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1 Preliminaries

1.1 Convergence and lower semi-continuity

Definition 1 (Weak convergence). Let (µk)k∈N be a sequence of probability measures on Y. We say
that µk converges weakly to a probability measure µ on Y, and write (µk)k∈N

w−→ µ (or µk
w−→ µ), if

for any continous and bounded function f : Y → R, we have

lim
k→+∞

∫
f dµk =

∫
f dµ .

Definition 2 (Epi-convergence). Let Θ be a metric space and f : Θ → R. Consider a sequence
(fk)k∈N of functions from Θ to R. We say that the sequence (fk)k∈N epi-converges to a function
f : Θ→ R, and write (fk)k∈N

e−→ f , if for each θ ∈ Θ,

lim inf
k→∞

fk(θk) ≥ f(θ) for every sequence (θk)n∈N such that lim
k→+∞

θk = θ ,

and lim sup
k→∞

fk(θk) ≤ f(θ) for a sequence (θk)n∈N such that lim
k→+∞

θk = θ .

An equivalent and useful characterization of epi-convergence is given in [1, Proposition 7.29], which
we paraphrase in Proposition S4 after recalling the definition of lower semi-continuous functions.
Definition 3 (Lower semi-continuity). Let Θ be a metric space and f : Θ → R. We say that f is
lower semi-continuous (l.s.c.) on Θ if for any θ0 ∈ Θ,

lim inf
θ→θ0

f(θ) ≥ f(θ0)

Proposition S4 (Characterization of epi-convergence via minimization, Proposition 7.29 of [1]). Let
Θ be a metric space and f : Θ→ R be a l.s.c. function. The sequence (fk)k∈N, with fk : Θ→ R for
any n ∈ N, epi-converges to f if and only if

(a) lim infk→∞ infθ∈K fk(θ) ≥ infθ∈K f(θ) for every compact set K ⊂ Θ ;

(b) lim supk→∞ infθ∈O fk(θ) ≤ infθ∈O f(θ) for every open set O ⊂ Θ.

[1, Theorem 7.31], paraphrased below, gives asymptotic properties for the infimum and argmin of
epiconvergent functions and will be useful to prove the existence and consistency of our estimators.
Theorem S5 (Inf and argmin in epiconvergence, Theorem 7.31 of [1]). Let Θ be a metric space,
f : Θ→ R be a l.s.c. function and (fk)k∈N be a sequence with fk : Θ→ R for any n ∈ N. Suppose
(fk)k∈N

e−→ f with −∞ < infθ∈Θ f(θ) <∞.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



(a) It holds limk→∞ infθ∈Θ fk(θ) = infθ∈Θ f(θ) if and only if for every η > 0 there exists a
compact set K ⊂ Θ and N ∈ N such for any k ≥ N ,

inf
θ∈K

fk(θ) ≤ inf
θ∈Θ

fk(θ) + η .

(b) In addition, lim supk→∞ argminθ∈Θfk(θ) ⊂ argminθ∈Θf(θ).

2 Preliminary results

In this section, we gather technical results regarding lower semi-continuity of (expected) Sliced-
Wasserstein distances and measurability of MSWE which will be needed in our proofs.

2.1 Lower semi-continuity of Sliced-Wasserstein distances

Lemma S6 (Lower semi-continuity of SWp). Let p ∈ [1,∞). The Sliced-Wasserstein distance of
order p is lower semi-continuous on Pp(Y)×Pp(Y) endowed with the topology of weak convergence,
i.e. for any sequences (µk)k∈N and (νk)k∈N of Pp(Y) which converge weakly to µ ∈ Pp(Y) and
ν ∈ Pp(Y) respectively, we have:

SWp(µ, ν) ≤ lim inf
k→+∞

SWp (µk, νk) .

Proof. First, by the continuous mapping theorem, if a sequence (µk)k∈N of elements of Pp(Y)
converges weakly to µ, then for any continuous function f : Y → R, (f]µk)k∈N converges weakly
to f]µ. In particular, for any u ∈ Sd−1, u?]µk

w−→ u?]µ since u? is a bounded linear form thus
continuous.

Let p ∈ [1,∞). We introduce the two sequences (µk)k∈N and (νk)k∈N of elements of Pp(Y) such
that µk

w−→ µ and νk
w−→ ν. We show that for any u ∈ Sd−1,

Wp
p(u

?
]µ, u

?
]ν) ≤ lim inf

k→+∞
Wp

p(u
?
]µk, u

?
]νk) . (S1)

Indeed, if (S1) holds, then the proof is completed using the definition of the Sliced-Wasserstein
distance (7) and Fatou’s Lemma. Let u ∈ Sd−1. For any k ∈ N, let γk ∈ P(R× R) be an optimal
transference plan between u?]µk and u?]νk for the Wasserstein distance of order p which exists by [2,
Theorem 4.1] i.e.

