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Abstract

Time-series analysis is confounded by nonlinear time warping of the data. Tradi-
tional methods for joint alignment do not generalize: after aligning a given signal
ensemble, they lack a mechanism, that does not require solving a new optimization
problem, to align previously-unseen signals. In the multi-class case, they must also
first classify the test data before aligning it. Here we propose the Diffeomorphic
Temporal Alignment Net (DTAN), a learning-based method for time-series joint
alignment. Via flexible temporal transformer layers, DTAN learns and applies an
input-dependent nonlinear time warping to its input signal. Once learned, DTAN
easily aligns previously-unseen signals by its inexpensive forward pass. In a single-
class case, the method is unsupervised: the ground-truth alignments are unknown.
In the multi-class case, it is semi-supervised in the sense that class labels (but not
the ground-truth alignments) are used during learning; in test time, however, the
class labels are unknown. As we show, DTAN not only outperforms existing joint-
alignment methods in aligning training data but also generalizes well to test data.
Our code is available at https://github.com/BGU-CS-VIL/dtan.

1 Introduction

Time-series data often presents a significant amount of misalignment, also known as nonlinear time
warping. To fix ideas, consider ECG recordings from healthy patients during rest. Suppose that
the signals were partitioned correctly such that each segment corresponds to a heartbeat and that
these segments were resampled to have equal length (e.g., see Figure 1). Each resampled segment is
then viewed as a distinct signal. The sample mean of these usually-misaligned signals (even when
restricting to single-patient recordings) would not look like the iconic ECG sinus rhythm; rather, it
would smear the correct peaks and valleys and/or contain superfluous ones. This is unfortunate as
the sample mean, a cornerstone of Descriptive Statistics, has numerous applications in data analysis
(e.g., providing a succinct data summary). Moreover, even if one succeeds somehow in aligning a
currently-available recording batch, upon the arrival of new data batches, the latter will also need to
be aligned; i.e., one would like to generalize the inferred alignment from the original batch to the
new data without having to solve a new optimization problem. This is especially the case if the new
dataset is much larger than the original one; e.g., imagine a hospital solving the problem once, and
then generalizing its solution, essentially at no cost, to align all the data collected in the following
year. Finally, these issues become even more critical for multi-class data (e.g., healthy/sick patients),
where only in the original batch we know which signal belongs to which class; i.e., seemingly, the
new data will have to be explicitly classified before its within-class alignment.
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Figure 1: Learning to generalize time-series joint alignment from train to test signals on the ECGFive-
Days dataset [8]. Top row: 10 random misaligned signals from each set and their respective average
signal (shaded areas correspond to standard deviations). Bottom: The signals after the estimated
alignment. DTAN aligns, in an input-dependent manner, a new test signal in a single forward pass.

Let (Ui)
N
i=1 be a set of N time-series observations. The nonlinear misalignment can be written as:

(Ui)
N
i=1 = (Vi ◦Wi)

N
i=1 (1)

where Ui is the ith misaligned signal, Vi is the ith latent aligned signal, “◦“ stands for function
composition, and Wi is a latent warp of the domain of Vi. For technical reasons, the misalignment is
usually viewed in terms of Ti ,W−1

i , the inverse warp of Wi, implicitly suggesting Wi is invertible.
It is typically assumed that (Ti)

N
i=1 belong to T , some nominal family of warps parameterized by θ:

(Vi)
N
i=1 = (Ui ◦ T θi)Ni=1 , Ti = T θi ∈ T ∀i ∈ (1, . . . , N) . (2)

The nuisance warps, (T θi)Ni=1, create a fictitious variability in the range of the signals, confounding
their statistical analysis. Thus, the joint-alignment problem, defined below, together with the ability
to use its solution for generalization, is of great interest to the machine-learning community as well
as to other fields.

Definition 1 (the joint-alignment problem) Given (Ui)
N
i=1, infer the latent (T θi)Ni=1 ⊂ T .

