
A Proof of Lemma 1

The proof proceeds along similar lines as the corresponding proof in [Srikant and Ying, 2019].
However, the results there cannot be directly applied to get the bounds in this paper due to the fact
that we would like to separate out the effects of the ε, α and β from the other problem parameters,
and additionally, the Lyapunov function used here is different.

Recall that
Zk = Vk + Ā−1

vv ĀvuUk,

so the stochastic recursions in terms of (U,Z) are

Uk+1 = Uk + εα (B(Xk)Uk +Auv(Xk)Zk + bu(Xk))

Zk+1 = Zk + Ā−1
22 Ā21(Uk+1 − Uk) + εβ

(
B̃(Xk)Uk +Avv(Xk)Zk + bv(Xk)

)
= Zk + εαĀ−1

22 Ā21 (B(Xk)Uk +Auv(Xk)Zk + bu(Xk))

+ εβ
(
B̃(Xk)Uk +Avv(Xk)Zk + bv(Xk)

)
,

which can be written as a stochastic recursion in terms of Θk = (Uk, Zk) as follows

Θk+1 = Θk + εα
(
Ã(Xk) + b̃(Xk)

)
, (24)

where

Ã(Xk) =

(
B(Xk) Auv(Xk)

Ā−1
vv ĀvuB(Xk) + εβ−αB̃(Xk) Ā−1

vv ĀvuAuv(Xk) + εβ−αAvv(Xk)

)
(25)

b̃(Xk) =

(
bu(Xk)

Ā−1
vv Āvubu(Xk) + εβ−αbv(Xk)

)
. (26)

We first establish a sequence of preliminary lemmas before we present the proof of Lemma 1.

Lemma 2. For any k ≥ 0, the following inequalities hold:

‖Ã(Xk)‖ ≤ δ,

‖ ¯̃A‖ ≤ δ,
‖b̃(Xk)‖ ≤ δbmax,

¯̃
b = 0,

where δ = 2(1 + ‖Ā−1
vv Āvu‖+ εβ−α), ¯̃A = limk→∞ Ã(Xk), and ¯̃

b = limk→∞ b̃(Xk).

Proof. We begin by proving the first inequality:

‖Ã(Xk)‖ ≤‖B(Xk)‖+ ‖Auv(Xk)‖+ ‖Ā−1
vv ĀvuB(Xk)‖+ εβ−α‖B̃(Xk)‖

+ ‖Ā−1
vv ĀvuAuv(Xk)‖+ εβ−α‖Avv(Xk)‖

≤1 + 1 + c+ c+ 2εβ−α

=2(c+ 1 + εβ−α)

(27)

where c = ‖Ā−1
vv Āvu‖ and the last inequality follows from the assumptions. Similarly, one can also

show the remaining inequalities.

Lemma 3. For Θτ and Θ0, the following inequalities hold:

‖Θτ −Θ0‖ ≤ 2ε̃τ‖Θ0‖+ 2ε̃τ bmax

‖Θτ −Θ0‖ ≤ 4ε̃τ‖Θτ‖+ 4ε̃τ bmax

‖Θτ −Θ0‖2 ≤ 32ε̃2τ2‖Θτ‖2 + 32ε̃2τ2b2max

where ε̃ = εαδ.
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Proof. Recall that δ = 2
(

1 + ‖Ā−1
vv Āvu‖+ εβ−α

2

)
, therefore we have ε̃ = εαδ. By applying

Lemma 2, we obtain
‖Θk+1 −Θk‖ = εα‖Ã(Xk)Θk + b̃(Xk)‖ ≤ ε̃(‖Θk‖+ bmax). (28)

The result then follows from the steps in the proof of Lemma 3 in [Srikant and Ying, 2019].

Lemma 4. For any k ≥ 0, the following inequality holds∣∣(Θk+1 −Θk)>P (Θk+1 −Θk)
∣∣ ≤ 2ε̃2γmax(‖Θk‖2 + b2max).

