
A Proofs of Sufficient Conditions

We analyze the sample complexity of an ML based decoder using the large deviations bound.
Consider a class Iη consisting of M = |Iη| pair of graphs and let the index i ∈ {1, . . . ,M} be
associated with a graphical model consisting of a pair of graphs (Gi1,Gi2) ∈ Iη, where the model i
is characterized by the parameters θi = {θi1, θi2} where θim ∈ R(p2) is the set of edges for Gm under
model i ∈ {1, . . . ,M}. We denote the set of all possible edges in the pair of graphs by Θ.

Given the two collections of graph samples (Xn
1 ,X

n
2 ), the ML decoder decides on the true edge

structures according to the rule given by

(Ĝ1, Ĝ2) = arg max
θi∈Θ

`θi(X
n
1 ,X

n
2 ) , (24)

where `θi(Xn
1 ,X

n
2 ) , f i12(Xn

1 ,X
n
2 ) is the log likelihood with respect to the model i ∈ {1, . . . ,M}

and f i12(·) is the joint pdf of the samples collected from the two graphs under the model i ∈
{1, . . . ,M}.
Since given the true model pair, the samples X1 and X2 are generated independently for both graphs,
we have

f i12(X1, X2) = f i1(X1)f i2(X2) , (25)

If the maximum in (24) is not unique, we randomly select the model from the set of models
corresponding to the maximum likelihood. If the data (Xn

1 ,X
n
2 ) is collected from a pair of graphs

with true model θi, the ML decoder fails when there exists some other model θj , j 6= i, s.t.,
`θj (X

n
1 ,X

n
2 ) ≥ `θi(Xn

1 ,X
n
2 ) and at least one of the estimated edge structures has an edit distance

greater than d with respect to its respective true graph. This event is represented by θj∆θi > d.
Therefore, we have

P[θj∆θi > d]

= P

 ⋃
θj∈Θ\θi

θj∆θi>d

`θj (X
n
1 ,X

n
2 ) ≥ `θi(Xn

1 ,X
n
2 )

 (26)

≤
∑

θj∈Θ\θi

θj∆θi>d

P[`θj (X
n
1 ,X

n
2 ) ≥ `θi(Xn

1 ,X
n
2 )] , (27)

where (27) follows from the union bound. Next, we provide the large deviations bound in Lemma 1
that provides the sufficient conditions for the probability of error of the ML decoder to vanish.
Lemma 1. Given the i.i.d graph samples (Xn

1 ,X
n
2 ) from the model θi ∈ Θ, for any model j 6= i, we

have

P[`θj (X
n
1 ,X

n
2 ) ≥ `θi(Xn

1 ,X
n
2 )]

≤ exp(−n
2

(J(θi1‖θ
j
1) + J(θi2‖θ

j
2))) , (28)

where

J(θim‖θjm) , DKL

(
θim + θjm

2
‖θim

)
+DKL

(
θim + θjm

2
‖θjm

)
, (29)

for m ∈ {1, 2}.

Proof. Let R , `θj (X
n
1 ,X

n
2 )− `θi(Xn

1 ,X
n
2 ). Then, using Chernoff’s bound, we have

P(R ≥ 0) ≤ min
s>0

Ei[exp(sR)] . (30)
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Note that

Ei[exp(sR)]

=
∑

Xn
1 ,X

n
2

(
exp

( n∑
w=1

s`θj (X1(w), X2(w))

− s`θi(X1(w), X2(w)))
)

×
n∏

m=1

fθi(X1(m), X2(m)) , (31)

where Xu(w) is the w−th sample of Xn
u and fθi is the joint distribution of one pair of graph samples

under the model θi. Then, using

`θi(X1(w), X2(w)) = log fθi(X1(w), X2(w)) , (32)

and from (31), we have

Ei[exp(sR)]

=
∑

Xn
1 ,X

n
2

n∏
w=1

[fθj (X1(w), X2(w))]s

× [fθi(X1(w), X2(w))]1−s , (33)

=

 ∑
X1,X2

[fθj (X1, X2)]s[fθi(X1, X2)]1−s

n

. (34)

Using (34) and (25), we have

Ei[exp(sR)]

=

(∑
X1

[
[f j1 (X1)]s[f i1(X1)]1−s

]