We argue that this problem should be seen as a learning one, mostly due to the need for generalization.
Particularly, we propose a novel deep-learning (DL) approach for the joint alignment of time-series
data. More specifically, inspired by computer-vision and/or pattern-theoretic solutions for misaligned
images (e.g., congealing [38, 31, 26, 25, 10, 11], efficient diffeomorphisms [19, 20, 56, 57], and
spatial transformer nets [28, 32, 49]), we introduce the Diffeomorphic Temporal Alignment Net
(DTAN) which learns and applies an input-dependent diffeomorphic time warping to its input signal
to minimize a joint-alignment loss and a regularization term. In the single-class case, this yields an
unsupervised method for joint-alignment learning. For multi-class problems, we propose a semi-
supervised method which results in a single net (for all classes) that learns how to perform, within
each class, joint alignment without knowing, at test time, the class labels. We demonstrate the utility
of the proposed framework on both synthetic and real datasets with applications to time-series joint
alignment, averaging and classification, and compare it with DTW Barycenter Averaging (DBA) [44]
and SoftDTW [12]. On training data, DTAN outperforms both. More importantly, it generalizes to
test data (and in fact excels in it); this is an ability not possessed by those methods.

Our key contributions are as follows. 1) DTAN, a new DL framework for learning joint alignment
of time-series data; 2) A recurrent version of DTAN (which is also the first recurrent diffeomorphic
transformer net); 3) A new and fast tool for averaging misaligned single-class time-series data; 4) The
proposed learning-based method generalizes to previously-unseen data; i.e., unlike existing methods
for time-series joint alignment, DTAN can align new test signals and the test-time computations are
remarkably fast.
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Figure 2: Left: An illustration of a CPAB warp (relative to the identity transformation) with its
corresponding CPA velocity field (above). Right: DTAN joint alignment demonstrated on two classes
of the Trace dataset [8]. During test, the class labels are unknown.

2 Related Work

Dynamic Time Warping (DTW). A popular approach for aligning a time-series pair is DTW [47, 48]
which, by solving Bellman’s recursion via dynamic programming, finds an optimal monotonic
alignment between two signals. DTW does not scale well to the joint-alignment problem: computing
a pairwise DTW for N signals of length K requires O(KN ) operations [52], which is intractable for
either a large N or a large K. Moreover, averaging under the DTW distance is a nontrivial task, as it
involves solving the joint-alignment problem. While several authors proposed smart solutions for the
averaging problem [50, 22, 44, 43, 13, 12], none of them offered a generalization mechanism – that
does not require solving a new optimization problem each time – for aligning new signals.

Congealing, Joint Alignment, and Atlas-based Methods. A congealing algorithm solves itera-
tively for the joint alignment (of a set of signals such as images, time series, etc.) by gradually aligning
one signal towards the rest [31]. Typical alignment criteria used in congealing are entropy minimiza-
tion [38, 31, 26, 37] or least squares [10, 11]. Also related is the Continuous Profile Model [33], a
generative model in which each observed time series is a non-uniformly subsampled version of a
single latent trace. While not directly related to our work, note that many medical-imaging works
focus on building an atlas, including with diffeomorphisms (e.g., [29]), via the (pairwise- or joint-)
alignment of multiple images. Since all these methods above do not generalize, in order to align
Ntest new signals to the average signal of the previously-aligned Ntrain signals (or to an atlas), one
must solve Ntest pairwise-alignment problems. Alternatively, to jointly align Ntest new signals, one
must solve a new joint-alignment problem. In both cases, such solutions scale poorly with Ntest.
In the multi-class case, it is even worse since the new signals must be classified, and classification
errors increase alignment errors. Note that in [25] the authors propose a two-step process: the first
learns deep Convolutional Neural Networks (CNN) features, unrelated to alignment, and the second
uses congealing to align these features (without learning how to align the features of a new data).
In parallel to our work, and independently of it, Dalca et al. [14] propose a learning-based method
for building deformable conditional templates based on diffeomorphisms. While their model offers
generalization, they focus on neuroimaging and not time-series joint alignment.