Proof. The lemma follows directly from (28):∣∣(Θk+1 −Θk)>P (Θk+1 −Θk)
∣∣ ≤ γmax‖Θk+1 −Θk‖2

≤ ε̃2γmax(‖Θk‖+ bmax)2

≤ 2ε̃2γmax(‖Θk‖2 + b2max).

Lemma 5. For all k ≥ τ , the following inequality holds:∣∣∣∣E [Θ>k P

(
¯̃AΘk −

1

εα
(Θk+1 −Θk)

)∣∣∣∣Θk−τ , Xk−τ

]∣∣∣∣
≤10ε̃τγmax(1 + 6δ)(1 + bmax)

(
E[‖Θk‖2|Θk−τ , Xk−τ ] + (1 + bmax)2

)
=η̃1ε̃τE[‖Θk‖2|Θk−τ , Xk−τ ] + η̃2ε̃τ.

Proof. For ease of notation, we prove the lemma for k = τ , but the proof for any k ≥ τ is identical.
We consider

E
[

Θ>τ P

(
¯̃AΘτ −

1

εα
(Θτ+1 −Θτ )

)∣∣∣∣Θ0, X0

]
=E

[
Θ>τ P

(
¯̃AΘτ − (Ã(Xτ )Θτ + b̃(Xτ ))

)∣∣∣ θ0, X0

]
=E

[
Θ>τ P

(
¯̃A− Ã(Xτ )

)
Θτ

∣∣∣Θ0, X0

]
− E

[
Θ>τ P b̃(Xτ )

∣∣∣Θ0, X0

]
.

(29)

We first consider the first term on the RHS of the above equation:

E
[

Θ>τ P
(

¯̃A− Ã(Xτ )
)

Θτ

∣∣∣Θ0, X0

]
=E

[
Θ>0 P

(
¯̃A− Ã(Xτ )

)
Θ0

∣∣∣Θ0, X0

]
+ E

[
(Θτ −Θ0)>P

(
¯̃A− Ã(Xτ )

)
(Θτ −Θ0)

∣∣∣Θ0, X0

]
+ E

[
(Θτ −Θ0)>P

(
¯̃A− Ã(Xτ )

)
Θ0

∣∣∣Θ0, X0

]
+ E

[
Θ>0 P

(
¯̃A− Ã(Xτ )

)
(Θτ −Θ0)

∣∣∣Θ0, X0

]
.

(30)
We will now analyze each term on the RHS above. Starting with the first term:

E
[

Θ>0 P
(

¯̃A− Ã(Xτ )
)

Θ0

∣∣∣Θ0, X0

]
=
∣∣∣Θ>0 P ( ¯̃A− E[Ã(Xτ )|X0]

)
Θ0

∣∣∣
≤
∥∥Θ>0 P

∥∥∥∥∥( ¯̃A− E[Ã(Xτ )|X0]
)

Θ0

∥∥∥
≤ε̃γmax‖Θ0‖2

, (31)

where the final inequality follows from the assumptions on the mixing time τ and the fact that∥∥∥∥( 1 1
Ā−1
vv Āvu Ā−1

vv Āvu + εβ−α

)∥∥∥∥ ≤ δ = 2(1 + ‖Ā−1
vv Āvu‖+ εβ−α). Next, we bound the second

term on the RHS of (30):∣∣∣E [ (Θτ −Θ0)>P
(

¯̃A− Ã(Xτ )
)

(Θτ −Θ0)
∣∣∣Θ0, X0

]∣∣∣
≤E
[
‖(Θτ −Θ0)>P‖‖

(
¯̃A− Ã(Xτ )

)
(Θτ −Θ0)‖

∣∣∣Θ0, X0

]
≤γmaxE

[
(‖ ¯̃A‖+ ‖Ã(Xτ )‖)‖Θτ −Θ0‖2

∣∣∣Θ0, X0

]
≤2δγmaxE

[
‖Θτ −Θ0‖2|Θ0, X0

]
(32)
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where the last inequality follows from Lemma 2. Finally, we bound the third and fourth terms on the
RHS of (30):∣∣∣∣E[(Θτ −Θ0)>P