Wp
p(u

?
]µk, u

?
]νk) =

∫
R×R
|a− b|dγk(a, b) .

Note that by [2, Lemma 4.4] and Prokhorov’s Theorem, (γk)k∈N is sequentially compact in P(R×R)
for the topology associated with the weak convergence. Now, consider a subsequence (γφ1(k))k∈N
where φ1 : N→ N is increasing such that

lim
k→+∞

∫
R×R
|a− b|p dγφ1(k)(a, b) = lim

k→+∞
Wp

p(u
?
]µφ1(k), u

?
]νφ1(k))

= lim inf
k→+∞

Wp
p(u

?
]µk, u

?
]νk) . (S2)

Since (γk)k∈N is sequentially compact, (γφ1(k))k∈N is sequentially compact as well, and therefore
there exists an increasing function φ2 : N→ N and a probability distribution γ ∈ P(R× R) such
that (γφ2(φ1(k)))k∈N converges weakly to γ. Then, we obtain by (S2),∫

R×R
‖a− b‖p dγ(a, b) = lim

k→+∞

∫
R×R
‖a− b‖p dγφ2(φ1(k))(a, b) = lim inf

k→+∞
Wp

p(u
?
]µk, u

?
]νk) .

If we show that γ ∈ Γ(u?]µ, u
?
]ν), it will conclude the proof of (S1) by definition of the Wasserstein

distance (5). But for any continuous and bounded function f : R → R, since for any k ∈ N,
γk ∈ Γ(µk, νk), and (µk)k∈N, (νk)k∈N converge weakly to µ and ν respectively, we have:∫

R×R
f(a)dγ(a, b) = lim

k→+∞

∫
R×R

f(a)dγφ2(φ1(k))(a, b) = lim
k→+∞

∫
R
f(a)du?]µφ2(φ1(k))(a)

=

∫
R
f(a)du?]µ(a) ,
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and similarly ∫
R×R

f(b)dγ(a, b) =

∫
R
f(b)du?]ν(a) .

This shows that γ ∈ Γ(u?]µ, u
?
]ν) and therefore, (S1) is true. We conclude by applying Fatou’s

Lemma.

By a direct application of Lemma S6, we have the following result.

Corollary 7. Assume A1. Then, (µ, θ) 7→ SWp(µ, µθ) is lower semi-continuous in Pp(Y)×Θ.

Lemma S8 (Lower semi-continuity of ESWp). Let p ∈ [1,∞) and m ∈ N∗. Denote for any
µ ∈ Pp(Y), µ̂m = (1/m)

∑m
i=1 δZi , where Z1:m are i.i.d. samples from µ. Then, the map (ν, µ) 7→

E [SWp(ν, µ̂m)] is lower semi-continuous on Pp(Y)× Pp(Y) endowed with the topology of weak
convergence.

Proof. We consider two sequences (µk)k∈N and (νk)k∈N of probability measures in Y, such that
(µk)k∈N

w−→ µ and (νk)k∈N
w−→ ν, and we fix m ∈ N∗.

By Skorokhod’s representation theorem, there exists a probability space (Ω̃, F̃ , P̃), a sequence
of random variables (X̃1

k , . . . , X̃
m
k )k∈N and a random variable (X̃1, . . . , X̃m) defined on Ω̃ such

that for any k ∈ N and i ∈ {1, . . . ,m}, X̃i
k has distribution µk, X̃i has distribution µ and

(X̃1
k , . . . , X̃

m
k )k∈N∗ converges to (X̃1, . . . , X̃m), P̃-almost surely. We then show that the se-

quence of (random) empirical distributions (µ̂k,m)k∈N defined by µ̂k,m = (1/m)
∑m
i=1 δX̃ik

,

weakly converges to µ̂m = (1/m)
∑m
i=1 δX̃i , P̃-almost surely. Note that it is sufficient to

show that for any deterministic sequence (x1
k, . . . , x

m
k )k∈N∗ which converges to (x1, . . . , xm),

i.e. limk→+∞maxi∈{1,...,m} ρ(xik, x
i) = 0, then the sequence of empirical distributions (ν̂k,m)k∈N

defined by ν̂k,m = (1/m)
∑m
i=1 δxik , weakly converges to ν̂m = (1/m)

∑m
i=1 δxi . Note that since

the Lévy-Prokhorov metric dP metrizes the weak convergence by [3, Theorem 6.8], we only need to
show that limk→+∞ dP(ν̂k,m, ν̂m) = 0. More precisely, since for any probability measure ζ1 and
ζ2,

dP(ζ1, ζ2) = inf {ε > 0 : for any A ∈ Y , ζ1(A) ≤ ζ2(Aε) + ε and ζ2(A) ≤ ζ1(Aε) + ε} ,

whereY is the Borel σ-field of (Y, ρ) and for any A ∈ Y , Aε = {x ∈ Y : ρ(x, y) < ε for any y ∈ A},
we get

dP(ν̂k,m, ν̂m) ≤ 2 max
i∈{1,...,m}

ρ(xik, x
i) ,

and therefore limk→+∞ dP(ν̂k,m, ν̂m) = 0, so that, (ν̂k,m)k∈N weakly converges to ν̂m.