Spatial/Temporal Transformer Nets and Diffeomorphisms in DL. In computer vision, the Spatial
Transformer Net (STN) [28] was introduced to allow for invariances to spatial warps. While there are
works on the pairwise alignment of time-series hidden states [50, 6, 21, 2], Temporal Transformer
Nets (TTN), the time-series analog of STNs, were so far limited to affine transformations [41], phase
and frequency offset recovery [42]. It was also proposed to use TTN on the 2D spectrogram of time
series [58]. Very recently, Lohit et al. proposed a TTN based on 1D diffeomorphisms for time-series
classification [35]; as their warps are not parametric, the method does not scale well with the signal’s
length; e.g., a one-second input signal at 8kHz will yield a TTN with a final fully-connected (FC)
layer of dim = 8, 000 neurons, which in turn produces 8, 000 trainable weights per neuron in the
previous layer (for comparison, we use an FC layer of dim = 32); moreover, the nonparametric form
prevents them from having an equivalent to the efficient gradient that we use. In addition, none of
these methods utilized TTN for learning time-series joint alignment.
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Figure 3: Time-series averaging methods comparison on the ECG200 dataset (each row depicts a
different class). The Euclidean mean serves as a baseline, showing how nonlinear misalignment of
the data confounds its averaging. Comparing with DTW-based methods, DTAN outperforms DBA on
both train/test data. While the barycenter obtained by SoftDTW (γ = 1) is comparable to the one
obtained by DTAN, it is (1) inapplicable to new signals; (2) computed on each class individually.
DTAN, however, was trained on both classes together and generalized to test data (rightmost panels).

Recently, Skafte et al. [49] showed it is possible to explicitly incorporate flexible and efficient
diffeomorphisms [19, 20] within DL architectures via an STN; particularly, they focused on image
recognition and classification and their framework was supervised. Inspired by [49], we propose to
use a diffeomorphic TTN to solve the joint-alignment problem. Our approach differs from [49] in the
following: the signal type (1D signals vs. 2D images); the task (joint alignment vs. classification);
amount of supervision (unsupervised/semi-supervised vs. supervised); usage of recurrent nets and
warp regularization (here we use both, neither was used in [49]). In addition to [49], there are several
works, particularly in medical imaging, that involve DL and diffeomorphisms. Their formulation is
different from ours. E.g, while Yang et al. [55] use supervised DL to predict diffeomorphisms, their
net has no STN so the diffeomorphisms are not explicitly incorporated in it. In contrast, unsupervised
diffeomorphic alignment was achieved via an STN [15, 7]. In all these three works [55, 15, 7] (as well
as in others omitted here due to space limits) the nets learn pairwise alignments, not joint alignment.
In any case, we are unaware of works that use diffemorphic nonlinear transformer nets for time-series
data (with the exception of [35]), let alone for joint alignment of such data (with no exceptions).

3 Preliminaries: Temporal Transformer Nets and Diffeomorphisms

Temporal Transformer Nets. Given T , a spatial-warp family parameterized by θ, a Spatial Trans-
former (ST) layer performs a learnable input-dependent warp [28]. Reducing this from images (a
2D domain) to time series (1D), one obtains a TT layer (a TTN is a neural net with at least one TT
layer). In more detail, let U denote the input of the TT layer. Its output consists of θ = f loc(U) and
V = U ◦ T θ (the latter, i.e., the warped signal, is what is being passed downstream the TTN), where
T θ ∈ T is a 1D warp parameterized by θ. The function floc : U 7→ θ is itself a neural net called the
localization net. Let w denote the parameters (also known as weights) of floc and let

F ((Ui,θi(Ui;w))
N
i=1) (3)

denote a loss function. The TT layer is trained (i.e., optimized over w) along with the rest of the
TTN. As is usual in DL, this involves back-propagation [46] which requires certain partial derivatives
(see our Sup. Mat.). Also note one of these derivatives,∇θ(T θ(·)), depends on the choice of T .