( ¯̃A− Ã(Xτ )
)
Θ0|Θ0, X0

]∣∣∣∣+

∣∣∣∣E[Θ>0 P ( ¯̃A− Ã(Xτ )
)
(Θτ −Θ0)|Θ0, X0

]∣∣∣∣
≤4δγmax‖Θ0‖E[‖Θτ −Θ0‖|Θ0, X0]

≤8ε̃δτγmax‖Θ0‖(‖Θ0‖+ bmax)

≤8ε̃δτγmax‖Θ0‖2 + 8ε′δτγmax‖Θ0‖bmax

(33)
where the first inequality follows from Lemma 2 and the second inequality follows from Lemma 3.

Next we consider the second term on the RHS of (29):∣∣∣∣− E
[
Θ>τ P b̃(Xτ )|Θ0, X0

]∣∣∣∣
=

∣∣∣∣− E
[
Θ>0 P b̃(Xτ )|Θ0, X0

]
− E

[
(Θτ −Θ0)>P b̃(Xτ )|Θ0, X0

]∣∣∣∣
≤ε̃γmax‖Θ0‖+ γmaxbmaxE[‖Θτ −Θ0‖|Θ0, X0]

≤ε̃γmax‖Θ0‖+ 2ε̃τγmaxbmax(‖Θ0‖+ bmax)

(34)

where the final inequality follows from Lemma 3.

Now, combining (31) - (34), we get∣∣∣∣E[Θ>k P ( ¯̃AΘk −
1

εα
(Θk+1 −Θk)

)
|Θk−τ , Xk−τ

]∣∣∣∣
≤
(
ε̃γmax + 8ε̃δτγmax

)
‖Θ0‖2 + 2ε̃τγmaxb

2
max

+
(
8ε̃δτγmaxbmax + ε̃γmax + 2ε̃τγmaxbmax

)
‖Θ0‖

+ 2δγmaxE[‖Θτ −Θ0‖2|Θ0, X0]

≤
(
2ε̃γmax + 8ε̃δτγmax + ε̃τγmaxbmax + 4ε̃δτγmaxbmax

)
‖Θ0‖2

+ 2ε̃τγmaxbmax + 4ε̃δτγmaxbmax + ε̃γmax + 2ε̃τγmaxb
2
max

+ 2δγmaxE[‖Θτ −Θ0‖2|Θ0, X0]

≤
(
2ε̃τγmax(1 + 4δ)(1 + bmax)

)
‖Θ0‖2 + ε̃τγmax

(
(2bmax + 1)2 + 4δbmax

)
+ 2δγmaxE[‖Θτ −Θ0‖2|Θ0, X0]

≤
(
2ε̃τγmax(1 + 4δ)(1 + bmax)

)
E[‖Θτ‖2|Θ0, X0]

+ ε̃τγmax

(
(2bmax + 1)2 + 4δbmax

)
+
(
γmax(1 + 6δ)(1 + bmax)

)
E[‖Θτ −Θ0‖2|Θ0, X0]

≤
(
2ε̃τγmax(1 + 4δ)(1 + bmax)

)
E[‖Θτ‖2|Θ0, X0]

+ ε̃τγmax

(
(2bmax + 1)2 + 4δbmax

)
+
(
γmax(1 + 6δ)(1 + bmax)

)(
32ε̃2τ2E[‖Θτ‖2|Θ0, X0] + 32ε̃2τ2b2max

)
≤10ε̃τγmax(1 + 6δ)(1 + bmax)E[‖Θτ‖2|Θ0, X0]

+ 10ε̃τγmax(1 + 6δ)(1 + bmax)3

(35)

where the second inequality follows from the fact that 2‖θ0‖ ≤ 1 + ‖θ0‖2 and τ ≥ 1, the fourth
inequality follows from the triangle inequality and the penultimate inequality follows from Lemma
3.

Next we lower bound the minimum eigenvalue of the matrix-valued function Ψ(·).

