
Supplementary Information

4.1 Table of Abbreviations

Table 5: Abbreviations used in the main text and in the SI.

Abbreviation Definition

NSM Neural Sampling Machine
b/gNSM Bernoulli/Gaussian NSM
S2M Synaptic Sampling Machine
StNN Stochastic Neural Network
BNN Binary Neural Networks
DVS Dynamic Vision Sensor
BD Deterministic Binary Network with sgn as non-linearity
wBD Same as BD with weight normalization enabled
SN Stochastic network with noisy rectifier
BN Binary network
STE Straight-Through Estimator

4.2 Computation of Gradients in NSM Computational Graph

Figure 3: Gradient estimation in NSM computation graph. For the NSM network the gradient
∇θL(x) is computed via back-propagation on the probability Pθ(z) only in the backward pass (see
equation (3) and main text). The light-green node indicates a stochastic discrete node that propagates
the activity of units to the next layer only in the forward pass. The parameters here are θ = (w,β)
(see main text).

4.3 NSM in Convolutional Neural Networks

CNN perform state-of-the-art in several visual, auditory and natural language tasks by assuming prior
structure to the connectivity and the weight matrices [26, 17]. The NSM with stochastic neurons can
be similarly extended to the convolution operation as follows (bias parameters omitted):

uijk = Conv(wk, z)

=

Q
∑

q=1

H
∑

m=1

V
∑

n=1

(ξi+m,j+n,q + aijk)wm,n,q,kzi+m,j+n,q

(9)

13

where Q is the number of input channels and H,V are height and width of the filter, respectively.
In the case of neural stochasticity, existing software libraries of the convolution can be used. In
contrast, synaptic stochasticity, requires modification of such libraries due to the sharing of the filter
parameters. While it is possible to do so, we have not observed significant differences in using neural
or synaptic stochasticity. Therefore only neural stochasticity is used for convolution operations.
Similarly to the case without convolutions, the activation probability becomes:

P (zijk = 1|z)
1

2
(1 + erf (Conv(vk, z))) ,

with vi = βijk

wk

||wk||
,

(10)

where,

||wk|| =

√

√

√

√

H
∑

m=1

V
∑

n=1

Q
∑

q=1

w2
m,n,q,k. (11)

4.4 Derivation of Gradients (Equations (6) and (7))

In this section we derive equations (6) and (7). Therefore, if we differentiate through vi = βi
wi

||wi||
,

we obtain equation (6) from

∂L

∂βi

=
∂L

∂vi

∂vi

∂βi

=
∂L

∂vi

wi

||wi||

=

∑

j wij∂vijL

||wi||
. (12)

And it is obvious that equation (6) is equation (12). For obtaining equation (7) we have

∂L

∂wi

=
∂L

∂vi

∂vi

∂wi

=
∂L

∂vi

βi∂
wi

||wi||

∂wi

=
∂L

∂vi

(

βi

∂wi

∂wi
||wi|| −wi

∂||wi||
∂wi

||wi||2

)

=
∂L

∂vi

(

βi

||wi|| −wi

∑
j
wij

||wi||

||wi||2

)

=
∂L

∂vi

βi||wi||

||wi||2
−

∂L

∂vi

βiwi

∑

j wij

||wi||2||wi||

=
∂L

∂vi

βi

||wi||
−

βi

||wi||2
∂L

∂vi

wi

||wi||

∑

j

wij

=
βi

||wi||
∂vijL −

βiwi

||wi||2

∑

j wij∂vij
L

||wi||

=
βi

||wi||
∂vijL −

βi

||wi||2
wi∂βi

L. (13)

Therefore, we have derived equation (7) (which is equation (13)).

4.5 Robustness to Weight Fluctuations

The decoupling of the weight matrix (i.e., vi = βi
wi

||wi||
) introduces a robustness to weights fluctuation.

During learning, the distribution of the weights for each layer tends to remain more stable in NSM
compared to StNN. See for instance Figure 4, where in the top row the evolution of weights distribution
of the third layer (W3) is shown for the NSM and the StNN, respectively. It is apparent that the

14

distribution of NSM weights is more narrow and remains concentrated around its mean (low variance).
On the other hand, the variance of the weight distribution in larger in the StNN. The same results are
illustrated in the two bottom panels where the mean of the weights of the third layer over training is
subtracted from the mean of the initial weights. We observe that the NSM is more robust and the
mean remains almost steady (left panel) in comparison to StNN. The same phenomenon is observed
also in the case of standard deviation (right panel), where the NSM’s standard deviation increases
slightly in comparison to StNNs.

