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A Self-Routing Example
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Figure 1: A simple example of the self-routing mechanism the number of capsules per layer is 2. See
section 4.2 of the main paper for the details.

We visualize an example of self-routing in Figure 1. The routing coefficients are obtained by
forwarding the input poses to routing networks, each of which has a similar role to a gating network
in MoE. The routing coefficients are then multiplied by the input activations to obtain weighted
votes. The output activations are the mean of these weighted votes. The pose predictions from input
capsules are multiplied by the weighted votes and averaged to yield the output poses.

B Implementation Details

B.1 Architectures

Table 1–2 describe the architecture of the 7-layer CNN used for SmallNORB [6] and the CapsNet
headers for CIFAR-10 [4] and SVHN [9]. The header of Conv+FC is designed as a siamese of SR-1
with 32 capsules; it consists of a 3× 3 Conv layer with 512(= 32× 16) channels, stride of 1, and
1 × 1 padding with a ReLU non-linearity and a FC layer with nclass activations. We use batch
normalization [3] for fast training.
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Table 1: The architecture of
the 7-layer CNN used for
SmallNORB.

Conv 3× 3, ReLU 16
stride 1, padding 1, BN

Conv 3× 3, ReLU 32
stride 2, padding 1, BN

Conv 3× 3, ReLU 32
stride 1, padding 1, BN

Conv 3× 3, ReLU 64
stride 2, padding 1, BN

Conv 3× 3, ReLU 64
stride 1, padding 1, BN

Conv 3× 3, ReLU 128
stride 2, padding 1, BN

AvgPool 4× 4

FC 5

Table 2: The capsule layers that replace AvgPool and FC layers in
the ResNet-20 and the 7-layer CNN. We below show the capsule
layers at depth of 2. No ConvCap layer is used at depth of 1. nc and
nclass denote the number of capsules per layer and the number of
classes on the dataset, respectively. For PrimaryCaps and ConvCaps,
we use 1× 1 padding.

Layer Dynamic Routing EM Routing Self-Routing

PrimaryCaps

3× 3, stride 1
nc caps, dim 16

BN
Squash

3× 3, stride 1
nc caps, dim 16

BN
Sigmoid (act. only)

3× 3, stride 1
nc caps, dim 16

BN
Sigmoid (act. only)

ConvCaps
3× 3, stride 2
nc caps, dim 16

Squash

3× 3, stride 2
nc caps, dim 16
BN (pose only)

3× 3, stride 2
nc caps, dim 16
BN (pose only)

FCCaps nclass caps
dim 16

nclass caps
dim 16

nclass caps
no pose

B.2 Optimization

We train all models using SGD optimizer for 350 epochs for CIFAR-10, 200 epochs for SVHN, and
100 epochs for SmallNORB. We set the initial learning rate to be one of 0.1, 0.01, and 0.001. We
divide the learning rate by 10 at 150 and 250 epochs for CIFAR-10, at 100 and 150 epochs for SVHN,
and at 50 and 75 epochs for SmallNORB.

For CIFAR-10 and SVHN, on which adversarial robustness is measured, we train all models with
the cross-entropy loss, since the choice of a loss function is a nuisance factor in adversarial tests [8].
For SmallNORB, we use the margin loss [7] for dynamic routing, the spread loss [2] for EM routing,
since they are the recommended losses in the original papers. We use the cross-entropy loss for all
other models. In order to calculate the cross-entropy, we use the softmax function for CNN baselines,
whereas we divide final activations by their sum instead of using the softmax for capsule baselines,
since the activations are in [0, 1]. Our method guarantees the sum of activations in a location to be 1;
hence no normalization is used. For faster training, we also use batch normalization [3] on augmented
convolutional and Primary/ConvCaps layers with which the pooling layer is replaced. We do not use
batch normalization on pose vectors of ConvCaps layers for dynamic routing and activation scalars
of EM and self-routing, since their scales are enforced to be in [0, 1]. The number of iteration is set to
3 for both dynamic and EM routing. We use He uniform initialization [1] to initialize all weights
except the routing networks, for which we set the initial weights to 0.

C More Results on White-Box Attacks

C.1 FGSM

Table 3 reports additional results on FGSM attacks with more ε values.

C.2 BIM

Table 4 reports results on Basic Iterative Method (BIM) [5], which applies FGSM multiple times with
smaller step size. Again, all CapsNets outperforms the CNN baselines, and SR-CapsNets enjoy the
best robustness among them. Note that the robustness of SR-CapsNet improves further as the number
of capsules increases. It is consistent with the results obtained by FGSM in the main draft. We fix the
number of iterations as 10 for all experiments.
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Table 3: Success rates (%) of untargeted (top) and targeted (bottom) FGSM attacks against CapsNet and CNN
models. The results are obtained with 5 random seeds.