Diffeomorphisms. As mentioned in § 1, T needs to be specified. In the context of time warping,
diffeomorphisms is a natural choice [39]. A (C1) diffeomorphism is a differentiable invertible map
with a differentiable inverse. Working with diffeomorphisms usually involves expensive computations.
In our case, since the proposed method explicitly incorporates them in a DL architecture, it is even
more important (than in traditional non-DL applications of diffeomorphisms) to drastically reduce the
computational difficulties: in training, evaluations of x 7→ T θ(x) and x 7→ ∇θT

θ(x) are computed
at multiple time points x and for multiple θ’s. Thus, until recently, explicit incorporation of highly-
expressive diffeomorphism families into DL architectures used to be infeasible. This, however, is
starting to change (e.g., [49, 7]). Particularly, Skafte et al. [49] utilized, in their STNs, the CPAB
warps that had been proposed by Freifeld et al. [19, 20] and are also used in this work. CPAB warps

4



1

0

1

1

0

1

1

0

1

1

0

1

0 100 200 300 400 500
1

0

1

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Figure 4: R-DTAN joint-alignment of synthetic data. Each column depicts a different class. Top
row: Source latent signals from which each class was created. Second: 10 perturbed signals and their
respective mean. Last three rows illustrate R-DTAN output at each recurrence, eventually unwarping
the nonlinear misaligned applied to the latent source signals. All the results shown here are on test
data, and were obtained by the same single net (without knowing, at test time, the class labels).

combine expressiveness and efficiency, making them a natural choice in a DL context [24, 49]. Other
efficient and expressive diffeomorphisms (e.g.,[57, 4, 17, 3]) can also be explored in the DTAN
context, provided they also offer an efficient and highly-accurate way to evaluate x 7→ ∇θT

θ(x)
as CPAB warps do [18]. Below we briefly explain CPAB warps (restricting the discussion to 1D,
which is the domain of interest in this work), and refer the reader to [19, 20, 18] for more details.
The name CPAB, short for CPA-Based, is due to the fact that these warps are based on Continuous
Piecewise-Affine (CPA) velocity fields. The term “piecewise” is w.r.t. a partition, denoted by Ω, of
the signal’s domain into subintervals. Let V denote the linear space of CPA velocity fields w.r.t. such
a fixed Ω, let d = dim(V), and let vθ : Ω→ R, a velocity field parameterized by θ ∈ Rd, denote the
generic element of V , where θ stands for the coefficient w.r.t. some basis of V . The corresponding
space of CPAB warps, obtained via integration of elements of V , is

T ,{T θ : x 7→ φθ(x; 1) s.t. φθ(x; t) = x+

∫ t

0

vθ(φθ(x; τ)) dτ where vθ ∈ V }; (4)

it can be shown that these warps are indeed (C1) diffeomorphisms [19, 20]. See Figure 2 for a
typical warp. While vθ is CPA, T θ : Ω→ Ω is not (e.g., T θ is differentiable). CPA velocity fields
support an integration method that is faster and more accurate than typical velocity-field integration
methods [19, 20]. The fineness of Ω controls the trade-off between expressiveness of T on the one
hand and the associated computational complexity and dimensionality on the other hand. Importantly
in the TTN context, the CPAB gradient, ∇θT

θ(x), is given by the efficient solution of a system of
coupled integral equations [20]; see [18] for details.

4 The Proposed Diffeomorphic Temporal Alignment Nets

Definition 1 requires the specification of T and a loss function for estimating (T θi)Ni=1. To meet
our goal, i.e., solving the joint-alignment problem while being able to generalize its solution to the
alignment of new data, we propose a DL-based method which includes a TTN with diffeomorphic
TT layers. Particularly, we choose T to be a family of 1D CPAB warps [19, 20] and incorporate the
latter within TT layers. For simplicity, we base the data term of the training loss on least squares but
other criteria can be used as well. Altogether, this lets us propose the first DTAN for time-series joint
alignment (it is also the first diffeomorphic transformer net for joint alignment of any kind of data, not
just time series). Below we explain the method in more detail, including how it is used for aligning
and averaging either existing or new data. We also discuss the critical role of warp regularization as
well as recurrent DTANs.