Finally, we have that µ̂k,m = (1/m)
∑m
i=1 δX̃ik

, weakly converges to µ̂m = (1/m)
∑m
i=1 δX̃i , P̃-

almost surely and we obtain the final result using the lower semi-continuity of the Sliced-Wasserstein
distance derived in Lemma S6 and Fatou’s lemma which give

Ẽ [SWp(ν, µ̂m)] ≤ Ẽ
[
lim inf
i→∞

SWp(νi, µ̂m,i)
]
≤ lim inf

i→∞
Ẽ [{SWp(νi, µ̂m,i)] ,

where Ẽ is the expectation corresponding to P̃.

The following corollary is a direct consequence of Lemma S8.

Corollary 9. Assume A1. Then, (ν, θ) 7→ E[SWp(ν, µ̂θ,m)|Y1:n] is lower semi-continuous on
P(Y)×Θ.

2.2 Measurability of the MSWE and MESWE

The measurability of the MSWE and MESWE follows from the application of [4, Corollary 1], also
used in [5] and [6], and which we recall in Theorem S10.
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Theorem S10 (Corollary 1 in [4]). Let U,V be Polish spaces and f be a real-valued Borel measurable
function defined on a Borel subset D of U× V. We denote by proj(D) the set defined as

proj(D) = {u : there exists v ∈ V, (u, v) ∈ D} .

Suppose that for each u ∈ proj(D), the section Du = {v ∈ V, (u, v) ∈ D} is σ-compact and f(u, ·)
is lower semi-continuous with respect to the relative topology on Du. Then,

1. The sets proj(D) and I = {u ∈ proj(D), for some v ∈ Du, f(u, v) = inf fu} are Borel

2. For each ε > 0, there is a Borel measurable function φε satisfying, for u ∈ proj(D),

f(u, φε(u)) = inf
Du
fu, if u ∈ I,

≤ ε+ inf
Du
fu, if u /∈ I, and inf

Du
fu 6= −∞

≤ −ε−1, if u /∈ I, and inf
Du
fu = −∞ .

Theorem S11 (Measurability of the MSWE). Assume A1. For any n ≥ 1 and ε > 0, there exists a
Borel measurable function θ̂n,ε : Ω→ Θ that satisfies: for any ω ∈ Ω,

θ̂n,ε(ω) ∈
{

argminθ∈Θ SWp(µ̂n(ω), µθ), if this set is non-empty,
{θ ∈ Θ : SWp(µ̂n(ω), µθ) ≤ ε? + ε}, otherwise.

where ε? = infθ∈Θ SWp(µ?, µθ).

Proof. The proof consists in showing that the conditions of Theorem S10 are satisfied.

The empirical measure µ̂n(ω) depends on ω ∈ Ω only through y = (y1, . . . , yn) ∈ Yn, so we
can consider it as a function on Yn rather than on Ω. We introduce D = Yn × Θ. Since Y is
Polish, Yn (n ∈ N∗) endowed with the product topology is Polish. For any y ∈ Yn, the set
Dy = {θ ∈ Θ, (y, θ) ∈ D} = Θ is assumed to be σ-compact.

The map y 7→ µ̂n(y) is continuous for the weak topology (see the proof of Lemma S8), as well as
the map θ 7→ µθ according to A1. We deduce by Corollary 7 that the map (µ, θ) 7→ SWp(µ, µθ)
is l.s.c. for the weak topology. Since the composition of a lower semi-continuous function with a
continuous function is l.s.c. , the map (y, θ) 7→ SWp(µ̂n(y), µθ) is l.s.c. for the weak topology,
thus measurable and for any y ∈ Yn, θ 7→ SWp(µ̂n(y), µθ) is l.s.c. on Θ. A direct application of
Theorem S10 finalizes the proof.

Theorem S12 (Measurability of the MESWE). Assume A1. For any n ≥ 1, m ≥ 1 and ε > 0, there
exists a Borel measurable function θ̂n,m,ε : Ω→ Θ that satisfies: for any ω ∈ Ω,

θ̂n,m,ε(ω) ∈
{

argminθ∈Θ E [SWp(µ̂n(ω), µ̂θ,m)|Y1:n] , if this set is non-empty,{
θ ∈ Θ : E [SWp(µ̂n(ω), µ̂θ,m)|Y1:n] ≤ ε∗ + ε}

}
, otherwise.

where ε∗ = infθ∈Θ E[SWp(µ̂n(ω), µ̂θ,m)|Y1:n].

Proof. The proof can be done similarly to the proof of Theorem S11: we verify that we can apply
Theorem S10 using Corollary 9 instead of Corollary 7.

