
A Missing Proofs and details433

A.1 Proofs for the approximate Ward’s algorithm434

Proof of Lemma 2.1. The running time follows almost immediately from the definition: there435

are Opε´1 log nq data structure to query. The correctness results from the following argu-436

ment. Consider the cluster C˚ that has been inserted to the data structure and that minimizes437

minC0 inserted ∆ESSpC,C0q. Let j be the integer such that p1` εqj´1 ď |C˚| ď p1` εqj . Consider438

the cluster Cj returned by the query on Dj . We have that |Cj | ď p1` εq|C˚| and so by the correct-439

ness of the data structure ∆ESSpCj , Cq ď γp1` εq∆ESSpC,C˚q and the lemma follows.440

A.2 Runtime analysis and correctness for the approximate Ward’s algorithm441

Running Time The outer loop of Algorithm 1 iterates β times. The total number of clusters442

created by the algorithm is Opnq where n is the total number of input points. Thus, The inner for443

loop takes Opnq times. By Lemma 2.1, the body of the inner loop will have at most the complexity444

of the nearest neighbour search Opnfpγqε´1 logpn∆qq. Summing up all these complexities results445

in Opn1`fpγqε´1 logpn∆qq.446

Proof of Correctness447

Lemma A.1. Invariant 2.2 holds.448

Proof. We proceed by induction on the merge ν. When the merge value is 1, the invariant trivially449

holds.450

Now assume that the invariant holds up to some merge value ν. We first show that there is no pair of451

clusters Ci, Cj with ∆ESSpCi, Cjq ă ν{γ at the end of the iteration corresponding to merge value452

ν. Assume toward contradiction that this wasn’t the case and consider the cluster of Ci, Cj that was453

created the last, say Ci. Then, a nearest neighbor cluster query was made on Ci and since Cj was454

already in the data structure, Lemma 2.1 implies that the query returned a cluster of C` such that455

∆pC`, Ciq ă ν. Hence Ci was merged to C` and not an unmerged cluster at the end of the iteration.456

457

A.3 Proofs for the approximate Average-Linkage algorithm458

Proof of Lemma 3.1. LetU “ |A||C||B|. We note that for each a P A, c P C, the triangle inequality459

implies that dpa, cq ď minbPBpdpa, bq ` dpb, cqq and so dpa, cq ď 1
|B|

ř

bPBpdpa, bq ` dpb, cqq.460

avgpA,Cq “
1

|A||C|

ÿ

aPA

ÿ

cPC

dpa, cq

ď
1

|A||C|

ÿ

aPA

ÿ

cPC

1

|B|

ÿ

bPB

pdpa, bq ` dpb, cqq

“
1

U

ÿ

aPA

ÿ

cPC

ÿ

bPB

pdpa, bq ` dpb, cqq

“
1

U

˜

|C|
ÿ

aPA

ÿ

bPB

dpa, bq ` |A|
ÿ

cPC

ÿ

bPB

dpb, cq

¸

“ avgpA,Bq ` avgpB,Cq

461

A.3.1 Approximating Cluster Distance by Sampling462

Let C1, . . . , Ck be a collection of clusters. Let n2αi be an upper bound on the average distance463

between points within Ci. Assume that the minimum average distance between any pair of clusters464

is at least αi{n2 for all i. For each cluster Ci, we make a slight abuse of notation and let avgpCiq465

denote the average distance between points in Ci (i.e.: avgpCiq “ avgpCi, Ciq). Let ci be a point466
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such that avgpci, Ciq ď avgpCiq{ε and let Ri denote the points of Ci whose distance to ci is at most467

avgpCiq{ε2. In other words, Ri “ tp | p P Ci, distpp, ciq ď avgpCiq{ε2u. Let Gi “ Ci ´Ri.468

We consider the following sampling scheme. Among the points in Ri, pick ηε´6 log3 n points469

uniformly at random. Let κi “ avgpGi, Riq. By an immediate averaging argument we have that470

|Gi| ď ε|Ci|.471

We make use of the following lemma by Chen [13].472

Lemma A.2 ([13], Lemma 3.3). Let V be a set of points in a metric space pX, dq, and let λ1, ξ ą 0473

be given parameters. Let ∆ be the diameter of V . Let U be a sample of size ξ´2 lnp2{λ1q points of474