Time-series Joint Alignment. Let Ui denote an input signal, let θi = floc(Ui,w) denote the
corresponding output of the localization net floc(·,w) of weights w, and let Vi denote the result of
warping Ui by T θi ∈ T ; i.e., Vi = Ui ◦ T θi , where θi depends on w and Ui, as defined above.
Consider first the case where all the Ui’s belong to the same class. As the variance of the observed
(Ui)

N
i=1 is (at least partially) explained by the latent warps, (T θi)Ni=1, we seek to minimize the
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empirical variance of the warped signals, (Vi)
N
i=1. In other words, our data term in this setting is

Fdata

(
w, (Ui)

N
i=1

)
, 1

N

∑N

i=1

∥∥∥∥Vi(Ui;w)− 1
N

∑N

j=1
Vj(Uj ;w)

∥∥∥∥2
`2

(5)

where ‖·‖`2 is the `2 norm. Note this setting is unsupervised. For multi-class problems, our data term
is the sum of the within-class variances:

Fdata

(
w, (Ui)

N
i=1

)
,
∑K

k=1

1
Nk

∑
i:zi=k

∥∥∥∥Vi (Ui;w)− 1
Nk

∑
j:zj=k

Vj(Uj ;w)

∥∥∥∥2
`2

(6)

where K is the number of classes, zi takes values in {1, . . . ,K} and is the class label associated with
Ui (namely: zi = k if and only if Ui belongs to class k), and Nk = |{i : zi = k}| is the number
of examples in class k. This is a semi-supervised setting in the following sense: the labels, (zi)

N
i=1

are known during the learning (but not during the test) while the within-class alignment remains
unsupervised as in the single-class case. Importantly, note that the same single network is responsible
for aligning each of the classes; i.e., w does not vary with k; see Figure 2. In both the single- and
multi-class cases, we (unlike Skafte et al. [49]) also use a regularization term on the warps,

Freg(w, (Ui)
N
i=1) =

∑N

i=1
(θi(w,Ui))

TΣ−1
CPAθi(w,Ui) (7)

where ΣCPA is a CPA covariance matrix (proposed by Freifeld et al. [19, 20]) associated with a
zero-mean Gaussian smoothness prior over CPA fields. Akin to the standard formulation in, e.g.,
Gaussian processes [45], ΣCPA has two parameters: λvar, which controls the overall variance, and
λsmooth, which controls the smoothness of the field. A small λvar favors small warps (i.e., close to
the identity) and vice versa; similarly, the larger λsmooth is, the more it favors CPA velocity fields
that are almost purely affine and vice versa. This also gives another way, an alternative to changing
the resolution of Ω, to control the amount of expressiveness of the warps. In the context of our
joint-alignment task (as opposed to, say, the classification task in [49]), using regularization is critical,
partly since it is too easy to minimize Fdata by unrealistically-large deformations that would cause
most of the inter-signal variability to concentrate on a small region of the domain; the regularization
term prevents that. Our loss function, to be minimized over w, is

F (w, (Ui)
N
i=1) = Fdata(w, (Ui)

N
i=1) + Freg(w, (Ui)

N
i=1) . (8)

The optimization (i.e. the training of the net) is done via standard methods for DL training (see § 5).

Generalization via the Learned Joint Alignment. Once the net is trained, a signal U (regardless
whether it is a training or a test signal) is aligned as follows. First set θ = floc(U); i.e., a forward
pass of the net (an operation which is, as is usually the case in DL, simple and very fast). Next, obtain
the aligned signal, V , via warping U by T θ; i.e., set V = U ◦ T θ. Especially useful and elegant is
the fact that, in the multi-class case, the same single net aligns each new test signal, without knowing
the label of the latter. This is in sharp contrast to other joint-alignment methods (e.g., those based on
DBA, SoftDTW, atlases, etc.) that require knowing the label of the to-be-aligned signal.

Time-series Averaging. The data misalignment distorts, among other things, the sample mean [53,
23]. As discussed in § 2, averaging under the DTW distance is a common approach to this issue [44,
43, 13, 12]; however, such non-learning DTW-based methods are computationally expensive. This is
especially problematic since, as these methods do not generalize, each batch of new signals requires
them to solve another optimization problem. In contrast, since DTAN easily aligns new signals
inexpensively and almost instantaneously via its forward pass, it also provides, in the single-class
case, an instant mechanism for quickly averaging a new collection of previously-unseen signals (see
Figure 3) by simply computing the sample mean of the warped test data: V̄ = 1

N

∑N
j=1 Vj(Uj ;w).