Lemma 6. Let Ψ(µ) =

(
ξ2

ξ1+ξ2
− ξ1ξ2
ξ1+ξ2

− ξ1ξ2
ξ1+ξ2

1
µ

ξ1
ξ1+ξ2

− µνξ1
ξ1+ξ2

)
with ξ1, ξ2, ν > 0 and µ ≥ 0. Then, the

following holds
λmin(Ψ(µ)) ≥ κ1 − κ2µ
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where κ1 = ξ2
ξ1+ξ2

and κ2 is a constant that depends only on ξ1, ξ2 and ν.

Proof. The minimum eigenvalue of a 2× 2 matrix
(
a b
c d

)
is

1

2
(a+ d−

√
(a− d)2 + 4bc),

so we have

λmin(Ψ(µ)) =
1

2

(
ξ2

ξ1 + ξ2
+

ξ1
ξ1 + ξ2

(
1

µ
− ν)

− ξ1
ξ1 + ξ2

√(ξ2
ξ1
− (

1

µ
− ν)

)2
+ (2ξ2)2

) (36)

In order to obtain a lower bound on λmin(Ψ(µ)), we first establish an upper bound on the third term

on the RHS in the above equation. Defining f(µ) = µ
√(

ξ2
ξ1
− ( 1

µ − ν)
)2

+ (2ξ2)2, we have

f ′(0) = −(ν +
ξ2
ξ1

)

f ′′(µ) =
(ν + ξ2

ξ1
)2 + 4ξ2

2

f(µ)2
− f ′(µ)2

f(µ)

≤ max
µ≥0

(ν + ξ2
ξ1

)2 + 4ξ2
2

f(µ)2
− f ′(µ)2

f(µ)
= 2κ2 <∞

, (37)

which implies that

f(µ) ≤ f(0) + f ′(0)µ+ κ2µ
2

= 1− (ν +
ξ2
ξ1

)µ+ κ2µ
2
. (38)

Substituting the above equation into (36) yields

λmin(Ψ(µ)) ≥1

2

(
ξ2

ξ1 + ξ2
+

ξ1
ξ1 + ξ2

(
1

µ
− ν)− 1

µ

ξ1
ξ1 + ξ2

(
1− (ν +

ξ2
ξ1

)µ+ κ2µ
2
))

≥1

2

( 2ξ12

ξ1 + ξ2
− 2κ2µ

)
=κ1 − κ2µ

. (39)

We are now ready to prove Lemma 1. For any k ≥ τ , we have:

E [W (Θk+1)−W (Θk)|Θk−τ , Xk−τ ]

=E
[
2Θ>k P (Θk+1 −Θk) + (Θk+1 −Θk)>P (Θk+1 −Θk)|Θk−τ , Xk−τ

]
=E[2Θ>k P (Θk+1 −Θk − εαĀΘk) + (Θk+1 −Θk)>P (Θk+1 −Θk)|Θk−τ , Xk−τ ]

+ 2εαE[Θ>k PĀΘk|Θk−τ , Xk−τ ].

Using the facts that Pu and Pv are the solutions to their respective Lyapunov equations, we have

E
[
Θ>k PĀΘk|Θk−τ , Xk−τ

]
≤ −λminE

[
‖Θk‖2|Θk−τ , Xk−τ

]
(40)

where λmin is the smallest eigenvalue of

Ψ =
1

ξ1 + ξ2

(
ξ2 −ξ1ξ2
−ξ1ξ2 ξ1

(
ε−α+β − 2‖PvĀ−1

vv ĀvuĀuv‖
)) .
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Combining the above equation, Lemma 4 and Lemma 5 with (40), we obtain

E[W (Θk+1)−W (Θk)|Θk−τ , Xk−τ ]

≤− 2εαλminE[‖Θk‖2|Θk−τ , Xk−τ ]

+ εα
(
η̃1ε̃τE[‖Θk‖2|Θk−τ , Xk−τ ] + η̃2ε̃τ

)
+ 2ε̃2γmax

(
E[‖Θk‖2|Θk−τ , Xk−τ ] + b2max

)
≤E[‖Θk‖2|Θk−τ , Xk−τ ]

(
−2εαλmin + η̃1ε

αε̃τ + 2ε̃2γmax

)
+ εαε̃τ

(
η̃2 + 4

(
1 + ‖Ā−1

vv Āvu‖+ εβ−α
))
.

