
Appendix
1 Details of Discriminator Model
We adopt an RNN-based discriminator D for our IRecGAN framework, and model its hidden states
by sdt = hd(s

d
t−1, e

d
t−1), where sdt denotes the hidden states maintained by the discriminator at time t

and edt−1 is the embedding used in the discriminator side. And we add a multi-layer perceptron which
takes the hidden states as input to compute a score through a Sigmoid layer indicating whether the
trajectory is likely to be generated by real users when interacting with a recommender as following:

D(τ0:T) = Sigmoid
[1

T

T∑
t=0

ed(cmax
at)>ed(ct)(Wprt + bp)

]
cmax
at = argmaxc∈at(W

dsdt + bd)>e(c)

where cmax
at can be considered as the user’s preferred item in the given recommendation list at,

and should be as close to the observed clicks ct as possible for real users. To enable the gradient
backpropagation, we use Softmax with a temperature 0.1 to approximate the argmax function. Other
hyper parameters are set to the same with the experiment setting depicted in Section 7.1. The
optimization target of D is formulated as in Eq (5).

2 Details of Sampling
To enable exploration during model training, inspired by the discussion in [2], we sample items to get
the recommendation list (action) by Eq (4). Moreover, since our model-based RL solution involves
the user behavior model (which is estimated together with the agent model) during the sequence
generation, we sample users’ clicks by their probabilities in the sequence generation of training as
well. For testing, the agent’s recommendation list contains items with top k probabilities under the
learned policy. In the meanwhile, for comparison purpose, we can also use the user behavior model to
create a ranking list of items for recommendation purpose. Specifically, in the offline evaluation, user
behavior models rerank recorded offline recommendations; and in the simulated online evaluation,
user behavior models rerank all items in A (i.e., with given recommendations containing all items)
and select the top k for the evaluation of coverage@r.

3 Algorithm

Algorithm 1: IRecGAN
Input: Offline data; an agent model A; a user behavior model U ; a discriminator D.

1 Initialize an empty simulated sequences set Bs and a real sequences set Br.
2 Initialize U ,A and D with random parameters.
3 Pre-train U by maximizing Eq (3).
4 Pre-train A via the policy gradient of Eq (10) using only the offline data.
5 A and U simulate m sequences and add them to Bs. Add m trajectories to real data set Br.
6 Pre-train D according to Eq (5) using Br and Bs.
7 for e← 1 to epoch do
8 for r− steps do
9 Empty Bs and then generate m simulated sequences and add to Bs.

10 Compute qD(τ0:t) at each step t by Eq (6).

11 Extract
⌊
λ2

λ1
m
⌋

sequences into Br.
12 Update U via the policy gradient of Eq (7) with B = [Bs, Br].
13 Update A via the policy gradient of Eq (10) with B = [Bs, Br].
14 end
15 for d− steps do
16 Empty Bs, then generate m simulated sequences by current U , A and add to Bs.
17 Empty Br and add m sequences from the offline data.
18 Update D according to Eq (5) for i epochs using Br and Bs.
19 end
20 end

1

4 The Weight of Sequence Generation Score
A weight w can be applied to the sequence generation score qD for purpose of rescaling the generated
rewards. In this paper, we set w = 1 and got the expected value estimation in Section 6. In this
setting, when the agent’s policy is the same as that of the offline data and the user behavior model
is unbiased, which means PπΘa

(τ0:t) = Pg(τ0:t) = Pdata(τ0:t) and ∆ = 0, the value estimation is
biased. By setting w = 2, the expected value estimation Eτ∼π

Θa
[Va] turns out to be:

V
πΘa
a +

T∑
t=0

Eτ0:t∼πΘa

2λ1

2 − (δ1 + δ2)
∆+

T∑
t=0

Eτ0:t∼dataλ2δ2rt(τ0:t)+

T∑
t=0

Eτ0:t∼πΘa

(δ1 + δ2)λ1

2 − (δ1 + δ2)
rt(τ0:t).

