)2η +

1

η

(
log

Z
(0)
1

Vol(K)
+ 1− d log γ − ST

5

)
+ LRT (ε+ γ)

)
+ 2δLRT

≤ 1

1− γ

(
25T (edLR)2η +

1

η

(
log

Z
(0)
1

Vol(K)
+ 1− d log γ − ST

10

)
+ LRT (ε+ γ)

)
+ LR,

where the second inequality comes from 0 ≤ δ ≤ 1
2T . We denote ψ := 1

d log
Z

(0)
1

Vol(K) =
1
d log Vol(B∞(0,R))

Vol(K) . By setting ε = γ = 1
12eT , we obtain

E[RT (a∗)] ≤ 2

(
25T (edLR)2η +

1

η

(
d(5 + ψ + log T )− ST

10

)
+ 2LR

)
.

In addition, by setting η = 1
2eLR min

{√
1+ψ+log T

dT , 1
24d3/2(1+ψ+log T )

}
, we obtain

E[RT (a∗)] ≤ 27eLRd3/2 max
{√

T (1 + ψ + log T ), d(1 + ψ + log T )2
}(

1− ST
210

)
,

which means that (6) holds.

B Algorithm for Stochastic Bandit Linear Optimization

In this section, we present an algorithm for stochastic bandit linear optimization, where we assume
that `t follows a distribution D over Rd, i.i.d. for t = 1, 2, . . . , T . We denote `∗ = E

`∼D
[`] ∈ Rd and

ξt = `t − `∗.

B.1 Preliminary: Barycentric Spanner

Definition 1. Let S ∈ Rd be a subset whose linear span is Rd, and let C > 1. A set X =
{x1, . . . , xd} ⊆ S is a C-barycentric spanner for S if every x ∈ S may be expressed as a linear
combination of elements of X using coefficients in [−C,C].

Theorem 6 (Proposition 2.4. in [9]). Suppose P ⊆ Rd is a compact set not contained in any proper
linear subspace. Given an algorithm OPT for LP, for any C > 1 we may compute a C-barycentric
spanner for P in polynomial time, using O(d2 logC(d)) calls to OPT. Its span is equal to Rd.

B.2 Algorithm

Our algorithm is summarized in Algorithm 2. In the algorithm, a parameter δ > 0 controls the
probability of achieving a small regret. The rounds are divided into K = O(log T ) phases, so that
the k-th phase consists of Θ(2k) rounds for each k ∈ {1, . . . ,K}.
When the k-th phase begins, the algorithm maintains an action set Pk. This action set is initialized by
P1 = Conv(A) and is defined recursively by (20) (thus P1 ⊇ P2 ⊇ · · · ⊇ PK). Pk is designed so
that the value of `∗>x is smaller for all x ∈ Pk as k gets larger (see Lemma 7). At the beginning
of the k-th phase, the algorithm computes a 2-barycentric spanner Xk = {xk1, . . . , xkd} of Pk. We
can construct a good estimate of `∗ if each element of Xk can be chosen as an action. However,
elements in Xk do not always belong to A, especially when A is discrete. To address this issue, our
algorithm decomposes each xki into the points xki0, . . . , xkid ∈ A with weight λki0, . . . , λkid ≥ 0
so that λki0 + · · ·+λkid = 1 and λki0xki0 + · · ·+λkidxkid = xki. Then, it plays xkij , Tkij ∝ λkij
times, for each j = 0, 1, . . . , d. We denote the action played at the t-th round by at. The algorithm
computes an empirical estimate ˆ̀

k of `∗, based on the feedback obtained in k-th phase, as defined in
(19).

We note that Vol(Pk) > 0 holds for all k, which implies that we can apply the algorithm in Theorem 6
to Pk and that Vk is invertible. In fact, we have Vol(P1) > 0 from Assumption 1 and we can show
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Algorithm 2 An oracle efficient algorithm for stochastic bandit linear optimization
Require: Action set A ⊆ Rd, positive real numbers L and R satisfying Assumption 1, δ ∈ (0, 1).