V picked independently and uniformly, where each point of U is assigned weight |V |{|U | such that475
ř

uPU wpuq “ |V |. For a fixed point p, where p is not necessarily a an element of V , we have that476

|
ř

vPV distpv, pq ´
ř

uPU wpuqdistpu, pq| ď ξ|V |∆, with probability at least 1´ λ1.477

From this, we deduce the following corollary.478

Corollary 1. Let V be a set of points in a metric space pX, dq, and let λ1, ξ ą 0 be given parameters.479

Let ∆ be the diameter of V . Let U be a sample of size ξ´2 lnp2{λ1q points of V picked independently480

and uniformly. For a fixed point p, where p is not necessarily a an element of V , we have that481

|avgpV, pq ´ avgpU, pq| ď ξ∆, with probability at least 1´ λ1.482

The proof of the following lemma is in the appendix.483

Lemma A.3. Given a set of point Ci of size m, the sampling procedure can be performed in time484

Opm{ε5q.485

For any two clusters Ci, Cj let SpCiq, SpCjq denote the set of points sampled by the above proce-486

dure. Furthermore, we define xavgpCi, Cjq “ avgpSpCiq, SpCjqq ` εκi ` εκj . We then have the487

following crucial lemma, proved in the appendix.488

Lemma A.4. Consider a set of clusters tC1, . . . , C`u such that for any pair of clusters Ci, Cj ,489

avgpCiq, avgpCjq ď ηavgpCi, Ciq for some constant η.490

Then, by taking a sampling of size 10ηε´6 log3 n, we have xavgpCi, Cjq “ p1˘ εqavgpCi, Cjq with491

probability at least 1´ 1{n5.492

A.3.2 A Data Structure for Approximate Nearest Cluster493

In this section, we introduce a data structure for finding approximate nearest clusters. The following494

theorem is proved in the appendix.495

Theorem A.5. Let γ ą 0 be a parameter, P a set . Let D be a data structure that for any set P of496

n points in Rd where d “ Ωplog nq, supports the following operations:497

1. Insertion of a point in P in time Opnfpγqq, for some function f ;498

2. Deletion of a point in P in time Opnfpγqq;499

3. Given a point p P P , outputs a point inserted to the data structure at L1-distance at500

most γ times the distance from p to the closest point inserted to the data structure, in time501

Opnfpγqq.502

Then, for any ε ą 0, there exists a data structure for pairs pS,wq where S is a set of points in Rd503

and w is a positive value, that supports the following operations:504

1. Insertion of a pair (set, value) in time Opηε´1 log n ¨ nfpγqq;505

2. Deletion of a pair (set, value) in time Opηε´1 log n ¨ nfpγqq;506

3. Given a set of points C in Rd and a value w, outputs a pair pC 1, w1q inserted to the507

data structure that is such that that avgpC,C 1q ` w ` w1 is at most γp1 ` εq times508

minpC˚,w˚q in the data structure avgpC,C
˚q ` w ` w˚ in time Opηε´1 log n ¨ nfpγqq.509

Proof of Lemma A.3. We claim that we can simply use a constant factor approximation to the me-510

dian problem to find ci – there is a vast literature of near-linear algorithms producing an Op1q-511

approximation to the median.512
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Consider the median of P , namely the point p˚ P P that minimizes
ř

pPP distpp, p˚q. We have that513

1
|P |´1

ř

pPP distpp, p˚q is at most avgpP q. Thus, consider any point p̂ that is anOp1q-approximation514

to the median of P . We have that 1
|P |´1

ř

pPP distpp, p̂q “ OpavgpP q.515

Then, the remaining step of the sampling procedure is to evaluate the distance from each point to p̂516

to define Ri and Gi. This can be done in linear time. Finally, the sampling of points in Ri can also517

be done in linear time.518

Proof of Lemma A.4. We have, by Lemma 3.1,519

avgpCi, Cjq “
|Ri|

|Ci|
avgpRi, Cjq `

|Gi|

|Ci|
avgpGi, Cjq

ď avgpRi, Cjq `
|Gi|

|Ci|
avgpRi, Giq

ď avgpRi, Cjq ` ε ¨ avgpRi, Giq
ď avgpRi, Cjq ` ε ¨ avgpCiq

Similarly, we have520

avgpRi, Cjq “
|Rj |

|Cj |
avgpRi, Rjq `

|Gj |

|Cj |
avgpGj , Riq

ď avgpRi, Rjq `
|Gj |

|Cj |
avgpRj , Gjq

ď avgpRi, Rjq ` ε ¨ avgpRj , Gjq
ď avgpRi, Rjq ` ε ¨ avgpCjq

Combining yields

avgpCi, Cjq ď avgpRi, Rjq ` ε ¨ avgpCjq ` ε ¨ avgpCiq.