Variable length and multi-channel data The current work focuses on univariate time-series data
and fixed-length input. The generalization to multichannel signal is trivial: DTAN can either apply
the same warp to all channels (just like an STN warps RGB images) or learn and apply different
warps for each channel. To generalize DTAN for variable length (VL) input, we need to consider
floc , T and the loss function. For floc , Recurrent Neural Networks (RNNs) are a natural choice, as
they are designed to handle VL inputs. A nominal CPAB family, T , is capable of warping any time
interval towards any other, even if they are of different lengths, as long as no boundary conditions are
used. Finally, a loss function that can handle VL must be chosen (e.g., SoftDTW [12]).

6



Table 1: Synthetic data variance of the misaligned data (“Baseline”) and the aligned data via
DTAN, Recurrent-DTAN (R-DTAN2 and 4). For each set, Dir(k), k specifies the seriousness of the
deformation, where a lower k indicates higher deformations. DTAN exhibits comparable results in
terms of variance reduction between the train and test sets. Increasing the number of applied warps
via an R-DTAN (without increasing the number of learned parameters) further decreases the variance.

Train set variance Test set variance

Dataset Baseline DTAN R-DTAN2 R-DTAN4 Baseline DTAN R-DTAN2 R-DTAN4

Dir(32) 0.483 0.136 0.106 0.088 0.466 0.234 0.167 0.130
Dir(16) 0.522 0.240 0.162 0.098 0.514 0.332 0.24 0.154
Dir(8) 0.536 0.254 0.181 0.122 0.532 0.362 0.248 0.183

Recurrent DTANs. While often a coarse Ω suffices, the expressiveness of T can be increased using a
finer Ω at the cost of computation speed and a higher d [19, 20]. In fact, at the limit of an infinitely-fine
Ω, any diffeomorphism that is representable by integrating a Lipshitz-continuous stationary velocity
field can be approximated by a CPAB diffeomorphism [19, 20]. Moreover, CPAB warps do not form a
group under the composition operation [20] (even though they contain the identity warp and are closed
under inversion); i.e., the composition of CPAB warps is a diffeomorphism but usually not CPAB
itself. Thus, a way to increase expressiveness without refining Ω is by composing CPAB warps [20].
Concatenating CPAB warps increases expressiveness beyond T as it implies a non-stationary velocity
field which is CPA w.r.t. Ω and piecewise constant w.r.t. time. Compositions increase dimensionality,
but the overall cost of evaluating the composed warp scales better (in comparison with refinement
of Ω), and it is also easier to infer the θ’s. While this fact was not exploited in [49], we leverage it
here as follows. We propose the Recurrent-DTAN (R-DTAN), a net that recurrently applies nonlinear
time warps, via diffeomorphic TT layers, to the input signal (Figure 4). By sharing the learned
parameters by all the TT layers, an R-DTAN increases expressiveness without increasing the number
of parameters. While this is similar to, and inspired by, how Lin et al. [32] use a recurrent net with
affine 2D warps, there is a key difference: since in the affine case zero-boundary conditions imply
degeneracies, they explained they had to propagate warp parameters instead of the warped image
as they would have liked. In contrast, as CPAB warps support optional zero-boundary conditions,
propagating a warped signal through an R-DTAN is a non-issue.

Implementation. We adapted, to the 1D case, the implementation from [16] of the CPAB transformer
layer, CPAB gradient, the Tensorflow C++ API, and Keras wrapper for the transformer layer. We also
implemented in Tensorflow/Keras the CPAB regularization term as well as the recurrent net, both of
which were not used in [49]. To summarize, users can benefit from our DTAN implementation in any
Tensorflow [1] or Keras [9] generic DL architecture in a few lines of code.

5 Experiments and Results

We evaluated DTAN’s time-series joint alignment of both synthetic and real-world data. For simplicity,
in our experiments floc is set to be a 1D CNN consisting of 3 conv-layers (128–64–64 filters per layer,
respectively) each followed by a ReLU nonlinear activation function [40], batch-normalization and
max-pooling layers [27], where d = dim(θ) = 32. The learning rate was η = 10−4, set to minimize
Eq. (6) via the Adam optimizer [30]. The last activation function was tanh.