×
∑
X2

[
[f j1 (X2)]s[f i1(X2)]1−s

])n
. (35)

When s = 1/2, and using the expansions of f i1 and f j1 , it can be readily verified that

∑
X1∈{−1,1}p

[
[f j1 (X1)]1/2[f i1(X1)]1/2

]
=

Z1( θ
i+θj

2 )

(Z1(θi)Z1(θj))1/2
, (36)

= exp(−J(θi1‖θ
j
1)

2
) , (37)

where J(θi1‖θ
j
1) is defined in (29). Following the similar analysis as in (36) and (37) for G2, and by

setting s = 1/2 in (34), we have

Ei[exp(R/2)] = exp(−n
2

(J(θi1‖θ
j
1) + J(θi2‖θ

j
2))) (38)

From (30) and (38), the proof of Lemma 1 is completed.

Next, we use [Santhanam and Wainwright, 2012, Lemma 4] to find a lower bound on the divergence
J(θi1‖θ

j
1) + J(θi2‖θ

j
2)) in terms of the edge mismatch between the models i and j. Define T (θim, θ

j
m)

as the matching number of the graph whose edges are given by the set

Eim4Ejm , (Eim\Ejm) ∪ (Eim\Ejm) , (39)
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where Eim is the set of edges for graph Gm under model i ∈ {1, . . . ,M}. Eim4Ejm is referred to as
edit distance in existing literature. Then, using [Santhanam and Wainwright, 2012, Lemma 4], we
have

J(θi1‖θ
j
1) + J(θi2‖θ

j
2)

≥ T (θi1, θ
j
1) + T (θi2, θ

j
2)

3ζ2 + 1
sinh2

(
λ

4

)
, (40)

where log ζ is the maximum neighborhood weight.

A.1 Proof of Theorem 1

Consider the models i and j in the class Iη, s.t., the non-shared parts of the graphs Gi1 and Gj1 differ
in `1 edges, that of Gi2 and Gj2 differ in `2 edges, and the shared part of the two models differ in
`s number of edges. Therefore, `u ∈ {0, . . . ,min{2k, 2

(
p−bηpc

2

)
+ 2pbηpc}, for u ∈ {1, 2}, and

`s ∈ {0, . . . , 2bγkc}. For the sake of clarity, we define

k′ , min

{
k,

(
p− bηpc

2

)
+ (p− bηpc)bηpc

}
. (41)

By using notion of vertex cover, we conclude that there are at most 22k′p2(`1+`2)(k′+1) ×
2bγkcbηpc2`s(bγkc+1) number of models that differ in `1 edges in the non shared part of Gi1, `2
edges in the non shared part of G(j)

2 , and `s edges in the shared part of model i. Using (27), the large
deviations bound in Lemma 1, and (40), we obtain

P[θj∆θi > d]

≤
∑

`1+`s>d
or

`2+`s>d

2k′∑
`1=0

2k′∑
`2=0

2bγkc∑
`s=0

22k′+bγkc
(
p2(`1+`2)(k′+1)

× bηpc2`s(bγkc+1)

× exp(−n`1 + `2 + 2`s
3ζ2 + 1

sinh2

(
λ

4

)
)
)

(42)

≤
2bγkc∑
`s=d+1

22k′+bγkcbηpc2`s(bγkc+1) exp(−n 2`s
3ζ2 + 1

sinh2

(
λ

4

)
)+

2 max
`s∈{0,...,d}

∑
`1=d+1−`s

22k′+bγkcp2`1(k′+1) exp(−n `1
3ζ2 + 1

sinh2

(
λ

4

)
) . (43)

We define

C(`1) , p2`1(k′+1) exp(−n `1
3ζ2 + 1

sinh2

(
λ

4

)
) (44)

and

D(`s) , bηpc2`s(bγkc+1) exp(−n 2`s
3ζ2 + 1

sinh2

(
λ

4

)
) . (45)

We simplify (43) to

P[θj∆θi > d]

≤ 22k′+bγkc

 2bγkc∑
`s=d+1

D(`s) + 2 max
`s∈{0,...,d}

2k′∑
`1=d+1−`s

C(`1)

 . (46)