1: Set P1 = Conv(A) and t1,1,0 = 0.
2: for k = 1, 2, . . . ,K do
3: Let Xk = {xk1, . . . , xkd} ⊆ Pk be a 2-barycentric spanner for Pk.
4: Set ζk = 22k+9d2 log

(
2dk(k+1)

δ

)
.

5: for i = 1, . . . , d do
6: Solve DP for P = Conv(A) and x = xki to get a decomposition xki0, . . . , xkid ∈ A and

λki0, . . . , λkid such that xki = λki0xki0 + · · ·+ λkidxkid.
7: for j = 0, . . . , d do
8: Set Tkij = dζkλkije, tki,j+1 = tkij + Tkij .
9: Choose action at = xkij exactly Tkij times, from the (tkij + 1)-th round to the (tki,j+1)-

th round.
10: end for
11: Set tk,i+1,0 = tki,d+1.
12: end for
13: Calculate empirical estimate ˆ̀

k of `∗ by

Vk =

d∑
i=1

d∑
j=0

Tkijxkijx
>
kij ,

ˆ̀
k = V −1

k

d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

(`>t xkij)xkij . (19)

14: Solve LP for P = Pk and w = ˆ̀
k to find a vector x∗k ∈ arg min

x∈Pk

ˆ̀>
k x.

15: Update Pk by

Pk+1 = {x ∈ Pk | ˆ̀>
k (x− x∗k) ≤ LR2−k}. (20)

16: end for

Vol(Pk) > 0 by induction in k, from the definition (20). The linear span of a barycentric spanner
Xk = {xk1, . . . , xkd} coincides with that of Pk (see, e.g., [9]), which is equal to Rd, because
Vol(Pk) > 0. Hence, we have Vk � ζk

∑d
i=1

∑d
j=0 λkijxkijx

>
kij � ζk

∑d
i=1 xkix

>
ki � O, which

means that Vk is nonsingular.

Algorithm 2 satisfies the following regret bound:

Theorem 7. Suppose that `t follows an i.i.d. distribution for t = 1, . . . , T with T ≥ 2, and that
{at}Tt=1 is given by Algorithm 2. With probability at least 1− δ, the regret is bounded as follows:

max
a∈A

RT (a) ≤ 212LR

√
d3T log

(
d log T

δ

)
. (21)

The proof of this theorem is given in Appendix C.

B.3 Oracle Complexity Analysis

Step 3 in Algorithm 2 requires constructing a 2-barycentric spanner. From Theorem 6, we can
construct it by calling an algorithm that solves LP for P = Pk, O(poly(d)) times. Theorem 3 (a)
and Remark 1 imply that we can solve LP by solving SP O(poly(d, log T )) times. SP for P = Pk
can be solved by the following procedure:

1. Decide if y ∈ P1 or not, and, in the latter case, output a vector w ∈ Rd such that w>y <
minx∈P1

w>x. From Theorem 3 (b), this can be done by calling the LP oracle for A
O(poly(d)) times. In the former case, i.e., if y ∈ P1, go to the next step.

2. For j = 1, . . . , k − 1, if ˆ̀>
j (y − x∗k) > LR2−j , output ˆ̀

j . If ˆ̀>
j (y − x∗k) ≤ LR2−j for all

j = 1, . . . , k − 1, it means that y ∈ Pk.

16



This procedure calls the LP oracle for O(poly(d, log T )) times and runs in O(poly(d,K)) =
O(poly(d, log T )) times. Hence, we have an efficient implementation of Step 3 that calls the LP
oracle for A O(poly(d, log T )) times. Similarly, Steps 6 and 14 in Algorithm 2 can be executed by
calling the LP oracle forAO(poly(d, log T )) times. The other steps are free from access to the oracle
and can be efficiently implemented. Because the number K of iterations w.r.t. k is bounded as in (32),
the number of oracle calls for solving LP over A is of O(poly(d, log T )K) = O(poly(d, log T )).

C Regret Analysis of Algorithm 2

In the proof of Theorem 7, we may assume that

T > 2dζ1 = 212d3 log

(
4d

δ

)
. (22)

Indeed, if T ≤ 2dζ1, then we see RT (a) ≤ 2LRT ≤ 2LR
√

2dζ1T , which means that (21) holds.