5.1 Learning Joint Alignment of Synthetic Data

We generated synthetic data by perturbing 4 synthetic signals using random warps sampled from
a Dirichlet prior (see Sup. Mat. for details of the data-generation procedure). We generated 250
samples per-class (1000 in total) and used a 60-20-20% train, validation and test split, choosing the
model with the lowest validation loss (where λvar = .01, λsmooth = 1). We studied the effect of
different temporal deformations on DTAN’s ability to find the perturbed signals joint alignment and
thus recover the latent input signals. Unlike in the UCR dataset (see below), in the synthetic dataset
the latent source signal is available and can be used as a reference for evaluation. We studied the
following aspects: (1) The difficulty of the input signals (Figure 4, the different columns); (2) the
seriousness of the deformation, achieved by varying K, the dimension of the Dirichlet distribution
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Table 2: Timing test-set alignments for a single-class synthetic data. There are 16 test sets. Within
each set, the length of the signals is fixed. There are 4 different lengths (across the sets): 64, 128, 256,
and 512. The size (i.e., the number of signals) of each test set is either 10, 102, 103, or 104. Taking
all possible combinations of these 4 lengths and 4 sizes, yielded the 16 test sets. Each entry in the
table represents the time it took to align an entire such test set by DTAN’s forward pass.

Alignment timing per test set (in [sec])

length
# of signals

10 102 103 104

64 0.003 0.003 0.007 0.109
128 0.003 0.004 0.012 0.211
256 0.014 0.038 0.042 0.455
512 0.003 0.007 0.084 0.660
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Figure 5: Correct classification rates using NCC. Each point above the diagonal indicates an entire
UCR archive dataset [8] where DTAN achieved better (or no-worse) results than the competing
method. Blue: DTAN’s test accuracy compared with: Euclidean (DTAN was better or no worse in
93% of the datasets), DBA (77%) and SoftDTW (62%). Red: DTAN-CNN compared with CNN
(87%).

(Table 1, rows) and (3) the number of recurrences (Figure 4, rows). We also measured the timings of
alignment of a single-class test data by DTAN. The test sets vary in size (10 : 104, log-spaced values)
and signal length (64, 128, 256, 512). We trained DTAN on 100 samples for each signal length. For
each condition, we measured how long it took to align the entire test set via DTAN’s forward pass.
Timing was measured on a Nvidia GeForce GTX 1080 graphic card.

Results. Table 1 reports the average within-class variance of the misaligned signals (“Baseline”) and
the reduced variance after alignment by DTAN, R-DTAN2 and R-DTAN4 on both the train and test
sets. The results show that DTAN generalizes well. In addition, as the number of diffeomorphic warps
increases, R-DTAN performs finer alignments without increasing the number of parameters. Figure 4
illustrates how the synthetic misaligned signals are iteratively warped by R-DTAN, recovering the
latent signals (up to a diffeomorphic offset). We also study the effect of adding Gaussian noise to
the perturbed signals on DTAN’s performance; see tables and discussion in the Sup. Mat. Table 2
summarizes the timing results, showing that DTAN’s timing scales gracefully; e.g., aligning the
largest test set (104 signals of length 512) took DTAN only 0.66 [sec].

5.2 UCR Time-Series Classification Archive (Real Data)

The UCR time-series classification archive [8] contains 85 real-world datasets (we used 84). The
datasets differ from each other in the number of examples, signal length, application domain (e.g.:
ECG; medical imaging; motion sensors), and number of classes (2–60). We worked with the train
and test sets provided with the archive. Here we report a summary of our results which appear in full
detail (together with a study of the effect of the regularization term) at our Sup. Mat.

Nearest Centroid Classification (NCC) experiment. The 1-Nearest Neighbor (1-NN) classifier,
when using the DTW distance, was shown [54, 5] to be on par with state-of-the-art time-series classi-
fiers; however, 1-NN requires: 1) the entire train set to be stored; 2) DTW to be computed between
each pair of training example and and test example. This scales poorly in terms of computational
efficiency and storage. This issue is mitigated considerably by performing NCC, using each class
average signal as a centroid [43]. In the lack of ground truth for the latent warps in real data, NCC
success rates also provide an indicative metric for the quality of the joint alignment and/or average
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signal. Thus, we perform NCC on the UCR archive, comparing DTAN to: (1) the sample mean of the
misaligned sets (Euclidean); (2) DBA; (3) SoftDTW.