3 Postponed proofs

3.1 Proof of Theorem 1

Lemma S13. Let (µk)k∈N be a sequence of probability measures on Rd and µ a measure in Rd such
that,

lim
k→∞

SW1(µk, µ) = 0 .

Then, there exists an increasing function φ : N→ N such that the subsequence (µφ(k))k∈N converges
weakly to µ.
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Proof. By definition, we have that

lim
k→∞

∫
Sd−1

W1(u?]µk, u
?
]µ)dσ(u) = 0 .

Therefore by [7, Theorem 2.2.5], for σ-almost every (σ-a.e.) u ∈ Sd−1, there exists a subsequence
(u?]µφ(k))k∈N with φ : N → N increasing, such that limk→∞W1(u?]µφ(k), u

?
]µ) = 0 . By [2,

Theorem 6.9], it implies that for σ-a.e. u ∈ Sd−1, (u?]µφ(k))k∈N
w−→ u?]µ. Lévy’s characterization [8,

Theorem 4.3] gives that, for σ-a.e. u ∈ Sd−1 and any s ∈ R,

lim
k→∞

Φu?]µφ(k)(s) = Φu?]µ(s) ,

where, for any distribution ν ∈ P(Rp), Φν denotes the characteristic function of ν and is defined for
any v ∈ Rp as

Φν(v) =

∫
Rp

ei〈v,w〉dν(w) .

Then, we can conclude that for Lebesgue-almost every z ∈ Rd,

lim
k→∞

Φµφ(k)(z) = Φµ(z) . (S3)

We can now show that (µφ(k))k∈N
w−→ µ, i.e. by [3, Problem 1.11, Chapter 1] for any f : Rd → R

continuous with compact support,

lim
n→∞

∫
Rd
f(z)dµn(z) =

∫
Rd
f(z)dµ(z) . (S4)

Let f : Rd → R be a continuous function with compact support and σ > 0. Consider the function fσ
defined for any x ∈ Rd as

fσ(x) = (2πσ2)−d/2
∫
Rd
f(x− z) exp

(
−‖z‖2/2σ2

)
dLeb(z) = f ∗ gσ(x) ,

where gσ is the density of the d-dimensional Gaussian with covariance matrix σ2Id and ∗ denotes the
convolution product.

We first show that (S4) holds with fσ in place of f . Since for any z ∈ Rd, E
[
ei〈G,z〉] =

ei〈m,z〉+(1/(2σ2))‖z‖2 ifG is a d-dimensional Gaussian random variable with zero mean and covariance
matrix (1/σ2) Id, by Fubini’s theorem we get for any k ∈ N∫

Rd
fσ(z)dµφ(k)(z) =

∫
Rd

∫
Rd
f(w)gσ(z − w)dwdµφ(k)(z)

=

∫
Rd

∫
Rd
f(w)(2πσ2)−d/2

∫
Rd

ei〈z−w,x〉g1/σ(x)dxdwdµφ(k)(z)

=

∫
Rd

∫
Rd

(2πσ2)−d/2f(w)e−i〈w,x〉g1/σ(x)Φµφ(k)(x)dxdw

= (2πσ2)−d/2
∫
Rd
F [f ](x)g1/σ(x)Φµφ(k)(x)dx , (S5)

where F [f ](x) =
∫
Rd f(w)ei〈w,x〉dw denotes the Fourier transform of f 1. In an analogous manner,

we prove that ∫
Rd
fσ(z)dµ(z) = (2πσ2)−d/2

∫
Rd
F [f ](x)g1/σ(x)Φµ(x)dx . (S6)

Now, using that F [f ] is bounded by
∫
Rd |f(w)|dw < +∞ since f has compact support, we obtain

that, for any k ∈ N and x ∈ Rd,∣∣F [f ](x)g1/σ(x)Φµφ(k)(x)
∣∣ ≤ g1/σ(x)

∫
Rd
|f(w)|dw

1which exists since f is assumed to have a compact support
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By (S3), (S5), (S6) and Lebesgue’s Dominated Convergence Theorem, we obtain

lim
k→∞

∫
Rd

(2πσ2)−d/2F [f ](x)g1/σ(x)Φµφ(k)(x)dx =

∫
Rd

(2πσ2)−d/2F [f ](x)g1/σ(x)Φµ(x)dx

lim
k→∞

∫
Rd
fσ(z)dµφ(k)(z) =

∫
Rd
fσ(z)dµ(z) . (S7)

We can now complete the proof of (S4). For any σ > 0, we have∣∣∣∣∫
Rd
f(z)dµφ(k)(z)−

∫
Rd
f(z)dµ(z)

∣∣∣∣ ≤ 2 sup
z∈Rd

|f(z)− fσ(z)|

+

∣∣∣∣∫
Rd
fσ(z)dµφ(k)(z)−

∫
Rd
fσ(z)dµ(z)

∣∣∣∣ .
Therefore by (S7), for any σ > 0, we get

lim sup
n→+∞

∣∣∣∣∫
Rd
f(z)dµφ(k)(z)−

∫
Rd
f(z)dµ(z)

∣∣∣∣ ≤ 2 sup
z∈Rd

|f(z)− fσ(z)| .