Therefore, by applying Corollary 1 to SpCiq, SpCjq, we have that avgpSpCiq, SpCjq “ p1 ˘521

εqavgpRi, Rjq and so avgpCi, Cjq ď p1 ` εqxavgpCi, Cjq since the diameter of the points in Ri522

and Rj is at most avgpCiq{ε and avgpCjq{ε respectively.523

We now aim at proving that avgpCi, Cjq ě p1 ´ OpεηqqxavgpCi, Cjq. Recall that by assumption,524

we have that avgpCiq, avgpCjq ď η ¨ avgpCi, Cjq. Thus, again combining with Corollary 1, we525

have that xavgpCi, Cjq ď p1 ` εqavgpRi, Rjq ` 2εη ¨ avgpCi, Cjq. Moreover, as discussed above,526

we have that avgpCi, Cjq ě p1 ´ OpεqqavgpRi, Rjq and so, rescalling ε, we have xavgpCi, Cjq ď527

p1` εqavgpCi, Cjq, as claimed.528

529

Proof of Theorem A.5. We start with some preprocessing steps and notations. We consider an iso-530

metric embedding of all the input points into L1 with distortion at most p1`εq, for some sufficiently531

small ε ą 0. In the remaining, we thus work with the L1 norm.532

For each point p, for each integer i, let pi “ p1 ¨ p1 . . . p1
loooooomoooooon

i

Namely, the coordinates of pi are ob-533

tained by concatenating the coordinates of p i times. Given a set of j points S “ tp1, p2, . . . , pju534

and a value wS , we let qipSq be the point in a pi ¨ j ¨ d ` 2q-dimensional space with coor-535

dinates pi1, p
i
2, . . . p

i
j , 0, i ¨ j ¨ wS . Namely, qipSq is obtained by concatenating pi of all the j536

points p P S, adding an extra coordinate of value 0 and adding a final coordinate with value537

i ¨ j ¨ wS . We also let dipSq be the point in a pj ¨ i ¨ d ` 2q-dimensional space with coordinates538

p1, p2, . . . pj , p1, p2, . . . pj , . . . p1, p2, . . . pj
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

i¨j

, i ¨ j ¨ wS , 0. Namely obtained by concatenating the co-539

ordinates of the point p1, p2, . . . pj , i times, adding an extra coordinate of value i ¨j ¨wS and adding a540
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final coordinate with value 0. We have the following claim, whose proof follows immediately from541

the definition.542

Claim 1. Given two setsA andB, of size i and j respectively, and two values wA, wB , we have that

1

i ¨ j
||qjpAq ´ dipBq||1 “ wA ` wB `

1

i ¨ j

ÿ

aPA

ÿ

bPB

||a´ b||1.

We now describe our data structure using an approximate nearest-neighbor data structure D for the543

L1 distance between points. We make use of an approximate nearest neighbor data structure Di,j,k,544

for each integers i, j P t1, 2, . . . , ηu.545

Let C be a cluster. The insertion is as follows. Let i “ |C|. The algorithm inserts the point djpCq in546

the data structure Di,j , for all j P t1, 2, . . . , ηu. Deletion of C consists of removing djpCq from the547

Di,j it has been inserted into. The time complexities for insertion and deletion follow immediately.548

