
Appendix for “GNNExplainer:
Generating Explanations for Graph Neural

Networks”

Rex Ying†, Dylan Bourgeois†,‡, Jiaxuan You†, Marinka Zitnik†, and Jure Leskovec†

†Department of Computer Science, Stanford University
‡Robust.AI

{rexying, dtsbourg, jiaxuan, marinka, jure}@cs.stanford.edu

A Multi-instance explanations

The problem of multi-instance explanations for graph neural networks is challenging and an important
area to study.

Here we propose a solution based on GNNEXPLAINER to find common components of explanations
for a set of 10 explanations for 10 different instances in the same label class. More research in this
area is necessary to design efficient Multi-instance explanation methods. The main challenges in
practice is mainly due to the difficulty to perform graph alignment under noise and variances of node
neighborhood structures for nodes in the same class. The problem is closely related to finding the
maximum common subgraphs of explanation graphs, which is an NP-hard problem. In the following
we introduces a neural approach to this problem. However, note that existing graph libraries (based
on heuristics or integer programming relaxation) to find the maximal common subgraph of graphs can
be employed to replace the neural components of the following procedure, when trying to identify
and align with a prototype.

The output of a single-instance GNNEXPLAINER indicates what graph structural and node feature
information is important for a given prediction. To obtain an understanding of “why is a given set of
nodes classified with label y”, we want to also obtain a global explanation of the class, which can
shed light on how the identified structure for a given node is related to a prototypical structure unique
for its label. To this end, we propose an alignment-based multi-instance GNNEXPLAINER.

For any given class, we first choose a reference node. Intuitively, this node should be a prototypical
node for the class. Such node can be found by computing the mean of the embeddings of all nodes in
the class, and choose the node whose embedding is the closest to the mean. Alternatively, if one has
prior knowledge about the important computation subgraph, one can choose one which matches most
to the prior knowledge.

Given the reference node for class c, vc, and its associated important computation subgraph GS(vc),
we align each of the identified computation subgraphs for all nodes in class c to the reference GS(vc).
Utilizing the idea in the context of differentiable pooling [1], we use the a relaxed alignment matrix
to find correspondence between nodes in an computation subgraph GS(v) and nodes in the reference
computation subgraph GS(vc). Let Av and Xv be the adjacency matrix and the associated feature
matrix of the to-be-aligned computation subgraph. Similarly let A∗ be the adjacency matrix and
associated feature matrix of the reference computation subgraph. Then we optimize the relaxed
alignment matrix P ∈ Rnv×n∗

, where nv is the number of nodes in GS(v), and n∗ is the number of
nodes in GS(vc) as follows:

min
P
|PTAvP −A∗|+ |PTXv −X∗|. (1)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: GNNEXPLAINER is able to provide a prototype for a given node class, which can help identify
functional subgraphs, e.g. a mutagenic compound from the MUTAG dataset.

The first term in Eq. (1) specifies that after alignment, the aligned adjacency for GS(v) should be as
close to A∗ as possible. The second term in the equation specifies that the features should for the
aligned nodes should also be close.

In practice, it is often non-trivial for the relaxed graph matching to find a good optimum for matching
2 large graphs. However, thanks to the single-instance explainer, which produces concise subgraphs
for important message-passing, a matching that is close to the best alignment can be efficiently
computed.
Prototype by alignment. We align the adjacency matrices of all nodes in class c, such that they are
aligned with respect to the ordering defined by the reference adjacency matrix. We then use median
to generate a prototype that is resistent to outliers, Aproto = median(Ai), where Ai is the aligned
adjacency matrix representing explanation for i-th node in class c. Prototype Aproto allows users to
gain insights into structural graph patterns shared between nodes that belong to the same class. Users
can then investigate a particular node by comparing its explanation to the class prototype.

B Experiments on multi-instance explanations and prototypes

In the context of multi-instance explanations, an explainer must not only highlight information locally
relevant to a particular prediction, but also help emphasize higher-level correlations across instances.
These instances can be related in arbitrary ways, but the most evident is class-membership. The
assumption is that members of a class share common characteristics, and the model should help
highlight them. For example, mutagenic compounds are often found to have certain characteristic
functional groups that such NO2, a pair of Oxygen atoms together with a Nitrogen atom. A trained
eye might notice that Figure 1 already hints at their presence. The evidence grows stronger when a
prototype is generated by GNNEXPLAINER, shown in Figure 1. The model is able to pick-up on this
functional structure, and promote it as archetypal of mutagenic compounds.

C Further implementation details

Training details. We use the Adam optimizer to train both the GNN and explaination methods. All
GNN models are trained for 1000 epochs with learning rate 0.001, reaching accuracy of at least 85%
for graph classification datasets, and 95% for node classification datasets. The train/validation/test
split is 80/10/10% for all datasets. In GNNEXPLAINER, we use the same optimizer and learning
rate, and train for 100 - 300 epochs. This is efficient since GNNEXPLAINER only needs to be trained
on a local computation graph with < 100 nodes.
Regularization. In addition to graph size constraint and graph laplacian constraint, we further impose
the feature size constraint, which constrains that the number of unmasked features do not exceed a
threshold. The regularization hyperparameters for subgraph size is 0.005; for laplacian is 0.5; for
feature explanation is 0.1. The same values of hyperparameters are used across all experiments.
Subgraph extraction. To extract the explanation subgraph GS , we first compute the importance
weights on edges (gradients for GRAD baseline, attention weights for ATT baseline, and masked
adjacency for GNNEXPLAINER). A threshold is used to remove low-weight edges, and identify the
explanation subgraph GS . The ground truth explanations of all datasets are connected subgraphs.
Therefore, we identify the explanation as the connected component containing the explained node in
GS . For graph classification, we identify the explanation by the maximum connected component of
GS . For all methods, we perform a search to find the maximum threshold such that the explanation is

2

at least of size KM . When multiple edges have tied importance weights, all of them are included in
the explanation.

References
[1] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical graph representa-

tion learning with differentiable pooling. In NeurIPS, 2018.

3