Finally [9, Theorem 8.14-b] implies that limσ→0 supz∈Rd |fσ(z)− f(z)| = 0 which concludes the
proof.

Proof of Theorem 1. Now, assume that

lim
k→∞

SWp(µk, µ) = 0 (S8)

and that (µk)k∈N does not converge weakly to µ. Therefore, limk→∞ dP(µk, µ) 6= 0, where dP
denotes the Lévy-Prokhorov metric, and there exists ε > 0 and a subsequence (µψ(k))k∈N with
ψ : N→ N increasing, such that for any k ∈ N,

dP(µψ(k), µ) > ε (S9)

In addition, by Hölder’s inequality, we know that W1(µk, µ) ≤Wp(µk, µ), thus SW1(µk, µ) ≤
SWp(µk, µ), and by (S8), limk→∞ SW1(µψ(k), µ) = 0. Then, according to Lemma S13, there
exists a subsequence (µφ(ψ(k)))k∈N with φ : N→ N increasing, such that

µφ(ψ(k))
w−→ µ

which is equivalent to limk→∞ dP(µφ(ψ(k)), µ) = 0, thus contradicts (S9). We conclude that (S8)
implies (µk)k∈N

w−→ µ.

3.2 Minimum Sliced-Wasserstein estimators: Proof of Theorem 2

Proof of Theorem 2. This result is proved analogously to the proof of Theorem 2.1 in [6]. The key
step is to show that the function θ 7→ SWp(µ̂n, µθ) epi-converges to θ 7→ SWp(µ?, µθ) P-almost
surely, and then apply Theorem 7.31 of [1] (recalled in Theorem S5).

First, by A1 and Corollary 7, the map θ 7→ SWp(µ, µθ) is l.s.c. on Θ for any µ ∈ Pp(Y). Therefore
by A3, there exists θ? ∈ Θ such that SWp(µ?, µθ?) = ε? and the set Θ?

ε is non-empty as it contains
θ?, closed by lower semi-continuity of θ 7→ SWp(µ?, µθ), and bounded. Θ?

ε is thus compact, and
we conclude again by lower semi-continuity that the set argminθ∈ΘSWp(µ?, µθ) is non-empty [10,
Theorem 2.43].

Consider the event given by A2, E ∈ F such that P(E) = 1 and for any ω ∈ E,
limn→∞ SWp(µ̂n(ω), µ?) = 0. Then, we prove that θ 7→ SWp(µ̂n, µθ) epi-converges to
θ 7→ SWp(µ?, µθ) P-almost surely using the characterization in [1, Proposition 7.29], i.e. we
verify that, for any ω ∈ E, the two conditions below hold: for every compact set K ⊂ Θ and every
open set O ⊂ Θ,

lim inf
n→∞

inf
θ∈K

SWp(µ̂n(ω), µθ) ≥ inf
θ∈K

SWp(µ?, µθ)

lim sup
n→∞

inf
θ∈O

SWp(µ̂n(ω), µθ) ≤ inf
θ∈O

SWp(µ?, µθ) .
(S10)
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We fix ω in E. Let K ⊂ Θ be a compact set. By lower semi-continuity of θ 7→ SWp(µ̂n(ω), µθ), there
exists θn = θn(ω) ∈ K such that for any n ∈ N, infθ∈K SWp(µ̂n(ω), µθ) = SWp(µ̂n(ω), µθn).

We consider the subsequence (µ̂φ(n))n∈N where φ : N → N is increasing
such that SWp(µ̂φ(n)(ω), µθφ(n)

) converges to lim infn→∞ SWp(µ̂n(ω), µθn) =

lim infn→∞ infθ∈K SWp(µ̂n(ω), µθ). Since K is compact, there also exists an increasing
function ψ : N→ N such that, for θ̄ ∈ K, limn→∞ ρΘ(θψ(φ(n)), θ̄) = 0. Therefore, we have

lim inf
n→∞

inf
θ∈K

SWp(µ̂n(ω), µθ) = lim
n→∞

SWp(µ̂φ(n)(ω), µθφ(n)
)

= lim
n→∞

SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))
)

= lim inf
n→∞

SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))
)

≥ SWp(µ?, µθ̄) (S11)
≥ inf
θ∈K

SWp(µ?, µθ) ,

where (S11) is obtained by lower semi-continuity since µ̂ψ(φ(n))(ω)
w−→ µ? by A2 and Theorem 1,

and µθψ(φ(n))

w−→ µθ̄ by A1. We conclude that the first condition in (S10) holds.