The approximate nearest neighbor query for cluster C is performed as follows. For all j P549

t1, 2, . . . , ηu, the algorithm creates the point qjpCq, and makes a nearest neighbor query in the550

data structure Di,j . Let pj be the point returned by the query qjpCq on data structure Di,j551

and νj be the cluster corresponding to pj . Claim 1 implies that 1
|C|¨|νj |

||qjpCq ´ dipνjq||1 “552

p1˘ εqpwC ` wνj ` avgpC, νjqq.553

Then, let j˚ “ argminj avgpC, νjq. We now argue that avgpC, νj
˚

q ` wC ` wνj˚ ď γp1 `554

εqminC1‰CpavgpC,C 1q ` wC ` wC1q.555

Let Ĉ “ argminC1‰CpavgpC,C 1q ` wC ` wC1q and ĵ “ |Ĉ|. Consider the data structure Di,ĵ . By556

its correctness, Di,ĵ returned a point pĵ such that ||qĵpCq ´ pĵ ||1 ď γp||qĵpCq ´ dipĈq||1. Thus,557

applying Claim 1 yields that avgwpC, ν
ĵq `wC `wν ĵ ď γp1` εqpavgpC, Ĉq `wC `wĈq. By the558

choice of j˚, we thus have that avgpC, νj
˚

q ď γavgpC, Ĉq, as claimed.559

Invariant. The correctness of the algorithm is captured by the following invariant. The proof, as560

well as the running time analysis, are deferred to the appendix.561

Lemma A.6 (Invariant for correctness). The following holds with probability at least 1 ´ 1{n3.562

Consider the tth step of the algorithm, let v be the merge value at the tth step.563

1. At the end of the step, no cluster at (inner) average distance greater than vp1 ` εq has564

been merged by the algorithm so far. For any unmerged clusters Ci, Cj , we have that565

xavgpCi, Cjq “ p1`OpεqqavgpCi, Cjq.566

2. For any unmerged cluster C at the end of the step, νtpCq is an unmerged p1 ` Opεqqγ-567

approximate nearest cluster of C.568

3. Finally, at the end of a step of value v, there is no pair of clusters at average distance less569

than v{pp1` εq2γq.570

Proof of Lemma A.6. We prove it by induction on the number of steps of the algorithm. This is571

clearly true at first.572

We start with (1). For simplicity, assume that first that the algorithm does not do lazy sampling and573

runs the sampling procedure after each merge. Then, (1) follows from the definition of the algo-574

rithm and the inductive hypothesis on the correctness of the sampling procedure (Lemma A.4).575

More formally, the definition of the algorithm ensures that no pair of clusters Ci, Cj such that576

xavgpCi, Cjq ą vp1 ` εq are merged Moreover, by the inductive hypothesis, we have that for any577

cluster C, avgpCq ď vp1` εq.578

Thus, we can apply Lemma A.4 with η “ p1` εq and we deduce that for any pair of clusters Ci, Cj ,579

xavgpCi, Cjq “ p1˘ εqavgpCi, Cjq with probability at least 1´ 1{n5. Taking a union bound over all580

n steps and n merges of the algorithm and all Opn2q pairs of clusters in total concludes the proof of581

(1) in the case of non-lazy sampling.582
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To finish the proof of (1), we need to show that lazy sampling does not degrade the qual-583

ity of the outcome of the sampling by too much. Hence, consider an unmerged cluster re-584

sulting from the merge possibly at a previous step of two clusters C1, C2. If |C1 Y C2| ě585

p1 ` ε2{p1 ` γqqmaxpspC1q, spC2qq, then the sampling procedure is applied and the average586

distance between the samples of C1 Y C2 and any other cluster C3 is within a p1 ` εq factor587

from the average distance between C1 Y C2 and C3 with probability at least 1 ´ 1{n4 and the588

above analysis applies. Now, if |C1 Y C2| ă p1 ` ε2{p1 ` γqqmaxpspC1q, spC2qq, then assume589

w.l.o.g. that |C1| ě |C2|. Hence, we have that by Lemma 3.1 that for any other unmerged clus-590

ter C3 avgpC2, C3q ď avgpC2, C1q ` avgpC1, C3q. Now, by the inductive hypothesis, we have591

that avgpC2, C1q ď γavgpC1, C3q and so avgpC2, C3q ď p1 ` γqavgpC1, C3q. It follows that592

avgpC1 Y C2, C3q ď p1 ` εqavgpC1, C3q. Finally, by the induction hypothesis, we have that the593

sample of C1 preserves the distance from C1 to C3 with probability at least 1´ 1{n4 up to a p1` εq594

factor. Thus, we indeed have that the average distance between the samples of any pair of unmerged595

clusters is within a factor p1` εq of the average distance of the pair.596

We then turn to (3), thus consider the end of a step. Observe that if there are two clusters C1, C2597

that are at pairwise distance less than v{pp1` εq2γq then by the inductive hypothesis, the sampling598

procedure guarantees the two samples for C1, C2 are at average distance at most v{γ. Therefore,599

a γ-approximate nearest cluster query returns a cluster at distance less than v. Thus, consider the600

cluster, say C2, that is inserted into the data structure last. When C2 is processed, a nearest neighbor601

query is performed and so, since the clusterC1 has been inserted first in the data structure, C2 should602

have had an approximate nearest neighbor at distance less than v and so should have been merged.603