To prove the above theorem, we start with analyzing the error of the estimators ˆ̀
k defined by (19):

Lemma 6. With probability at least 1− δ, for all k ∈ {1, 2, . . .} and x ∈ Pk, we have

|(ˆ̀
k − `∗)>x| ≤ 2−1−kLR. (23)

Proof. Because Xk = {xk1, . . . , xkd} is a 2-barycentric spanner for Pk, for all x ∈ Pk, there exists
a vector w = (w1, . . . , wd)

> ∈ [−2, 2]d such that x = w1xk1 + · · ·+ wdxkd. By means of this w,
(ˆ̀
k − `∗)>x can be expressed as

(ˆ̀
k − `∗)>x =

 d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

`>t xkijx
>
kijV

−1
k − `∗>

 d∑
s=1

wsxks

=

 d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

(`t − `∗)>xkijx>kijV −1
k

 d∑
s=1

wsxks

=

d∑
s=1

ws

d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

(ξ>t xkij)x
>
kijV

−1
k xks, (24)

where the first equality comes from the definition (19) of ˆ̀
k, the second equality comes from∑d

i=1

∑d
j=0

∑tki,j+1

t=tkij+1 xkijx
>
kijV

−1
k =

∑d
i=1

∑d
j=0 Tkijxkijx

>
kijV

−1
k = I , and the last equality

comes from ξt = `t − `∗. We give a uniform bound for this value by the following claim: with
probability at least 1− δ, it holds for all k = 1, 2, . . . and s = 1, . . . , d that

∣∣∣∣∣∣
d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

(ξ>t xkij)x
>
kijV

−1
k xks

∣∣∣∣∣∣ ≤ LR

d2k+2
. (25)

Because the expectation of ξt = `t − `∗ is equal to 0, and because ‖ξt‖2 ≤ ‖`t‖2 + ‖`∗‖2 ≤ 2L and
‖xkij‖2 ≤ R hold from Assumption 1, {ξ>t xkij} are independent random variables with mean 0 and
absolute value at most 2LR. Hence, from Hoeffding’s inequality, it holds with probability at least
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1− δ
dk(k+1) that∣∣∣∣∣∣

d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

(ξ>t xkij)x
>
kijV

−1
k xks

∣∣∣∣∣∣
≤ 2LR

√√√√8 log

(
2dk(k + 1)

δ

) d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

(x>kijV
−1
k xks)2

= 2LR

√√√√√8 log

(
2dk(k + 1)

δ

)
x>ksV

−1
k

 d∑
i=1

d∑
j=0

tki,j+1∑
t=tkij+1

xkijx>kij

V −1
k xks

= 2LR

√
8 log

(
2dk(k + 1)

δ

)
x>ksV

−1
k xks. (26)

The value x>ksV
−1
k xks is bounded as x>ksV

−1
k xks ≤ ζ−1

k . Indeed, we have

Vk �
d∑
j=0

Tksjxksjx
>
ksj � ζk

d∑
j=0

λksjxksjx
>
ksj

= ζk

xksx>ks +

d∑
j=0

λksj(xksj − xks)(xksj − xks)>
 � ζkxksx>ks,

where the first inequality comes from the definition (19) of Vk, the second inequality comes from
Tksj = dζkλksje ≥ ζkλksj (Step 8 of Algorithm 2), and the equality comes from that λks0 + · · ·+
λksd = 1 and that λks0xks0 + · · ·+ λksdxksd = xks. This inequality indicates

0 ≤ (V −1
k xks)

>(Vk − ζkxksx>ks)(V −1
k xks) = x>ksV

−1
k xks(1− ζkx>ksV −1

k xks),

from which we have x>ksV
−1
k xks ≤ ζ−1

k .