Experiment outline. For each of the UCR datasets, we trained DTAN in a similar fashion to 5.1,
where λvar ∈ [10−3, 10−2], λsmooth ∈ [0.5, 1]. We used R-DTANx, where x ∈ {1, 2, 4} is the
number of TT layers. We then computed the centroid (w.r.t. to a Euclidean distance) of each class
in the aligned train set. NCC was conducted by aligning each test sample through the trained net
and measuring a Euclidean distance to each of the centroids. DBA and SoftDTW were measured by
DTW distance (which is the distance associated with these methods). We used Python’s tslearn’s
implementation of DTW, DBA and SoftDTW [51], limiting each to 100 iterations. The SoftDTW
barycenter loss was minimized via L-BFGS [34] and the best γ was chosen among the following
values: 10−3, 10−2, 10−1,1, and 10.

40 20 0 20 40
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20
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20
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60

Original data

40 20 0 20 40 60

40
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Aligned dataFacesUCR Dataset

Figure 6: t-SNE visualization of the original and aligned
test data of the 11-class FacesUCR dataset. The class labels
are used here for visualization, but were not used during the
test-data alignment. This highlights how DTAN decreases
within-class variance while increasing inter-class variance.

Results. Figure 5 shows the NCC
experiment’s results. Each point
above the diagonal stands for an en-
tire dataset where DTAN correct clas-
sification rate was better than (or
equal to) the competing method. This
was the case for 93% of the datasets
when compared to Euclidean, 77%
for DBA, and 62% for SoftDTW.
These results (1) illustrate the impor-
tance of unwarping the misaligned
data (as shown by the Euclidean case)
and (2) indicate that averaging via
DTAN under Euclidean geometry is
usually superior to DTW-based aver-
aging. These findings are also sup-
ported by the average signals displayed in Figure 3. The Euclidean mean is strongly affected by the
misalignment, while DBA falls to a bad local minimum. SoftDTW and DTAN show comparable
qualitative results on this set, but note two major differences: (1) DTAN jointly aligns several classes
within the same model (while SoftDTW had to be computed for each class separately) and (2) DTAN
generalizes the learned alignment to new test samples (rightmost panel), while it is inapplicable for
SoftDTW (as it must be computed again for new signals). For more results, please see our Sup. Mat.

CNN classification experiment. We also tested whether DTAN can increase CNN classification
accuracy. We first trained DTAN to minimize Eq. (6) using the same regularization and recurrence
parameters used in the NCC experiment. After training, we froze the weights of floc and fed DTAN’s
outputs to another CNN, and trained it for classification (identical to floc in terms of architecture
and optimization). We call this model DTAN-CNN. Note other time-series averaging methods
cannot be used in a similar way. We compared the average test accuracy of DTAN-CNN to the
same CNN without DTAN, using 5 runs per dataset. DTAN-CNN achieved higher, or equal to,
correct classification rates on 87% of the datasets (see Figure 5, red). Figure 6, which provides a
t-SNE visualization of the original and aligned data [36], illustrates how DTAN decreases intra-class
variance while increasing inter-class one, thus improving the performance of classification net.

6 Conclusion

Building on both recent ideas such as STN [28, 49], efficient highly-expressive diffeomorphisms [19,
20], and older ones such as congealing [31, 10], we proposed DTAN, a deep net for learning time-
series joint alignment. The alignment learning is done in an unsupervised way. If, however, class
labels are known in train time, we use them within a semi-supervised framework that reduces the
variance within each class separately. In addition, we proposed a regularization term for the warps,
which is critical in an unsupervised framework. We also proposed R-DTAN, a recurrent variant of
DTAN, which improves the expressiveness and performance of DTAN without increasing the number
of parameters. Our experiments showed that the proposed method works well on both training and
test data sets.

Acknowledgement: NSD was supported by research grant #15334 from the VILLUM FONDEN.
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