Now, we fix O ⊂ Θ open. By definition of the infimum, there exists a sequence (θn)n∈N
in O such that {SWp(µ?, µθn)}n∈N converges to infθ∈O SWp(µ?, µθ). For any n ∈ N,
infθ∈O SWp(µ̂n(ω), µθ) ≤ SWp(µ̂n(ω), µθn). Therefore,

lim sup
n→∞

inf
θ∈O

SWp(µ̂n(ω), µθ) ≤ lim sup
n→∞

SWp(µ̂n(ω), µθn)

≤ lim sup
n→∞

(
SWp(µ̂n(ω), µ?) + SWp(µ?, µθn)

)
by the triangle inequality

≤ lim sup
n→∞

SWp(µ?, µθn) by A2

= inf
θ∈O

SWp(µ?, µθ) by definition of (θn)n∈N .

This shows that the second condition in (S10) holds, and hence, the sequence of functions θ 7→
SWp(µ̂n(ω), µθ) epi-converges to θ 7→ SWp(µ?, µθ).

Now, we apply Theorem 7.31 of [1]. First, by [1, Theorem 7.31(b)], (9) immediately follows from
the epi-convergence of θ 7→ SWp(µ̂n(ω), µθ) to θ 7→ SWp(µ?, µθ).

Next, we show that [1, Theorem 7.31(a)] can be applied showing that for any η > 0 there exists a
compact set B ⊂ Θ and N ∈ N such that, for all n ≥ N ,

inf
θ∈B

SWp(µ̂n(ω), µθ) ≤ inf
θ∈Θ

SWp(µ̂n(ω), µθ) + η . (S12)

In fact, we simply show that there exists a compact set B ⊂ Θ and N ∈ N such that, for all n ≥ N ,
infθ∈B SWp(µ̂n(ω), µθ) = infθ∈Θ SWp(µ̂n(ω), µθ).

On one hand, the second condition in (S10) gives us

lim sup
n→∞

inf
θ∈Θ

SWp(µ̂n(ω), µθ) ≤ inf
θ∈Θ

SWp(µ?, µθ) = ε? .

We deduce that there exists nε/4(ω) such that, for n ≥ nε/4(ω), infθ∈Θ SWp(µ̂n(ω), µθ) ≤ ε?+ε/4,
where ε is given by A3. As n ≥ nε/4(ω), the set Θ̂ε/2 = {θ ∈ Θ : SWp(µ̂n(ω), µθ) ≤ ε? + ε

2} is
non-empty as it contains θ∗ defined as SWp(µ̂n(ω), µθ∗) = infθ∈Θ SWp(µ̂n(ω), µθ).

On the other hand, by A2, there exists nε/2(ω) such that, for n ≥ nε/2(ω),

SWp(µ̂n(ω), µ?) ≤
ε

2
. (S13)

Let n ≥ n∗(ω) = max{nε/4(ω), nε/2(ω)} and θ ∈ Θ̂ε/2. By the triangle inequality,

SWp(µ?, µθ) ≤ SWp(µ̂n(ω), µ?) + SWp(µ̂n(ω), µθ)

≤ ε? + ε since θ ∈ Θ̂ε/2 and by (S13)
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This means that, when n ≥ n∗(ω), Θ̂ε/2 ⊂ Θ?
ε , and since infθ∈Θ SWp(µ̂n(ω), µθ) is attained in

Θ̂ε/2, we have
inf
θ∈Θ?ε

SWp(µ̂n(ω), µθ) = inf
θ∈Θ

SWp(µ̂n(ω), µθ) . (S14)

As shown in the first part of the proof Θ?
ε is compact and then by [1, Theorem 7.31(a)], (8) is

a direct consequence of (S12)-(S14) and the epi-convergence of θ 7→ SWp(µ̂n(ω), µθ) to θ 7→
SWp(µ?, µθ).

Finally, by the same reasoning that was done earlier in this proof for argminθ∈ΘSWp(µ?, µθ), the
set argminθ∈ΘSWp(µ̂n(ω), µθ) is non-empty for n ≥ n∗(ω).

3.3 Existence and consistency of the MESWE: Proof of Theorem 3

Proof of Theorem 3. This result is proved analogously to the proof of [6, Theorem 2.4]. The
key step is to show that the function θ 7→ E[SWp(µ̂n, µ̂θ,m(n))|Y1:n] epi-converges to θ 7→
E[SWp(µ?, µθ)|Y1:n], and then apply [1, Theorem 7.31], which we recall in Theorem S5.

First, since we assume A1 and A3, we can apply the same reasoning as in the proof of Theorem 2 to
show that the set argminθ∈ΘSWp(µ?, µθ) is non-empty.

