
A Proof of Proposition 1412

Proof. To facilitate the proof, we first rewrite the ELBO in Eqn. (2) in terms of the reconstruction413

and the KL term:414

FD = E
x⇠D

"
TX

t=1

�
Reconx,t + KLx,t

�
#
, where

Reconx,t = Eq�(zt|x)
⇥
log p✓(xt | zt,x<t)

⇤
, (10)

KLx,t = �KL
�
q�(zt | x)

��p✓(zt | x<t)
�
. (11)

Then we substitute the delta posterior (Eqn. (6)) into both Recon and KL terms. Eqn. (10) and (11)415

can be simplified into416

Recon�
x,t = log p✓(x

a
t | xa

t ,x<t) + log p✓(x
b
t | xa

t ,x<t),

KL�
x,t = � log q�(x

a
t | x) + log p✓(x

a
t | x<t).

Here, we also use assumption p✓(xt | zt,x<t) ⇡ p✓(xt | zt,x<t) to simplify formula. Here the417

terms log p✓(xa
t | xa

t ,x<t) and � log q�(xa
t | x) can be canceled out. Then we can rewrite the ELBO418

function as,419

max
✓

LD = E
x⇠D

"
TxX

t=1

h
log p✓(x

a
t | x<t) + log p✓(x

b
t | xa

t ,x<t)
i#

. (12)

From another perspective, the form of Eqn. (12) is equivalent to a particular auto-regressive factoriza-420

tion of the likelihood function,421

p�✓(xt | x<t) = p✓(x
a
t | x<t)p✓(x

b
t | xa

t ,x<t)

⇡
Y

xt,i2xa
t

p✓(xt,i | x<t)
Y

xt,i2xb
t

p✓(xt,i | xa
t ,x<t).

422

B Different Variants of Stochastic Recurrent Neural Networks423

This section detail our parameterization and recent publications [9, 10, 11, 12] of the stochastic424

recurrent network models.425

For stochastic recurrent neural networks, the generic decomposition of generative distribution shared426

by previous methods has the form:427

p(x, z) =
TY

t=1

p(xt | zt,x<t)p(zt | z<t,x<t),

where each new step (xt, zt) depends on the entire history of the observation x<t and the latent428

variables z<t. Similarly, for the approximate posterior distribution, all previous approaches can be429

unified under the form430

q(z | x) =
TY

t=1

p(zt | z<t,x).

Given the generic forms, various parameterizations with different independence assumptions have431

been introduced:432

• STORN [9]: This parameterization makes two simplifications. Firstly, the prior distribution433

p(zt | z<t,x<t) is assumed to be context independent, i.e.,434

p(zt | z<t,x<t) ⇡ p(zt).

Secondly, the posterior distribution is simplified as435

q(zt | x, z<t) ⇡ q(zt | x<t),

11

which drops both the dependence on the future information x�t as well as that on sub-sequence of436

previous latent variables z<t.437

Despite the simplification in the prior, STORN imposes no independence assumption on the output438

distribution p(xt | zt,x<t). Specifically, an RNN is used to capture the two conditional factors439

zt,x<t:440

p(xt | zt,x<t) , p(xt | ht),

ht = RNN([xt�1, zt], ht�1).

Notice that, the RNN is capable of modeling the correlation among the latent variables zt and441

encodes the information into ht.442

• VRNN [10]: This parameterization eliminates some independence assumptions in STORN. Firstly,443

the prior distribution becomes fully context dependent via a context RNN:444

p(zt | z<t,x<t) , p(zt | vt�1), where
vt�1 = RNN([xt�1, zt�1], vt�2).

Notice that vt�1 is dependent on all previous latent variables z<t. Hence, there are no independence445

assumptions involved in the prior distribution. However, notice that the computation of v =446

[v1, · · · , vT] cannot be parallelized due to the dependence on the latent variable as an input.447

Secondly, compared to STORN, the posterior in VRNN additionally depends on the previous latent448

variables z<t:449

q(zt | z<t,x) ⇡ q(zt | z<t,x<t) , q(zt | vt�1),

where vt�1 is the same forward vector used to construct the prior distribution above. However, the450

posterior still does not depend on the future observations x�t.451

Finally, the output distribution is simply constructed as452

p(xt | zt,x<t) , p(xt | ht), where
ht = [vt�1, zt].