If we have

22k′+bγkc+1 max
`s∈{0,...,d}

2k′∑
`1=d+1−`s

C(`1) ≤ δ

2
, (47)
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and

22k′+bγkc
2bγkc∑
`s=d+1

D(`s) ≤
δ

2
, (48)

then the probability P[θj∆θi > d] ≤ δ ∈ (0, 1). To ensure that (47) is satisfied, we obtain

22k′+bγkc+1 max
`s∈{0,...,d}

2k′∑
`1=d+1−`s

C(`1)

≤ max
`s∈{0,...,d}

max
`1∈{d+1−`s,...,2k′}

exp
(

(2k′ + bγkc) + log(2k′ − d− 1− `s)

+ 2`1(k′ + 1) log p− n `1
3ζ2 + 1

sinh2

(
λ

4

))
, (49)

which is less than δ/2 if

n ≥ 3ζ2 + 1

sinh2(λ/4)

(
(2k′ + bγkc) + log(2k′ − d)

+2(k′ + 1) log p+ log
4

δ

)
. (50)

To ensure that (48) is satisfied, we obtain

22k′+bγkc
2bγkc∑
`s=d+1

D(`s)

≤ max
`s∈{d+1,...,bγkc}

exp
(

(2k′ + bγkc) + log(2bγkc − d)

+ 2`s(bγkc+ 1) logbηpc − n 2`s
3ζ2 + 1

sinh2

(
λ

4

))
, (51)

which is less than δ/2 if

n ≥ 3ζ2 + 1

2 sinh2(λ/4)

(
(2k′ + bγkc) + log(2bγkc − d)

+2(bγkc+ 1) logbηpc+ log
2

δ

)
. (52)

For sufficiently large p, the conditions on n in Theorem 1 satisfy (47) and (48).

B Proofs of Necessary Conditions

B.1 Fano’s Lemma

We state the Fano’s Lemma for approximate recovery in the context of joint selection of graphical
models.

Lemma 2. Consider a restricted ensemble of graph pairs T ⊆ Iη with M = |T |, for which the
graph decoder’s outputs lie in some class T ′, without loss of optimality. If there exists a pair of
graphs (G′1,G′2) ∈ T ′ for each graph pair (G1,G2) ∈ T such that DKL(fG1,G2 ||fG′1,G′2) ≤ ε, and
there are at most A(d) pairs of graphs in T ′ within d level of distortion with respect to any pair of
graphs (G1,G2) ∈ T , then P(Iη, qmax) ≤ δ if

n ≥ logM − logA(d)

ε

(
1− δ − log 2

logM

)
(53)
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B.2 Ensemble Constructions and Proofs for Approximate Recovery

• Ensemble 1: We use this ensemble to derive the bound B1. In this ensemble, we consider a
set of graph pairs such that each graph consists of exactly α ≤ min{ηp, (1−η)p}/4 number
of node-disjoint edges, with bγkc edges in the shared cluster of the graph. Therefore, the
number of such graph pairs are given by

|T | =
bγαc∏
i=0

(
ηp− 2i

2

)α−bγαc∏
j=0

(
p− ηp− 2j

2

)2

(54)

≥
(
bηp/2c

2

)bγαc(b(p− ηp)/2c
2

)2(α−bγαc)

. (55)

Since all the edges are node-disjoint, the total number of nodes used in the shared cluster is
given by 2bγkc ≤ bηpc if

γ ≤ bηpc
2k

. (56)

Let the output of the graph decoder, represented by the set T ′, be the set of all possible
graph pairs. Then, the number of graph pairs that lie within the distortion level d of any
given graph pair in this ensemble is bounded as

A(d) ≤

 d∑
q1=0

d−q1∑
q′1=0

(
α

q

)(
p

2

)q′12

≤ (1 + d)2

(
α

bα/2c

)2(
p

2

)2d

, (57)

where
(
α
q1

)
represents the number of ways to remove q1 edges from the base graph and(

p
2

)q′1 is the upper bound on the number of ways to add q′1 number of edges to the base
graph. It has been shown in multiple existing studies in the context of structure learning of
Ising models that the KL divergence between any two graphs with isolated edges is upper
bounded by λ tanhλ. We can readily verify that the KL divergence between any two pair
of graphs in this ensemble is upper bounded by 2αλ tanhλ. Using Lemma 2, we get the
condition that the error probability in approximately recovering any graph pair in the class
Iη , PIη ≤ δ if

n ≥

(
bγαc log

(bηp/2c
2

)
+ 2(α− bγαc) log(

(b(p−ηp)/2c
2

)
)