Methods CIFAR-10 SVHN

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.1 ε = 0.2 ε = 0.3

AvgPool 62.7 71.8 76.6 44.4 57.6 65.1
Conv 60.6 71.2 75.7 44.5 58.3 65.6

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1 48.2 48.2 47.7 57.1 58.6 57.5 64.1 66.5 65.1 30.2 26.1 28.8 39.1 34.2 37.3 46.6 42.8 45.2
DR-2 − − 50.8 − − 59.8 − − 67.1 − − 35.8 − − 49.0 − − 57.9
EM-1 54.1 54.1 54.6 65.3 66.4 65.9 72.1 72.5 71.4 29.1 32.4 26.1 43.5 47.1 39.9 54.6 57.3 52.3
EM-2 − − 56.3 − − 69.2 − − 77.6 − − 33.9 − − 48.8 − − 58.5
SR-1 53.2 49.4 41.2 64.0 59.2 51.7 70.7 66.4 60.8 31.9 26.4 21.6 44.7 36.1 31.2 54.1 44.9 41.9
SR-2 − − 34.1 − − 45.9 − − 56.9 − − 19.2 − − 28.1 − − 39.0

Methods CIFAR-10 SVHN

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.1 ε = 0.2 ε = 0.3

AvgPool 18.5 17.7 15.6 15.4 19.3 19.5
Conv 21.6 23.6 22.0 17.9 22.8 23.0

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1 7.3 7.2 7.4 7.7 7.6 7.8 7.8 7.9 8.1 6.6 5.9 6.9 8.4 7.3 8.8 9.3 8.0 9.6
DR-2 − − 9.9 − − 9.6 − − 9.2 − − 9.2 − − 11.9 − − 12.7
EM-1 9.3 9.2 10.0 9.2 9.6 10.2 9.5 9.4 9.3 5.0 7.2 5.7 6.5 10.2 7.1 8.0 11.0 8.4
EM-2 − − 8.4 − − 8.7 − − 8.5 − − 5.7 − − 6.9 − − 8.2
SR-1 8.4 7.7 5.6 8.6 7.8 6.1 8.6 8.1 6.7 6.8 5.5 3.7 9.2 7.1 4.9 10.3 8.0 6.2
SR-2 − − 6.2 − − 7.1 − − 7.4 − − 4.9 − − 6.9 − − 8.3

Table 4: Success rates (%) of untargeted (top) and targeted (bottom) BIM attacks against CapsNet and CNN
models. The results are obtained with 5 random seeds.

Methods CIFAR-10 SVHN

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.1 ε = 0.2 ε = 0.3

AvgPool 84.9 93.2 95.5 62.2 79.8 86.2
Conv 82.0 93.1 95.8 62.6 80.1 86.9

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1 56.2 54.7 54.4 67.6 64.2 64.2 72.1 69.7 69.2 39.2 34.4 35.3 50.1 44.4 45.0 56.8 50.8 50.5
DR-2 − − 63.1 − − 74.7 − − 81.1 − − 52.1 − − 68.4 − − 75.0
EM-1 54.5 53.0 63.6 64.2 65.4 75.9 71.6 73.9 83.1 32.0 39.6 33.5 41.4 52.1 45.1 49.0 60.4 53.9
EM-2 − − 58.0 − − 68.7 − − 75.6 − − 42.4 − − 56.3 − − 64.1
SR-1 68.4 62.4 50.5 78.6 73.7 60.2 83.3 79.2 66.4 50.5 39.9 30.5 66.9 54.2 39.7 74.1 62.5 45.8
SR-2 − − 49.7 − − 63.4 − − 70.9 − − 31.4 − − 44.0 − − 52.1

AvgPool 45.4 59.4 66.9 42.6 62.9 69.2
Conv 42.8 57.0 64.8 41.8 58.4 65.6

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1 17.7 15.9 17.3 27.4 24.5 26.6 34.0 31.0 33.1 18.5 17.6 16.6 30.3 28.3 27.5 38.5 36.0 35.0
DR-2 − − 21.2 − − 26.7 − − 28.8 − − 23.4 − − 36.2 − − 43.5
EM-1 19.0 18.0 24.1 27.6 27.4 35.9 33.8 33.7 44.0 11.0 19.2 16.0 41.4 52.1 45.1 23.7 39.2 35.5
EM-2 − − 18.5 − − 28.2 − − 30.7 − − 14.5 − − 35.2 − − 32.7
SR-1 28.1 21.8 12.1 40.7 33.3 17.1 48.5 40.1 20.6 23.3 15.2 8.6 39.8 26.1 13.8 50.1 34.1 17.9
SR-2 − − 15.0 − − 23.9 − − 29.8 − − 15.3 − − 27.8 − − 36.0

C.3 Generated Adversarial Images

We depict some examples of adversarial images generated by the untargeted and targeted FGSM
attacks in Figure 2–3. No significant visual difference is observed.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 2: Generated adversarial images of (a) AvgPool+FC, (b) MaxPool+FC, (c) CONV+FC, (d) DR-1, (e)
EM-1, and (f) SR-1 on CIFAR-10 and (g) AvgPool+FC, (h) MaxPool+FC, (i) CONV+FC, (j) DR-1, (k) EM-1,
and (l) SR-1 on SVHN by the untargeted FGSM attack. We use ResNet-20 as a base network at ε = 0.1. The
results of CapsNets are obtained with the width of 32.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 3: Generated adversarial images of (a) AvgPool+FC, (b) MaxPool+FC, (c) CONV+FC, (d) DR-1, (e)
EM-1, and (f) SR-1 on CIFAR-10 and (g) AvgPool+FC, (h) MaxPool+FC, (i) CONV+FC, (j) DR-1, (k) EM-1,
and (l) SR-1 on SVHN by the targeted FGSM attack. We use ResNet-20 as a base network at ε = 0.1. The
results of CapsNets are obtained with the width of 32.
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