This value estimation is unbiased when PπΘa
(τ0:t) = Pg(τ0:t) = Pdata(τ0:t) and ∆ = 0.

However, when the user behavior model is biased, amplifying the sequence generation score with
w > 1 will also amplify the bias. Moreover, it will over-penalize the generated sequences which
are not very similar to the offline data (with relatively low qD). Although our method encourages
the agent to consider users’ immediate clicks when making recommendations, it does not require
the overall recommendations to be similar to those of the offline data. And we also do not want the
agent’s recommendations to be exactly the same as the recorded ones, since our goal is to improve
the offline policy. In this case, over-penalizing some generated sequences is harmful. Because of the
reasons above, we directly use qD in our paper. But we admit that the weight w can be set to different
values under specific cases for value estimation.

5 Details about the Coverage Metric
In our simulated environment, the selection of a click directly relates to its reward, which also
influences the length of the sequence. In this case, whether the model (the user behavior model or
the agent) can capture real reward of items at each time will highly affect its performance in both
behavior prediction and recommendation. As indicated in Section 7.1, we use coverage@r to measure
whether a model can capture items with high rewards (most relevant items) under corresponding
states. Denote the top r relevant items at time t as Crt , the top k recommendations given by the model
as Akt . We regard the k items with the highest prediction scores from a recommendation algorithm (a
user behavior model can also be treated as a recommendation algorithm when the click candidates
are from the whole item set) as its recommendations given the whole item set as its candidates. Then
the coverage@r can be calculated by

coverage@r =

∑T
t=0

∣∣Crt ∩Akt ∣∣
T × r

.

When r is small, it requires models to capture the most relevant items to get a high coverage@r.
When r becomes larger, models which can capture overall high reward items are likely to get high
coverage@r. For example, an evaluation result with high coverage@1 and low coverage@2 indicates
the algorithm handles the highest reward item in the ground-truth better than the second item.

To the behavior model, since the environment’s next clicks are sampled according to the items’
conditional rewards with respect to the state, a model’s coverage@r performance directly relates to
its performance of the behavior prediction (especially when r is small). To the agent, since it aims
to maximize the cumulative rewards, including items with relatively high immediate rewards will
ensure users’ satisfaction and the model’s immediate gain at each time step. Moreover, since items
with high rewards also have high success probabilities in the Bernoulli experiment, ensuring users’
clicking of high reward items encourages the continuation of sequences, which also improves the
accumulation of rewards. Because of these, the agent’s coverage@r performance is highly related to
the actual cumulative rewards it can get in our simulated environment. However, different from the
behavior model, because the cumulative rewards an agent can get also relate to the state transitions
conditioned on the clicked items, a performing agent should not always recommend items with the
highest rewards. In this case, we also provide an evaluation of cumulative rewards in the results.

6 Correction of Figure 2 and Figure 3
Compared to the original version, we have corrected Figure 2 and Figure 3 about the results of
simulated experiments. This is because of an implementation mismatch when computing the simulated
environment. Specifically, in the previous implementation the next click under the state si is re-
selected by arg maxair(ai ∈ Akt |si) instead of aj , after the success of the Bernoulli experiment with
the probability r(aj |si). This leads to a situation in which all methods are hard to estimate rewards

2

of items with relatively low ground-truth rewards in si, no matter under πrandom or πmax. This leads to
the performance drop of coverage@r with the increase of r. After the correction, the updated results
and their corresponding analysis are shown in Section 7.1.

7 Offline Test with Different Data Separations
In real-world data offline evaluation of Section 7.2, since we do not know the logging policy of the
offline recommendation, the true distribution of data appearing under the offline recommendation
policy can only be inferred by the observations. However, because the problem space of our offline
dataset is large, it is hard to sufficiently reveal the true data distribution with limited offline data. In
this case, using different data separation strategies may lead to different data distributions for both
training and testing, which may cause different performance of models as indicated in our simulated
online evaluation. To provide a more comprehensive evaluation, we randomly split the dataset for
training/validation/testing in Section 7.2. We adopted P@1 and P@10 to compare different models’
performance. And both the metrics were calculated only on the timesteps with a recommendation list
including more than 10 candidate items. Moreover, we conducted the offline evaluation experiments
three times by varying the random seed to get the confidence interval for each algorithm.