2αλ tanhλ

−
2 log

(
(1 + d)2

(
α
bα/2c

)(
p
2

)d)
2αλ tanhλ

(1− δ − log 2

|T |

)
(58)

We use the simplification that log
(
p
2

)
≈ (2 log p)(1 + o(1)),

(b(p−ηp)/2c
2

)
≈ 2 log(p −

ηp)(1 + o(1)), and
(bηp/2c

2

)
≈ 2 log(ηp)(1 + o(1)). Also, note that bγαc ∈ [γα− 1, γα+

1/2]. Also, log
(

α
bα/2c

)
≤ α log 2 = o(α log p) and if d ≤ (1 − Ω(1))α, log(1 + d)2) ≤

2 log(1 + α) = o(α log p). Using these facts, we can simplify the bound in (58) to

n ≥ 2γα log ηp+ 4(α− γα) log(p− ηp)− 4d log p

2αλ tanhλ
× (1− δ − o(1)) , (59)

when α→∞. When d = bθαc for some θ ∈ (0, 1), (59) is simplified to

n ≥ γ log ηp+ 2(1− γ) log(p− ηp)− 2θ log p

λ tanhλ
× (1− δ − o(1)) . (60)
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• Ensemble 2: We use this construction to derive the bounds B3 and B5.In this ensemble,
we divide the nodes in the shared part of the graph pair into α1 fixed groups and the non-
shared part of each graph is divided into α2 groups, with each group containing m vertices.
Therefore, the total number of vertices used in each graph is m(α1 + α2) and under the
assumption that there are no inter-group edges, the total number of possible edges in a graph
is 2(α1+α2)(m2 ). Considering the η−similarity between the graphs, the total number of graph
pairs is |T | = 2(α1+2α2)(m2 ). Note that the maximal degree of any graph in this ensemble is
m− 1. The number of graph pairs that lie within d level of distortion of any true graph pair
is bounded as

A(d) ≤

(
d∑
q=0

(
(α1 + α2)

(
m
2

)
q

))2

≤ (1 + d

(
(α1 + α2)

(
m
2

)
d

)
)2 , (61)

if d ≤ 1
2 (α1 + α2)

(
m
2

)
. The KL divergence between any two sets of graph-pairs is upper

bounded by ε = 2(α1 + α2)
(
m
2

)
λ e

2λ cosh(2λm)−1
e2λ cosh(2λm)+1

, where the proof follows directly from
the application of [Scarlett and Cevher, 2016, Lemma 4]. Setting d = bθ(α1 + α2)

(
m
2

)
c

and using Lemma 2 and the identity(
(α1 + α2)

(
m
2

)
bθ(α1 + α2)

(
m
2

)
c

)
= e((α1+α2)(m2 )h(θ)(1+o(1)), (62)

when (α1 + α2)
(
m
2

)
→∞ , we get

n ≥ (α1 + 2α2) log 2− 2(α1 + α2)h(θ)

2(α1 + α2)λ e
2λ cosh(2λm)−1
e2λ cosh(2λm)+1

× (1− δ − o(1)) . (63)

Next,we provide appropriate choices for m, α1 and α2 for application to the classes Iη,γk
and Iη,γd,k . For Iη , we set the maximum number of edges in a graph to k = bcp1+µc for some
c > 0 and µ ∈ [0, 1]. We choose m = b2cpµc,α1 = bγp/mc and α2 = b(1 − γ)p/mc.
Note that for these choices, α1 = p1−µ

2c (1 + o(1)) and α2 = (1−γ)p1−µ

2c (1 + o(1)). Also,
the number of nodes used in the shared cluster for this construction is α1m ≤ γp ≤ ηp if
γ ≤ η. Also, the number of possible edges in the shared cluster of the graph-pair is

α1

(
m

2

)
≤ α1m

2

2
≤ γpm

2
≤ cγp1+µ (64)

and that in the non-shared component of a graph is

α2

(
m

2

)
≤ α2m

2

2
≤ (1− γ)pm

2
≤ c(1− γ)p1+µ .

Therefore, the total number of possible edges in this construction is (α1 +α2)
(
m
2

)
≤ cp1+µ.

