
A Algorithm for Episode Loss399

Algorithm 1: Training episode loss computation for adaptive cross-modality few-shot learning. M is
the total number of classes in the training set, N is the number of classes in every episode, K is the
number of supports for each class, KQ is the number of queries for each class,W is the pretrained
label embedding dictionary.

Input: Training set Dtrain = {(xi, yi)}i, yi ∈ {1, ...,M}. Dctrain = {(xi, yi) ∈ Dtrain | yi = c}.
Output: Episodic loss L(θ) for sampled episode e.
{Select N classes for episode e}
C ← RandomSample({1, ...,M}, N )
{Compute cross-modal prototypes}
for c in C do
Sce ← RandomSample(Dctrain,K)
Qce ← RandomSample(Dctrain \ Sce ,KQ)
pc ← 1
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ec ← LookUp(c,W)
wc ← g(ec)
λc ← 1

1+exp(−h(wc))

p′c ← λc · pc + (1− λc) ·wc

end for
{Compute loss}
L(θ)← 0
for c in C do

for (qt, yt) in Qce do
L(θ)← L(θ) + 1

N ·K [d(f(qt),p
′
c)) + log

∑
k exp(−d(f(qt),p

′
k))]

end for
end for

B Descriptions of data sets400

miniImageNet. This dataset is a subset of ImageNet ILSVRC12 dataset [40]. It contains 100401

randomly sampled categories, each with 600 images of size 84× 84. For fair comparison with other402

methods, we use the same split proposed by Ravi et al. [38], which contains 64 categories for training,403

16 for validation and 20 for test.404

tieredImageNet. This dataset is a larger subset of ImageNet than miniImageNet. It contains 34405

high-level category nodes (779,165 images in total) that are split in 20 for training, 6 for validation406

and 8 for test. This leads to 351 actual categories for training, 97 for validation and 160 for the407

test. There are more than 1,000 images for each class. The train/val/test split is done according to408

their higher-level label hierarchy. According to Ren et al. [39], splitting near the root of ImageNet409

hierarchy results in a more realistic (and challenging) scenario with training and test categories that410

are less similar.411

CUB-200. Caltech-UCSD-Birds 200-2011 (CUB-200) [55] is a fine-grained and medium scale412

dataset with respect to both number of images and number of classes, i.e. 11,788 images from 200413

different types of birds annotated with 312 attributes [58]. We chose the split proposed by Xian et414

al. [58]. We used the 312-dimensional hand-crafted attribution as the semantic modality for fair415

comparison with other published modality alignment methods.416

Word embeddings. We use GloVe [37] to extract the semantic embeddings for the category labels.417

GloVe is an unsupervised approach based on word-word co-occurrence statistics from large text418

corpora. We use the Common Crawl version trained on 840B tokens. The embeddings are of419

dimension 300. When a category has multiple (synonym) annotations, we consider the first one. If420

the first one is not present in GloVe’s vocabulary we use the second. If there is no annotation in421

GloVe’s vocabulary for a category (4 cases in tieredImageNet), we randomly sample each dimension422

of the embedding from a uniform distribution with the range (-1, 1). If an annotation contains more423
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than one word, the embedding is generated by averaging them. We also experimented with fastText424

embeddings [17] and observed similar performances.425

C Baselines426

For modality alignment baselines, we follow CADA-VAE [44]’s few-shot experimental setting.427

During training, we randomly sample N -shot images for the test classes, and add them in the training428

data to train the alignment model. During test, we compare the image query and the class embedding429

candidates in the aligned space to make decisions as in ZSL and GZSL.430

For the meta-learning extensions of modality alignment methods, instead of including the N -shot431

images into training data, we follow the standard episode training (explained in Section 3) of metric-432

based meta-learning approach and train models only with samples from training classes. Moreover,433

during training, we add an additional loss illustrated in Equation 1 and 3, to ensure the metric space434

learned on the visual side matching the few-shot test scenario. At test, we employ the standard435

few-shot testing approach (described in Appendix D) and calculate the prototype representations of436

test classes as follows:437

pc =
Σir

c
i + wc

N + 1
, (7)

where ri is the representation of the i-th support image. For both training and test, we need a visual438

representation space to calculate prototype representations. For DeViSE, they are calculated in its439

visual space before the transformer [9]. For both ReViSE and CADA-VAE, prototype representations440

are calculated in the latent space. For f-CLSWGAN, they are calculated in the discriminator’s input441

space.442

D Implementation Details of AM3 Experiments443

We model the visual feature extractor f with a ResNet-12 [12], which has shown to be very effective444

for few-shot classification [35]. This network produces embeddings of dimension 512. We use this445

backbone in all the modality-alignment baselines mentioned above and in AM3 implementations446