Applying the bound on λmin in Lemma 6, we further get

E[W (Θk+1)−W (Θk)|Θk−τ , Xk−τ ]

≤E[‖Θk‖2|Θk−τ , Xk−τ ]
(
−εα(κ1 − κ2ε

α−β) + η̃1ε
αε̃τ + 2ε̃2γmax

)
+ εαε̃τ

(
η̃2 + 4

(
1 + ‖Ā−1

vv Āvu‖+ εβ−α2
))

≤E
[
‖Θk‖2|Θk−τ , Xk−τ

] (
−εα

(κ1

2
− κ2ε

α−β
))

+ εαε̃τ
(
η̃2 + 4

(
1 + ‖Ā−1

vv Āvu‖+ εβ−α
))

≤E
[
‖Θk‖2|Θk−τ , Xk−τ

] (
−εα(

κ1

2
− κ2ε

α−β)
)

+ ε2βτ
(
(3 + 2‖Ā−1

vv Āvu‖)(η̃2 + 4(1 + ‖Ā−1
vv Āvu‖)) + 6 + 4‖Ā−1

vv Āvu‖
)

=E
[
‖Θk‖2|Θk−τ , Xk−τ

] (
−εα

(κ1

2
− κ2ε

α−β
))

+ ε2βτη2

≤− εα

γmax

(κ1

2
− κ2ε

α−β
)
E[W (Θk)] + ε2βτη2,

(41)

where the second inequality follows from the assumption on ε, α and β, and the third inequality
follows from the fact that ε < 1 and α > β.

B The Lyapunov function (7)

The rationale behind the Laypunov function is well known to control theorists, but we present it here
for the interested reader.

• Setting ε = 0 in (6) is equivalent to studying the system of ODEs in a slow time-scale where
the fast time-scale dynamics are assumed to converge instantaneously. In this case, for a
fixed u, v can be written as vu = −Ā−1

vv Āvuu and substituting this expression in (5), the
ODE is purely in terms of u. The first term uTPuu in (7) is the standard Lyapunov function
used in control theory to study the stability of the resulting ODE for u.

• The second term
(
v + Ā−1

vv Āvuu
)>
Pv
(
v + Ā−1

vv Āvuu
)

studies the convergence of v to vu
for a fixed u and thus, corresponds to the stability of the fast subsystem.

C Experimental Setup Details

Following is a detailed description of reinforcement learning problems/domains we implemented1:

1. Mountain Car: In the basic mountain car problem, an underpowered car is positioned in a
valley between two mountains on a one-dimensional track. The aim of the problem is to
drive the car to the top of the mountain on the right-hand side, but the engine power available
is insufficient to simply accelerate and power through to the top. Therefore, a player has
to build up momentum by going back and forth between the two mountains until the car
has sufficient momentum to reach its goal. The state space, action space, cost structure and
initialization details for the mountain car problem are as follows:
• State Space: (Car Position, Car Velocity) ∈ [−1.2, 0.6]× [−0.07, 0.07].

1We used the OpenAI Gym implementation of these environments, available at https://gym.openai.
com/.
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• Action Space: 0, 1 and 2 (denoting left, no and right acceleration respectively).
• Cost Structure: +1 cost incurred for every time step the car has not achieved its goal.

0 cost incurred upon reaching the goal.
• Initialization/Starting State: The car’s position is initialized to a random value in

[−0.6, 0.4]. Its velocity is initialized to 0.

2. Inverted Pendulum: In the classic inverted pendulum swing-up problem, a frictionless
pendulum is hinged/pivoted at one end and the aim of the problem is to keep the pendulum
in an upright position (with respect to the pivot) for as long as possible by applying a torque
at the pivot point (sometimes referred to as the joint effort). The state space, action space,
cost structure and initialization details for the inverted pendulum problem are as follows:

• State Space: (cos(θ), sin(θ), θ̇) ∈ [−1.0, 1.0] × [−1.0, 1.0] × [−8.0, 8.0]. Here,
θ ∈ [−π, π] denotes the angular position of the pendulum with respect to the pivot.