0 20 40 60 80 100
Epochs

-1

-0.5

0

0.5

1

W
ei

gh
t

D
is

tr
ib

ut
io

n NSM

0

1

2

3

4

5

Counts (×1000)

0 20 40 60 80 100
Epochs

-1

-0.5

0

0.5

1

W
ei

gt
h

D
is

tr
ib

ut
io

n StNN

0

1

2

3

4

5
Counts (×1000)

0 20 40 60 80 100
Epochs

-15.0
-12.5
-10.0

-7.5
-5.0
-2.5
0.0
2.5

[W
[t]
]

[W
[0
]]

×10e-5

NSM
StNN

0 20 40 60 80 100
Epochs

0.0

0.02

0.04

0.06

0.08

Va
r[W

[t]
]

Va
r[W

[0
]]

NSM
StNN

Figure 4: Evolution of W3 (i.e., weights of the third layer) weight distributions during learning,
normalized to initial values (top row). In the NSM, the scale of the weights is controlled by the
factors βi. This renders the weights during learning more stable (left panel, top row) compared to
the sigmoid neural network (right panel, top row), which tends to grow at a faster rate. The mean of
NSM remains close to zero (black line, bottom left panel) in comparison to the mean of the StNN
(yellow line). Similar to the mean, the variance of NSM (black line, bottom right panel) grows slower
and remains smaller than that of StNN (yellow line, bottom right panel).

4.6 Training NSMs with BinConcrete

This section details how the NSM can be trained using the BinConcrete distribution instead of
propagating gradients through the activation probability function (see main text and SI 4.2). In the
forward pass, the probability is computed using equation (3) and then passed to the BinConcrete [30]
given by the following equation

X = σ
(L+ log(α)

λ

)

, (14)

where α is the probability we have already computed, σ is the sigmoid function, L is the Logistic
distribution (log(U) − log(1 − U), where U is the uniform distribution in the [0, 1]) and λ is the
temperature term. In our experiments, we assume that λ = 1. In the backward pass, the gradients are
computed through equation (14) instead of equation (3).

15

4.7 N-MNIST

The N-MNIST data set uses the same digits as contained in MNIST [39]. The digits were presented
to an event-based camera that detects temporal contrast (ATIS), and their output was recorded. The
data set consists of binary files, each containing the information of a single digit. Each file contains
four arrays of equal length describing: the x coordinate and y coordinates of an event, the polarity
(on or off) and the timestamp of the event. For this network, only the positive polarity events were
extracted. Ten 34× 34 frames of zeros were created for each digit and the maximum timestamp was
divided by 10 to obtain the frame length. For each digit, an entry in the frame corresponding to the x
and y coordinates of the events extracted inside the designated frame time was changed from 0 to 1.
This was repeated for each of the ten frames. Test error results were obtained averaging test errors
across the last 5 epochs and over X separate runs with different seed values.

4.8 Simulation Details

The source code for this work is written in Python and Pytorch [41] and it is available online under
the GPL license at https://github.com/nmi-lab/neural_sampling_machines. We ran all
the experiments on two machines:

1. A Ryzen ThreadRipper with 64GB physical memory running Arch Linux, Python 3.7.4,
Pytorch 1.2.0 and GCC 9.1.0, equipped with three Nvidia GeForce GTX 1080 Ti GPUs.

2. A Intel i7 with 64GB physical memory running Arch Linux, Python 3.7.3, Pytorch 1.0.1,
and GCC 8.2.1, equipped with two Nvidia GeForce RTX 2080 Ti GPUs.

4.9 MNIST, EMNIST, NMNIST Neural Networks

Table 6: Convolutional neural network used for MNIST, EMNIST, NMNIST data sets.

Layer Type # Channels x, y dimension

Raw Input 1 28
5× 5 Conv 32 24
2× 2 Max Pooling (stride 2) 32 12
5× 5 Conv 64 8
2× 2 Max Pooling (stride 2) 64 4
1024× 512 FC 1024 1
Softmax output 10 1

16

4.10 DVS Gestures Neural Network

Table 7: All convolutional neural network used for the DVS Gestures dataset.

Layer Type # Channels & Dimensions

Input (ON events) 6 64× 64
3× 3 Conv 96 64× 64
3× 3 Conv 96 64× 64
3× 3 Conv 96 64× 64
2× 2 Max Pooling (stride 2) 96 32× 32
3× 3 Conv 192 32× 32
3× 3 Conv 192 32× 32
3× 3 Conv 192 32× 32
2× 2 Max Pooling (stride 2) 192 16× 16
3× 3 Conv 256 16× 16
3× 3 Conv 256 16× 16
3× 3 Conv 256 16× 16
2× 2 Max Pooling (stride 2) 256 8× 8
3× 3 Conv 256 8× 8
1× 1 Conv 256 8× 8
1× 1 Conv 256 8× 8
Global average pool 256 1× 1
Softmax 11 1× 1

17

4.11 Weights Statistics for MNIST Classification

In this section we provide some statistics on the weights of the convolutional neural network used
in the MNIST classification task. The network architecture is given in SI 4.9 and the results of the
classification task are given in Table 2 in main text. First, we provide the histogram of the weights
after training on the MNIST data set for three different types of networks. An NSM network, an
NSM trained using the BinConcrete distribution and a deterministic network with sigmoid function as
non-linearity. For more details about the networks see the main text, and SI 4.9 and 4.6. Histograms
are illustrated in Figure 5. Then we measured the expected value of the weights for each layer and
for each network as well as the mean gradients of the weights. Those results are shown in Figures 6
and 7, respectively. Finally, we show the angles between the gradients of NSM weights and NSM
trained with BinConcrete (yellow) and NSM and Deterministic (orange) in Figure 8. These results
indicate that the NSM and the NSM with BinConcrete express similar behavior during training. On
the other hand, the deterministic network has larger weights and develops larger gradient steps (blue
lines in Figures 6 and 7).