We now move to prove (2): We finish by considering unmerged clusters at step t. We show that604

for any unmerged cluster C, the nearest cluster is at average distance at least 1
γ avgpC, νpCqq and at605

most p1` 1{nqavgpC, νpCqq. This will conclude the proof of the invariant.606

Let i be the step at which C is created. Let C˚ be the nearest cluster to C at the tth step. By Theo-607

rem A.5, Lemma A.4 and the inductive hypothesis of the γ-approximate nearest neighbor procedure608

we have that avgpνpCq, Cq ď γavgpC˚, Cq. Since the unmerged clusters at step t ą i are the union609

of the clusters of Ci, we have that avgpC,C0q ě avgpC,C˚q for any cluster C0 of Ct0 . It follows610

that for any i1 ě i, the cluster of Ci
1

that is the nearest to C is at distance at least γ´1 ¨avgpC, νpCqq.611

We now show an upper bound on the distance to the cluster C 1 containing νpCq. This follows612

from applying Lemma 3.1 as follows. Consider the sequence of merges that involve νpCq. Let613

νpCq Ă νpCq1 Ă . . . Ă νpCqk denote the clusters that contain νpCq and that are successively614

merged after step i and until time t. By Lemma 3.1, we have that avgpC, νpCq1q ď avgpC, νpCqq`615

avgpνpCq, νpCq1q ď avgpC, νpCqq ` avgpC, νpCqq{n2 since C is not active. Similarly, by the616

inductive hypothesis (1), avgpC, νpCq2q ď avgpC, νpCq1q ` avgpνpCq1, νpCq2q. Here again, C is617

not active and so avgpνpCq1, νpCq2q ď avgpC, νpCqq{n2. Since the overall number of merges is at618

most n, we conclude that avgpC, νpCqkq ď `avgpC, νpCqq ` avgpC, νpCqq{n as claimed.619

Therefore, the invariant also holds and so the inductive hypothesis is satisfied.620

A.4 Running Time Analysis for the approximate Average-Linkage algorithm621

We need to bound the number of times an approximate nearest cluster query is performed, the total622

time incurred by the sampling procedure, the running time of a step, and the number of steps. This623

is the purpose of the following section.624

A.4.1 Sampling Time625

Lemma A.7 bounds the total running time incurred by the sampling procedure.626

Lemma A.7. The total running time caused by the sampling procedure over the entire execution of627

the algorithm is at most Opn1`ρε´2γ log nq.628

Proof. The lemma follows from Lemma A.3 and due to the fact that the procedure is only called629

on clusters resulting from the merge of two clusters C1, C2 such that |C1 Y C2| ě p1 ` ε2{p1 `630

γqqmaxpspC1q, spC2qq. Thus, the number of clusters in which an input point can contribute to the631

running time of the sampling procedure is Opε´2γ log nq.632
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Running Time of a Step At a given step associated with a certain merge value v, the goal is to633

merge all clusters whose nearest neighbor is at distance at most v so that at the end of the step,634

the distance from each cluster to its approximate nearest neighbor is greater than v. Let nv be the635

number of active clusters at the beginning of the step.636

Lemma A.8. The total number of nearest neighbor queries made by the algorithm during a step637

with merge value v is Opnvq.638

Proof. Observe that the total number of merges is at most Opnvq. Moreover the total number of639

nearest neighbor queries is bounded by the total number of merges plus the number of active clusters640

and so at most Opnvq.641

642

A cluster can remain active throughout the entire algorithm. Hence, the number of active step is a643

priori only bounded by Opε´1 log ∆nq which gives the claimed complexity.644

A slightly more involved algorithm allows to remove the dependency in log ∆ at the price of a645

slightly worse approximation guarantee: we were only able to show a γ2-approximation instead of646

a γ-approximation in this case. We defer this to the full version of the paper.647
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