• Action Space: Torque ∈ [−2.0, 2.0].
• Cost Structure: The equation associated with the cost function is the following:

−(θ2 + 0.1θ̇ + 0.001× torque2).

• Initialization/Starting State: The pendulum’s angular position is initialized to a random
value in [−π, π]. Its angular velocity is initialized to a random value ∈ [−1, 1].

D Slope Calculations

D.1 Bounding E[|ψN |]

We have the following N points: {Xi = i, Yi = ‖Θk+i −Θ0‖}Ni=1. Using the formula for the slope
of the best-fit line passing through these points, we get:

ψN =

∑N
i=1(Xi − X̄)(Yi − Ȳ )∑N

i=1(Xi − X̄)2
(42)

where X̄ =
∑N
i=1Xi
N = 1

N

∑N
i=1Xi = N+1

2 and Ȳ =
∑N
i=1 Yi
N . Also, note that

∑N
i=1(Xi − X̄)2 =∑N

i=1(i− N+1
2 )2 = N(N−1)(N+1)

12 . Therefore, we have

E[ψN ] =
12
∑N
i=1(i− N+1

2 )E[(Yi − Ȳ )]

N(N − 1)(N + 1)
(43)

From (22) we know that d −
√

2K2µ2−λ

γmaxc
≤ E[Yi] ≤ d +

√
2K2µ2−λ

γmaxc
. This also implies that

d−
√

2K2µ2−λ

γmaxc
≤ E[Ȳ ] ≤ d+

√
2K2µ2−λ

γmaxc
. Using these two facts in (43)

|E[ψN ]| ≤
24
(∑bN+1

2 c
i=1 (N+1

2 − i) +
∑N
i=bN+1

2 c+1(i− N+1
2 )
)√

2K2µ2−λ

γmaxc

N(N − 1)(N + 1)

≤
24
(∑bN+1

2 c
i=1 (N+1

2 − i) +
∑N−bN+1

2 c
i=1 i

)√
2K2µ2−λ

γmaxc

N(N − 1)(N + 1)

≤
24 (N+1)2

4

√
2K2µ2−λ

γmaxc

N(N − 1)(N + 1)
= O

(
µ1−λ2

N

)

where the second inequality follows from centering the second summation term in the numerator and

the last inequality follows from the fact that
∑bN+1

2 c
i=1 −i+

∑N−bN+1
2 c

i=1 i ≤ 0.
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D.2 Bounding Var(ψN )

Using (42):

E[ψ2
N ] =

E[
(∑N

i=1(Xi − X̄)(Yi − Ȳ )
)2

](∑N
i=1(Xi − X̄)2

)2

≤
∑N
i=1(Xi − X̄)2E[

∑N
i=1(Yi − Ȳ )2](∑N

i=1(Xi − X̄)2
)2

=
E[
∑N
i=1(Yi − Ȳ )2]∑N
i=1(Xi − X̄)2

≤
24E[

∑N
i=1(Y 2

i + Ȳ 2)]

N(N − 1)(N + 1)

≤
24E[

∑N
i=1(Y 2

i +
∑N
i=1 Y

2
i

N )]

N(N − 1)(N + 1)

≤
48
(

4K2µ
2−λ

γmaxc
+ 2‖Θ0 −Θ∗‖2+

)
(N − 1)(N + 1)

= O(
1

N2
)

(44)

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality follows
from the fact that (a+ b)2 ≤ 2a2 + 2b2 and

∑N
i=1(Xi− X̄)2 =

∑N
i=1(i− N+1

2 )2 = N(N−1)(N+1)
12 ,

the third inequality follows from Cauchy-Schwarz inequality and the final inequality follows from
(20) - (21) and the fact that (a+ b)2 ≤ 2a2 + 2b2.
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