• SRNN [11]: The abbreviation of this model is the same as the one used for the stochastic recurrent453

neural network in the main body of our paper, but they do not stand for one thing. Compared to454

VRNN, SRNN (1) introduces a Markov assumption into the latent-to-latent dependence and (2)455

makes the posterior condition on the future observations x�t.456

Specifically, SRNN employs two RNNs, one forward and the other backward, to consume the457

observation sequence from the two different directions:458

�!vt =
��!
RNN(xt,

��!vt�1),
 �vt =

 ��
RNN(

⇥
xt,
��!vt�1

⇤
, ��vt+1).

From the parametric form, notice that �vt is always conditioned on the entire observation x, while459 �!vt only has access to xt.460

Then, the prior and posterior are respectively formed by461

p(zt | z<t,x<t) ⇡ p(zt | zt�1,x<t) , p(zt | ��!vt�1, zt�1),

q(zt | z<t,x) ⇡ q(zt | zt�1,x) , q(zt | �vt , zt�1),

where the ⇡ indicates the aforementioned Markov assumption. In other words, given the sampled462

value of zt�1, zt is independent of z<t�1.463

Finally, the output distribution of SRNN also involves the same simplification:464

p(xt | zt,x<t) ⇡ p(xt | zt,x<t) = p(xt | ht),where
ht =

⇥��!vt�1, zt
⇤
.

• Z-Forcing SRNN [12]: By feeding the latent variable as an additional input into the forward465

RNN, an approach similar to the VRNN, this parameterization successfully removes the Markov466

assumption in SRNN.467

12

Specifically, the computation goes as follows:468

 �vt =
 ��
RNN(xt,

 ��vt+1),
�!vt =

��!
RNN([xt, zt],

��!vt�1),

where the zt is sampled from either the prior or posterior:469

p(zt | z<t,x<t) , p(zt | ��!vt�1),

q(zt | z<t,x) , q(zt |
⇥��!vt�1,

 �vt
⇤
).

Notice that, since ��!vt�1 relies on z<t in a deterministic manner, there is no Markov assumption470

anymore when ��!vt�1 is used to construct the prior and posterior.471

The same property also extends to the output distribution, which has the same parametric form as472

SRNN although the ��!vt�1 contains different information:473

p(xt | zt,x<t) = p(xt | ht),where
ht =

⇥��!vt�1, zt
⇤
.

In the main body of this paper, the Z-forcing SRNN is used as the parameterization of SRNN. We474

also follow its optimization process. Moreover, in our experiments, we find that, by dropping the475

dependency between historical latent variables and output, the model can be trained faster and achieve476

better performance in some cases. More specifically, the prior and posterior is computed in the477

following manner,478

p(zt | z<t,x<t) ⇡ p(zt | x<t) , p(zt | ��!vt�1),

q(zt | x, z<t) ⇡ q(zt | x) , q(zt |
⇥��!vt�1,

 �vt
⇤
),

where the forward and backward vectors are both computed separately in a single pass:479

�!vt =
��!
RNN(xt,

��!vt�1),
 �vt =

 ��
RNN(xt,

 ��vt+1),

Then the emission distribution is computed as:480

p(xt|zt,x<t) = p(xt|ht) where,
ht = RNN([��!vt�1, zt], ht�1),

For all experiment cases using SRNN in this paper, we run both Z-forcing SRNN and the above481

simplified version, and report the best performance. The hyper-parameter choice and implementation482

details are included in Appendix D.483

C Detail Information about Datasets in Section 5484

At first, we provide the details about the three additional types of data used in the experiment of485

Section 5.486

• The first type is the MIDI sound sequence introduced in [23]. Each step of the MIDI sound487

sequence is 88-dimensional binary vector, representing the activated piano notes ranging from A0488

to C8. Intuitively, to make the MIDI sound musically plausible, there must be some correlations489

among the notes within each step. However, different from the multi-frame speech data, the490

correlation structure is not temporal any more.491

To avoid the unnecessary complication due to overfitting, we utilize the two relatively larger492

datasets, namely the Muse (orchestral music) and Nottingham (folk tunes). Following earlier493

work [23], we report step-averaged log-likelihood for these two MIDI datasets.494

• The second one we consider is the widely used handwriting trajectory dataset, IAM-OnDB. Each495

step of the trajectory is represented by a 3-dimension vector, where the first dimension is of a496

binary value, indicating whether the pen is touching the paper or not, and the second and third497

dimensions are the coordinates of the pen given it is on the paper. Different from other datasets,498

the dimensionality of each step in IAM-OnDB is significantly lower. Hence, it is reasonable to499

believe the intra-step structure is relatively simpler here. Following earlier work [10], we report500

sequence-averaged log-likelihood for the IAM-OnDB dataset.501

13

• The last type is actually a synthetic dataset we derive from TIMIT. Specifically, we maintain502

the multi-frame structure of the speech sequence but permute the frames in each step with a503

predetermined random order. Intuitively, this can be viewed as an extreme test of a model’s504

capability of discovering the underlying correlation between frames. Ideally, an optimal model505

should be able to discover the correct sequential order and recover the same performance as the506

original TIMIT. For convenience, we will call this dataset Perm-TIMIT.507

Below is the dataset statistic information.508

Datasets Number of Steps Frames / Step
TIMIT 1.54M 200
VCTK 12.6M 200
Blizzard 90.5M 200