(with both backbones). We call ProtoNets++ the prototypical network [47] implementation with this447

more powerful backbone.448

The semantic transformation g is a neural network with one hidden layer with 300 units which449

also outputs a 512-dimensional representation. The transformation h of the mixture mechanism450

also contains one hidden layer with 300 units and outputs a single scalar for λc. On both g and h451

networks, we use ReLU non-linearity [10] and dropout [49] (we set the dropout coefficient to be 0.7452

on miniImageNet and 0.9 on tieredImageNet).453

The model is trained with stochastic gradient descent with momentum [51]. We use an initial learning454

rate of 0.1 and a fixed momentum coefficient of 0.9. On miniImageNet, we train every model for455

30,000 iterations and anneal the learning rate by a factor of ten at iterations 15,000, 17,500 and456

19,000. On tieredImageNet, models are trained for 80,000 iterations and the learning rate is reduced457

by a factor of ten at iteration 40,000, 50,000, 60,000.458

The training procedure composes a few-shot training batch from several tasks, where a task is a fixed459

selection of 5 classes. We found empirically that the best number of tasks per batch are 5,2 and 1460

for 1-shot, 5-shot and 10-shot, respectively. The number of query per batch is 24 for 1-shot, 32 for461

5-shot and 64 for 10-shot. All our experiments are evaluated following the standard approach of462

few-shot classification: we randomly sample 1,000 tasks from the test set each having 100 random463

query samples, and average the performance of the model on them.464

All hyperparameters were chosen based on accuracy on validation set. All our results are reported465

with an average over five independent run (with a fixed architecture and different random seeds) and466

with 95% confidence intervals.467

E Results on CUB-200468

We also conduct experiments on CUB-200 to better compare with modality-alignment baselines469

from ZSL. Table 3 shows the results. For 0-shot scenario, AM3 degrades to the simplest modality470
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alignment method that maps the text semantic space to the visual space. Therefore, without the471

adaptive mechanism, AM3 performs roughly the same with DeViSE, which indicates that the adaptive472

mechanism play the main role on the performance boost we observed in FSL. The results on other473

few-shot cases on CUB-200 are consistent with the other two few-shot learning data sets.474

We also conduct generalized few-shot learning experiments as reported for CADA-VAE in [44] to475

compare AM3 with the published FSL results for CADA-VAE. Figure 4 shows that AM3-ProtoNets476

outperforms CADA-VAE in every case tested. We consider as a metric the harmonic mean (H-acc)477

between the accuracy of seen and unseen classes, as defined in [56, 44].478

Model Test Accuracy
0-shot 1-shot 5-shot

DeViSE [9] 52.0% 54.7% 60.4%
ReViSE [14] 55.2% 56.3% 63.7%
VZSL [] 57.4% 60.8% 70.0%
CBPL [29] 61.9% - -
f-CLSWGAN [57] 62.1% 64.7% 73.7%
CADA-VAE [44] 61.7% 64.9% 71.9%

ProtoNets - 68.8% 76.4%
AM3-ProtoNets 51.3% 73.6% 79.9%
TADAM [35] - 69.2% 78.6%
AM3-TADAM 50.7% 74.1% 79.7%

Table 3: Few-shot classification accuracy on unseen-test split of CUB-200.
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Figure 4: H-acc of generalized few-shot learning on CUB-200.

F Ablation study on the input of the adaptive mechanism479

We also perform an ablation study to see how the adaptive mechanism performs with respect to480

different features. Table 4 shows results, on both datasets, of our method with three different inputs481

for the adaptive mixing network h: (i) the raw GloVe embedding (h(e)), (ii) the visual representation482

(h(p)) and (iii) a concatenation of both the query and the language embedding (h(q,w)).483

We observe that conditioning on transformed GloVe features performs better than on the raw features.484

Also, conditioning on semantic features performs better than when conditioning on visual ones,485

suggesting that the former space has a more appropriate structure to the adaptive mechanism than486

the latter. Finally, we note that conditioning on the query and semantic embeddings helps with the487

ProtoNets++ backbone but not with TADAM.488
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Method ProtoNets++ TADAM
1-shot 5-shot 1-shot 5-shot

h(e) 61.23 74.77 57.47 72.27
h(p) 64.48 74.80 64.93 77.60
h(w,q) 66.12 75.83 53.23 56.70

h(w) (AM3) 65.21 75.20 65.30 78.10

Table 4: Performance of our method when the adaptive mixing network is conditioned on different
features. Last row is the original model.
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