Consider the event given by A2, E ∈ F such that P(E) = 1 and for any ω ∈ E,
limn→∞ SWp(µ̂n(ω), µ?) = 0. Then, we prove that θ 7→ E[SWp(µ̂n, µ̂θ,m(n))|Y1:n] epi-
converges to θ 7→ SWp(µ?, µθ) P-almost surely using the characterization of [1, Proposition
7.29], i.e. we verify that, for any ω ∈ E, the two conditions below hold: for every compact set K ⊂ Θ
and for every open set O ⊂ Θ,

lim inf
n→+∞

inf
θ∈K

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≥ inf
θ∈K

SWp(µ?, µθ)

lim sup
n→+∞

inf
θ∈O

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ inf
θ∈O

SWp(µ?, µθ)
(S15)

We fix ω in E. Let K ⊂ Θ be a compact set. By A1 and Corollary 9, the mapping θ 7→
E[SWp(µ̂n(ω), µ̂θ,m(n))|Y1:n] is l.s.c., so there exists θn = θn(ω) ∈ K such that for any n ∈ N,
infθ∈K E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= E

[
SWp(µ̂n(ω), µ̂θn,m(n))

∣∣Y1:n

]
.

We consider the subsequence (µ̂φ(n))n∈N where φ : N → N is in-
creasing such that E[SWp(µ̂φ(n)(ω), µ̂θφ(n),m(φ(n)))|Y1:n] converges to
lim infn→∞ E[SWp(µ̂n(ω), µ̂θn,m(n)

)|Y1:n] = lim infn→∞ infθ∈K E[SWp(µ̂n(ω), µ̂θ,m(n))|Y1:n].
Since K is compact, there also exists an increasing function ψ : N → N such that, for θ̄ ∈ K,
limn→∞ ρΘ(θψ(φ(n)), θ̄) = 0. Therefore, we have:

lim inf
n→∞

inf
θ∈K

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= lim
n→∞

E
[
SWp(µ̂φ(n)(ω), µ̂θφ(n),m(φ(n)))

∣∣∣Y1:n

]
= lim
n→∞

E
[
SWp(µ̂ψ(φ(n))(ω), µ̂θψ(φ(n)),m(ψ(φ(n))))

∣∣∣Y1:n

]
= lim inf

n→∞
E
[
SWp(µ̂ψ(φ(n))(ω), µ̂θψ(φ(n)),m(ψ(φ(n))))

∣∣∣Y1:n

]
≥ lim inf

n→∞

{
SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))

)− E
[
SWp(µθψ(φ(n))

, µ̂θψ(φ(n)),m(ψ(φ(n))))
∣∣∣Y1:n

]}
(S16)

≥ lim inf
n→∞

SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))
)− lim sup

n→∞
E
[
SWp(µθψ(φ(n))

, µ̂θψ(φ(n)),m(ψ(φ(n))))
∣∣∣Y1:n

]
≥ SWp(µ?, µθ̄) (S17)
≥ inf
θ∈K

SWp(µ?, µθ)

where (S16) follows from the triangle inequality, and (S17) is obtained on one hand by lower semi-
continuity since µ̂ψ(φ(n))(ω)

w−→ µ? by A2 and Theorem 1 and µθψ(φ(n))

w−→ µθ̄ by A1, and on the
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other hand by A4 which gives lim supn→∞ E[SWp(µθψ(φ(n))
, µ̂θψ(φ(n)),m(ψ(φ(n))))|Y1:n] = 0. We

conclude that the first condition in (S15) holds.

Now, we fix O ⊂ Θ open. By definition of the infimum, there exists a sequence
(θn)n∈N in O such that SWp(µ?, µθn) converges to infθ∈O SWp(µ?, µθ). For any n ∈ N,
infθ∈O E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ E

[
SWp(µ̂n(ω), µ̂θn,m(n))

∣∣Y1:n

]
. Therefore,

lim sup
n→∞

inf
θ∈O

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ lim sup

n→∞
E
[
SWp(µ̂n(ω), µ̂θn,m(n))

∣∣Y1:n

]
≤ lim sup

n→∞

{
SWp(µ̂n(ω), µ?) + SWp(µ?, µθn) + E

[
SWp(µθn , µ̂θn,m(n))

∣∣Y1:n

]}
by the triangle inequality

= lim sup
n→∞

SWp(µ?, µθn) by A2 and A4

= inf
θ∈O

SWp(µ?, µθ) by definition of (θn)n∈N.

This shows that the second condition in (S15) holds, and hence, the sequence of functions θ 7→
E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
epi-converges to θ 7→ SWp(µ?, µθ).

Now, we apply Theorem 7.31 of [1]. First, by [1, Theorem 7.31(b)], (11) immediately follows from
the epi-convergence of θ 7→ E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
to θ 7→ SWp(µ?, µθ).

Next, we show that [1, Theorem 7.31(a)] holds by finding, for any η > 0, a compact set B ⊂ Θ and
N ∈ N such that, for all n ≥ N ,

inf
θ∈B

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ inf
θ∈Θ

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
+ η .

In fact, we simply show that there exists a compact set B ⊂ Θ and N ∈ N such that, for all n ≥ N ,
infθ∈B E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= infθ∈Θ E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
.