Plugging this bound on x>ksV
−1
k xks into (26) and the definition of ζk (Step 4 of Algorithm 2) show

that the inequality (25) holds with probability at least 1− δ
dk(k+1) for each k and s. Hence, we have

Prob[ (25) does not hold for some k and s ] ≤
K∑
k=1

d∑
s=1

Prob[ (25) does not hold for k and s ]

≤
K∑
k=1

d∑
s=1

δ

dk(k + 1)
= δ,

which means that, with probability at least 1− δ, (25) holds for all k and s. Combining this, (24),
and |ws| ≤ 2 for all s ∈ [d], we obtain (23).

Lemma 7. Fix a∗ ∈ arg min
a∈A

`∗>a. With probability at least 1− δ, for all k, we have

a∗ ∈ Pk, and `∗>x− `∗>a∗ ≤ 22−kLR for all x ∈ Pk. (27)

Proof. From Lemma 6, we can assume that (23) holds for all k and x ∈ Pk. Under this assumption,
we show (27) by induction in k. We can confirm that (27) holds for k = 1. Indeed, a∗ ∈ P1 follows
fromA ⊆ P1, and `∗>x−`∗>a∗ ≤ ‖`∗‖2‖x−a∗‖2 ≤ 2LR follows from ‖`∗‖2 ≤ L and ‖x‖2 ≤ R
for x ∈ P1. Suppose that (27) holds for k = s. Then, Ps+1, defined by (20), contains a∗ because

ˆ̀>
s a
∗ ≤ `∗>a∗ + 2−1−sLR ≤ `∗>x∗s + 2−1−sLR ≤ ˆ̀>

s x
∗
s + 2−sLR,

where the first and the third inequalities come from (23) and the second inequality comes from
`∗>a∗ = mina∈A{`∗>a} = minx∈P1{`∗>x} ≤ `∗>x∗s . Furthermore, for all x ∈ Ps+1, we have

`∗>x ≤ ˆ̀>
s x+ 2−s−1LR ≤ ˆ̀>

s x
∗
s + 3 · 2−s−1LR ≤ ˆ̀>

s a
∗ + 3 · 2−s−1LR ≤ `∗>a∗ + 2−s+1LR,
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where the first and the fourth inequalities come from (23), the second inequality comes from the
definition (20) of Pk+1, and the third inequality comes from a∗ ∈ Ps and x∗s ∈ arg min

x∈Ps

ˆ̀>
s x. Hence,

(27) holds for k = s+ 1. By induction in k, (27) is proven to hold for all positive integers k.

From this lemma and the definition of at in Algorithm 2, we can bound
∑tk+1,1,0

t=tk,1,0+1 `
∗>(at − a∗) as

follows:

tk+1,1,0∑
t=tk,1,0+1

`∗>t (at − a∗) =

d∑
i=1

d∑
j=0

Tkij`
∗>(xkij − a∗) ≤

d∑
i=1

d∑
j=0

(ζkλkij`
∗>(xkij − a∗) + 2LR)

=

d∑
i=1

(ζk`
∗>(xki − a∗) + 2LR(d+ 1)) ≤ dLR(22−kζk + 2(d+ 1)),

(28)

where the first inequality follows from Tkij = dζkλkije (Step 8 of Algorithm 2) and |`∗>(xkij −
a∗)| ≤ 2LR, the second inequality follows from

∑d
j=0 λkijxkij = xki and

∑d
j=0 λkij = 1, and the

last inequality follows from Lemma 7.

Let Tk denote the number of rounds in the k-th phase, i.e.,

Tk =

d∑
i=1

d∑
j=0

Tkij = tk+1,1,0 − tk,1,0. (29)

From the definition of Tkij = dζkλkije (Step 8 of Algorithm 2), we have ζkλkij ≤ Tkij < ζkλkij+1.
Combining this and the condition that

∑d
j=0 λkij = 1, we obtain

dζk ≤ Tk ≤ dζk + d(d+ 1). (30)

Let K be the index of phases such that the K-th phase includes T -th round, i.e., K is the number
such that

∑K−1
k=1 Tk < T ≤

∑K
k=1 Tk. Note that K ≥ 2 follows from the assumption 22. From (30)

and the definition of ζk (Step 4 in Algorithm 2), we have

T > TK−1 ≥ dζK−1 = 22K+7d3 log

(
2dK(K − 1)

δ

)
≥ (2K+3)2d3 log

(
2dK(K + 1)

δ

)
,

where the last inequality follows from 2 log
(

2dK(K−1)
δ

)
= log

(
2dK(K−1)

δ

)2

≥ log
(

2dK(K+1)
δ

)
.