Perm-TIMIT 1.54M 200

Muse 36.1M 88
Nottingham 23.5M 88

IAM-OnDB 7.63M 3
Table 5: Statistics of the datasets in consideration.

The dataset statistic is summarized in Table 5. “Frame / Step” indicates the dimension of the vector509

xt at each time stamp. “Number of Steps” is the total length for the multivariate sequence.510

D Experiment Details511

Domains Speech MIDI Handwriting
F-RNN 17.41M 0.57M 0.93M
F-SRNN 17.53M 2.28M 1.17M
�-RNN-random 18.57M 0.71M N/A
RNN-flat 16.86M 1.58M N/A
SRNN-flat 16.93M 2.24M N/A
RNN-hier 17.28M 1.87M 0.97M
SRNN-hier 17.25M 3.05M 1.02M

Table 6: The parameter numbers of all implemented methods.

In the following, we will provide more details about our implementation. Firstly, Table 6 reports the512

parameter size of all models compared in Table 4. For data domains with enough data (i.e., speech513

and handwriting), we ensure the parameter size is about the same. On the smaller MIDI dataset, we514

only make sure the RNN variants do not use more parameters than SRNNs do.515

For all methods, we use the Adam algorithm [25] as the optimizer with learning rate 0.001. The516

cosine schedule [26] is used to anneal the learning rate from 0.001 to 0.000001 during the training517

process. The batch size is set to 32 for TIMIT, 128 for VCTK and Blizzard, 16 for Muse, Nottingham,518

and 32 for IAM-OnDB. The total number of training steps is 20k for Muse, Nottingham, and519

IAM-OnDB, 40k for TIMIT, 80k for VCTK, 160K for Blizzard. For all SRNN variants, we follow520

previous work to employ the KL annealing strategy, where the coefficient on the KL term is increased521

from 0.2 to 1.0 by an increment of 0.00005 after each parameter update [12]. Because our SRNN522

parameterization uses Z-forcing framework, the ↵ and � value for its auxiliary loss is searched from523

the set {0, 0.0025, 0.005}.524

For RNN-hier and SRNN-hier models, we use the RNN as the implementation of the low-level525

auto-regressive factorization function in the speech datasets, including TIMIT, VCTK, and Blizzard.526

For other datasets, we use the masked MLP as the low-level auto-regressive factorization function.527

For the architectural details such as the number of layers and hidden dimensions used in this study,528

we refer the readers to the accompanied source code.529

14

E Training Time Comparison530

Here, we report the training time of different methods in TIMIT dataset. The results is illustrated531

in Table 7. Tx is stands for the number of time stamps. L is the dimension of each time stamp. All532

experiments are run on NVIDIA GTX 1080Ti.533

Model Tx L Time
F-RNN 40 200 0.86h
F-SRNN 40 200 1.36h

RNN-flat 1,000 1 20.02h
SRNN-flat 1,000 1 62.86h

RNN-hier 40 200 1.55h
SRNN-hier 40 200 2.40h

Table 7: Training time comparison between the models in Table 4

F Related Work534

In the field of probabilistic sequence modeling, many efforts prior to deep learning have been devoted535

to State Space Models [27], such as the Hidden Markov Model [28] with discrete states and the536

Kalman Filter [29] whose states are continuous.537

Recently, the focus has shifted to deep sequential models, including tractable deep auto-regressive538

models without any latent variable and deep stochastic models that combine the powerful nonlinear539

computation of neural networks and the stochastic flexibility of latent-variable models. The recurrent540

temporal RBM [30] and RNN-RBM [23] are early examples of how latent variables can be incorpo-541

rated into deep neural networks. After VAE is introduced, the stochastic back-propagation makes it542

easy to combine the deep neural networks and latent-variable models, leading to stochastic recurrent543

models introduced in Section 1, temporal sigmoid belief networks [31], deep Kalman Filters [32],544

deep Markov Models [33], Kalman variational auto-encoders [34] and many other variants. The545

authors [35] provide a general discussion on how the classic graphical models and deep neural546

networks can be combined.547

15