To compare results under different data separation strategies, we evaluated models when splitting
the dataset in the order of session ID or time, as shown in Table 2 and 3, respectively. Specifically,
we ordered the whole dataset by session ID or time, and used 65,284/1,718/1,820 sessions for train-
ing/validation/testing. When split data by session ID, the average length of training/validation/testing
sessions was 2.84/2.15/2.09, the ratio of clicks that lead to purchases was 2.32%/2.08%/2.36%. When
split data by time, the average length of training/validation/testing sessions was 2.81/2.80/2.75 and
the ratio of clicks leading to purchases was 2.33%/2.21%/2.05%. And to provide more insights about
performance of different algorithms, we also included P@1 (all) that measures Precision@1 on all
the timesteps (with more than one recommendation candidate) for each model as a metric.

Table 2: Rerank evaluation on real-world recommendation dataset when split by session ID.
Model LSTM LSTMD PG PGIS AC PGU ACU IRecGAN

P@10 (%) 28.79±0.44 31.98±0.64 32.44±1.16 30.72±0.37 29.26±0.79 30.33±0.47 28.53±0.35 33.45±0.71
P@1 (%, all) 9.64±0.38 11.26±0.34 8.40±0.18 7.67±0.31 7.33±0.41 8.27±0.44 7.08±0.32 9.78±0.37

P@1 (%) 9.68±0.29 11.06±0.23 6.83±0.38 6.09±0.19 6.11±0.18 6.67±0.51 5.86±0.26 7.84±0.25

Table 3: Rerank evaluation on real-world recommendation dataset when split by time.
Model LSTM LSTMD PG PGIS AC PGU ACU IRecGAN

P@10 (%) 27.95±0.34 29.85±0.18 29.13±0.18 27.85±0.15 25.37±0.49 29.45±0.37 26.51±0.67 30.07±0.15
P@1 (%, all) 7.94±0.10 8.27±0.14 6.07±0.15 6.91±0.11 4.08±0.12 6.58±0.18 4.84±0.23 7.08±0.25

P@1 (%) 7.67±0.12 7.90±0.14 4.65±0.25 5.40±0.13 4.16±0.15 5.19±0.27 4.89±0.21 5.81±0.18

We observed that the results had a considerable difference compared with random data separation
when we split the data by session ID or time, which validated the influence of data separation.
However, the overall conclusions in the comparison among our methods (LSTMD, IRecGAN) and
baselines remained consistent. Because of their different training purposes where user behavior
models (LSTM, LSTMD) were trained only for click prediction, LSTM and LSTMD performed better
than the RL agents in P@1. And the RL agents (IRecGAN and other RL baselines) had advantages
in capturing users’ overall interests, which led to better P@10 results.

Although we observed different performance of baselines under different data separation strategies,
using our additional sample generation mechanism with adversarial training, under all strategies
LSTMD outperformed LSTM, IRecGAN outperformed other RL-based methods in both P@1 and
P@10. These results showed that 1) the solution we proposed in this paper helped to improve the
user behavior model. 2) The sequence generation reward for the agent helped it better capture users’
immediate behaviors. 3) The proposed solution helped the agent to better capture users’ overall
interests.

By comparing the P@1 and P@1 (all), we observed that the differences between these two metrics in
user behavior models (LSTM and LSTMD) were small while those of most RL agents were relatively
large. More specifically, most of RL agents performed better under the P@1 (all) metric than P@1,
where the former included evaluations with less than 10 ranking candidates. We conjecture that
the key reason is user behavior models are only optimized for click prediction, while agents need
to balance both the next click and future clicks via the learnt state transition. When the number of
recommendation candidates to re-rank is small, there is more chance that an agent ranks the next
click to be the first, which leads to a better P@1 (all).

3