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Weight value

0.0

1.0

2.0

3.0

4.0

5.0

Fr
eq

ue
nc

y
(C

ou
nt

s)

conv1
NSM
Concrete
Sigmoid

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Weight value

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Fr
eq

ue
nc

y
(C

ou
nt

s)

conv2
NSM
Concrete
Sigmoid

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Weight value

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Fr
eq

ue
nc

y
(C

ou
nt

s)

fc1
NSM
Concrete
Sigmoid

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Weight value

0.0

1.0

2.0

3.0

4.0

5.0

Fr
eq

ue
nc

y
(C

ou
nt

s)

fc2
NSM
Concrete
Sigmoid

Figure 5: Histograms of Weights on MNIST Classification. The weights of four layers, convolutional
layers 1 and 2 and fully connected layers 1 and 2 (see SI 4.9) for three different neural networks,
NSM (yellow), NSM trained with Concrete Distribution (red, see SI 4.6), and Deterministic one with
sigmoid as non-lineariry.

18

0 20 40 60 80 100
Epochs

-0.01

0.0

0.01

0.02

0.03

0.04

0.05

0.06

[W
]

conv1
NSM
Concrete
Sigmoid

0 20 40 60 80 100
Epochs

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0.0

[W
]

conv2
NSM
Concrete
Sigmoid

0 20 40 60 80 100
Epochs

-0.001

-0.0

0.0

0.0

0.001

0.002

0.002

0.002

[W
]

fc1
NSM
Concrete
Sigmoid

0 20 40 60 80 100
Epochs

-0.03

-0.02

-0.01

0.0

[W
]

fc2

NSM
Concrete
Sigmoid

Figure 6: Mean of Weights on MNIST Classification. Mean weights of the four layers of the neural
network used in main text for MNIST classification. Convolutional layers 1 and 2 and fully connected
layers 1 and 2 (see SI 4.9). Weights of three different neural networks are presented here, NSM
(yellow), NSM trained with BinConcrete Distribution (red, see SI 4.6), and a Deterministic one with
sigmoid as non-linearity (blue).

19

0 20 40 60 80 100
Epochs

-0.004

-0.003

-0.002

-0.001

0.0

0.001

0.002

[
W
]

conv1
NSM
Concrete
Sigmoid

0 20 40 60 80 100
Epochs

-0.002

-0.0015

-0.001

-0.0005

0.0

0.0005

[
W
]

conv2
NSM
Concrete
Sigmoid

0 20 40 60 80 100
Epochs

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0

0.0001

0.0002

[
W
]

fc1

NSM
Concrete
Sigmoid

0 20 40 60 80 100
Epochs

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0.0

0.0002

0.0004

0.0006

[
W
]

fc2
NSM
Concrete
Sigmoid

Figure 7: Mean of Weights Gradients on MNIST Classification. Mean of weights gradients of the
four layers of the neural network used in main text for MNIST classification. Convolutional layers 1
and 2 and fully connected layers 1 and 2 (see SI 4.9). Weights of three different neural networks are
presented here, NSM (yellow), NSM trained with BinConcrete Distribution (red, see SI 4.6), and a
Deterministic one with sigmoid as non-linearity (blue).

20

0 20 40 60 80 100
Epochs

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
N
SM

W

conv1
NSM-Concrete
NSM-Deterministic

0 20 40 60 80 100
Epochs

-0.04

-0.02

0.0

0.02

0.04

0.06

0.08

0.1

W
N
SM

W

conv2
NSM-Concrete
NSM-Deterministic

0 20 40 60 80 100
Epochs

0.0

0.02

0.04

0.06

0.08

0.1

W
N
SM

W

fc1
NSM-Concrete
NSM-Deterministic

0 20 40 60 80 100
Epochs

-0.05

0.0

0.05

0.1

0.15

0.2

0.25

0.3

W
N
SM

W

fc2
NSM-Concrete
NSM-Deterministic

Figure 8: Angles (cosine similarity) of Gradients on MNIST Classification. The angles of gradients
of weights of three networks are compared with each other. Four layers, convolutional layers 1 and 2
and fully connected layers 1 and 2 (see SI 4.9) are shown in this figure. Two cases are illustrated in
this figure, (i) NSM against NSM trained with BinConcrete (yellow, see SI 4.6), (ii) NSM against a
Deterministic network with sigmoid as non-linearity (red).

21

	Table of Abbreviations
	Computation of Gradients in NSM Computational Graph
	NSM in Convolutional Neural Networks
	Derivation of Gradients (Equations (6) and (7))
	Robustness to Weight Fluctuations
	Training NSMs with BinConcrete
	N-MNIST
	Simulation Details
	MNIST, EMNIST, NMNIST Neural Networks
	DVS Gestures Neural Network
	Weights Statistics for MNIST Classification