The use of these specific values of m, α1 and α2 in (63) leads to

n ≥ (1− γ/2) log 2− h(θ)

λ e
2λ cosh(4λcpµ)−1
e2λ cosh(4λcpµ)+1

(1− δ − o(1)) . (65)

• Ensemble 3: We use this ensemble to derive the bounds B2 and B4. Under this ensemble,
we first discuss the construction of the base graph, modifications to which leads to other
graph-pairs in this ensemble. Consider a group of 2m1 vertices that are divided into fully
connected sub-groups of m1 vertices. Then, we put m1 edges between the two sets of
vertices in an arbitrary fashion. We assume that there are α1 disjoint copies of this group of
2m1 vertices in the shared cluster and α2 disjoint copies of a similarly constructed group of
2m2 vertices in the non-shared clusters of a graph pair in this ensemble,and the resulting
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graph pair is assumed to be the base graph pair. Next, we form each graph pair in this
ensemble by adding additional edges arbitrarily in each of the previously constructed groups
of 2m1 and 2m2 sized cliques. Note that these additional edges are identical in the shared
cluster of the graph-pair and may be distinct in the non shared clusters of the η−similar
graphs.
Therefore, the number of nodes used in a graph is 2(α1m1 + α2m2). The total number
of edges in the shared cluster of the graph is upper bounded by α1

(
2m1

2

)
≤ 2α1m

2
1. Sim-

ilarly, the total number of edges in the non-shared cluster of the graph is upper bounded
by α2

(
2m2

2

)
≤ 2α2m

2
2. Note that the construction of the base graph consists of m1 edges

between the two subgroups in a group of 2m1 vertices and m2 edges between the two
subgroups in a group of 2m2 vertices. Therefore, there can be at most m2

1 − m1 addi-
tional edges in a group of 2m1 vertices and m2

2 −m2 additional edges in a group of 2m2

vertices This implies that the total number of graph pairs in this ensemble is given by
2(α1m1(m1−1)+2α2m2(m2−1)). Also, the maximum degree of any vertex in the shared cluster
is 2m1 − 1 and that in the non-shared cluster is 2m2 − 1. The total number of graph pairs
within d-distortion of any graph pair is upper bounded by

A(d) ≤

(
d∑
q=0

(
α1m1(m1 − 1) + α2m2(m2 − 1)

q

))2

≤
(

1 + d

(
α1m1(m1 − 1) + α2m2(m2 − 1)

d

))2

, (66)

when d ≤ 1
2 (α1m1(m1 − 1) + α2m2(m2 − 1)). The KL divergence between any

two graph pairs in this ensemble is upper bounded by ε = 12(α1)λm4
1e
−λ(m1−1)/2 +

12(α2)λm4
2e
−λ(m2−1)/2. We set d = bθ(α1m1(m1 − 1) + α2m2(m2 − 1)c for some

θ ∈ (0, 1/2). Substituting these observations in (2) gives

n ≥ (α1m1(m1 − 1) + 2α2m2(m2 − 1)) log 2− 2(α1m1(m1 − 1) + α2m2(m2 − 1))h(θ)

12λ(α1m4
1e
−λ(m1−1)/2 + α2m4

2e
−λ(m2−1)/2)

× (1− δ − o(1)) , (67)

when (α1m1(m1 − 1) + α2m2(m2 − 1))→∞.
Next, we discuss the values of α1, α2, m1 and m2 such that this ensemble conforms
to the class Iη. In the class Iη, we assume that α1 = α2 = 1, m1 = b

√
γk/2c and

m2 = b
√
γ̄k/2c. Therefore, the total number of vertices used in the shared cluster is given

by 2α1m1 = 2b
√
γk/2c ≤ bηpc if γ ≤ η2p2/2k. Also, the total number of edges in the

shared cluster is bounded by α1

(
2m1

2

)
≤ 2α1m

2
1 ≤ γk and the total number of edges in

any graph is bounded by α1

(
2m1

2

)
+ α2

(
2m2

2

)
≤ 2(α1m

2
1 + α2m

2) ≤ k. Substituting these
values of m, α1 and α2 in (67), we obtain

n ≥ ((1− γ/2) log 2− h(θ))

3λk(γ2e−λ(
√
γk/2)−1)/2 + γ̄2e−λ(

√
γ̄k/2−1)/2)

× (1− δ − o(1)) . (68)
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