This inequality implies the bound on 2K and K, as follows:

2K ≤ 1

23

(
T

d3

) 1
2
(

log

(
2dK(K + 1)

δ

))− 1
2

, (31)

K ≤ 1

2
log2 T − 3. (32)
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By means of these inequalities, we can bound the value
∑T
t=1 `

∗>(at − a∗), for the output at of
Algorithm 2, and a∗ ∈ arg min

a∈A
`∗>a:

T∑
t=1

`∗>(at − a∗) ≤
K∑
k=1

tk+1,1,0∑
t=tk,1,0+1

`∗>(at − a∗)

≤ dLR
K∑
k=1

(22−kζk + 2(d+ 1)) (from (28))

= dLR

K∑
k=1

(
2k+11d2 log

(
2dk(k + 1)

δ

)
+ 2K(d+ 1)

)
(Step 4 in Algo. 2)

≤ dLR
(

2K+12d2 log

(
2dK(K + 1)

δ

)
+ 2K(d+ 1)

)
≤ dLR

(
29d2

(
T

d3
log

(
2dK(K + 1)

δ

)) 1
2

+ 2K(d+ 1)

)
(from (31))

≤ dLR

(
29

√
dT log

(
d(log2 T )2

δ

)
+ (d+ 1) log2 T

)
(from (32))

≤ dLR

(
210

√
dT log

(
d log T

δ

)
+ (d+ 1) log2 T

)
. (33)

By combining this and the following lemma, we obtain an upper bound on the regret RT (a) =∑T
t=1 `

>
t (at − a).

Lemma 8. Let a∗ ∈ arg min
a∈A

`∗>a. With probability at least 1− δ, it holds for all a ∈ A that

RT (a) ≤
T∑
t=1

`∗>(at − a∗) + 8LR

√
dT log

(
2d

δ

)
. (34)

Proof. We show (34) by proving the following two inequalities:
T∑
t=1

`>t at −
T∑
t=1

`∗>at ≤ LR

√
8T log

(
2

δ

)
, (35)

T∑
t=1

`∗>a∗ −
T∑
t=1

`>t a ≤ LR

√
8dT log

(
2d

δ

)
. (36)

DenoteXτ :=
∑τ
t=1(`t−`∗)>at. Because {Xτ}Tτ=0 is a martingale such that |Xτ+1−Xτ | ≤ 2LR,

from Azuma’s inequality, with probability 1 − δ
2 , we have XT ≤ LR

√
8T log

(
2
δ

)
, which means

that (35) holds. Similarly, from Hoeffding’s inequality, we have∥∥∥∥∥
T∑
t=1

(`t − `∗)

∥∥∥∥∥
2

≤ L

√
dT log

(
2d

δ

)
(37)

with probability at least 1− δ
2 . Under this condition, we have

−
T∑
t=1

`>t a ≤ −
T∑
t=1

`∗>a+ LR

√
dT log

(
2d

δ

)
≤ −

T∑
t=1

`∗>a∗ + LR

√
8dT log

(
2d

δ

)
,

where the first inequality follows from (37) and ‖a‖2 ≤ R, and the second inequality follows from
a∗ ∈ arg min

a∈A
`∗>a. Hence, we have (36) for all a ∈ A with probability at least 1− δ

2 . Because each

of (35) and (36) holds with probability 1− δ
2 , both (35) and (36) hold with probability 1− δ. Then,

by taking the sum of each side of (35) and (36), we obtain (34).
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By combining (33), Lemma 8 and (22), we obtain

RT (a) ≤ 211LR

√
d3T log

(
d log T

δ

)
with probability at least 1− 2δ. Replacing δ with δ/2, we obtain (21).
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