On one hand, the second condition in (S15) gives us

lim sup
n→∞

inf
θ∈Θ

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ inf
θ∈Θ

SWp(µ?, µθ) = ε? .

We deduce that there exists nε/6(ω) such that, for n ≥ nε/6(ω),

inf
θ∈Θ

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ ε? +

ε

6
,

with the ε of A3. When n ≥ nε/6(ω), the set Θ̂ε/3 = {θ ∈ Θ : E[SWp(µ̂n(ω), µ̂θ,m(n))|Y1:n] ≤
ε? + ε

3} is non-empty as it contains θ∗ defined as E
[
SWp(µ̂n(ω), µ̂θ∗,m(n))

∣∣Y1:n

]
=

infθ∈Θ E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
.

On the other hand, by A2, there exists nε/3(ω) such that, for n ≥ nε/3(ω),

SWp(µ̂n(ω), µ?) ≤
ε

3
. (S18)

Finally, by A4, there exists n′ε/3(ω) such that, for n ≥ n′ε/3(ω),

E
[
SWp(µθ, µ̂θ,m(n))

∣∣Y1:n

]
≤ ε

3
. (S19)

Let n ≥ n∗(ω) = max{nε/6(ω), nε/3(ω), n′ε/3(ω)} and θ ∈ Θ̂ε/3. By the triangle inequality,

SWp(µ?, µθ) ≤ SWp(µ̂n(ω), µ?) + E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
+ E

[
SWp(µθ, µ̂θ,m(n))

∣∣Y1:n

]
≤ ε? + ε since θ ∈ Θ̂ε/3 and by (S18) and (S19)

This means that, when n ≥ n∗(ω), Θ̂ε/3 ⊂ Θ?
ε with Θ?

ε as defined in A3, and since
infθ∈Θ E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
is attained in Θ̂ε/3, we have

inf
θ∈Θ?ε

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= inf
θ∈Θ

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
. (S20)
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By [1, Theorem 7.31(a)], (10) is a direct consequence of (S20) and the epi-convergence of θ 7→
E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
to θ 7→ SWp(µ?, µθ).

Finally, by the same reasoning that was done earlier in this proof for argminθ∈ΘSWp(µ?, µθ), the
set argminθ∈ΘE

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
is non-empty for n ≥ n∗(ω).

3.4 Convergence of the MESWE to the MSWE: Proof of Theorem 4

Proof of Theorem 4. Here again, the result follows from applying [1, Theorem 7.31], paraphrased in
Theorem S5.

First, by A1 and Corollary 7, the map θ 7→ SWp(µ̂n, µθ) is l.s.c. on Θ. Therefore, there exists
θn ∈ Θ such that SWp(µ̂n, µθn) = εn. The set Θε,n with the ε from A5 is non-empty as it contains
θn, closed by lower semi-continuity of θ 7→ SWp(µ̂n, µθ), and bounded. Θε,n is thus compact, and
we conclude again by lower semi-continuity that the set argminθ∈ΘSWp(µ̂n, µθ) is non-empty [10,
Theorem 2.43].

Then, we prove that θ 7→ E [SWp(µ̂n, µ̂θ,m)|Y1:n] epi-converges to θ 7→ SWp(µ̂n, µθ) as m→∞
using the characterization in [1, Proposition 7.29], i.e. we verify that: for every compact set K ⊂ Θ
and every open set O ⊂ Θ,

lim inf
m→∞

inf
θ∈K

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≥ inf
θ∈K

SWp(µ̂n, µθ)

lim sup
m→∞

inf
θ∈O

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ inf
θ∈O

SWp(µ̂n, µθ) .
(S21)

Let K ⊂ Θ be a compact set. By A1 and Corollary 9, for any m ∈ N, the map θ 7→
E[SWp(µ̂n, µ̂θ,m)|Y1:n] is l.s.c., so there exists θm ∈ K such that infθ∈K E[SWp(µ̂n, µ̂θ,m)|Y1:n] =
E[SWp(µ̂n, µ̂θm,m)|Y1:n].

We consider the subsequence {µ̂θφ(m),φ(m)}m∈N where φ : N → N is increasing such
that E[SWp(µ̂n, µ̂θφ(m),φ(m))|Y1:n] converges to lim infm→∞ E[SWp(µ̂n, µ̂θm,m)|Y1:n] =

lim infm→∞ infθ∈K E[SWp(µ̂n, µ̂θ,m)|Y1:n]. Since K is compact, there also exists an increasing
function ψ : N→ N such that, for any θ̄ ∈ K, limm→∞ ρΘ(θψ(φ(m)), θ̄) = 0. Therefore, we have

lim inf
m→∞

inf
θ∈K

E [SWp(µ̂n, µ̂θ,m)|Y1:n]

= lim
m→∞

E
[
SWp(µ̂n, µ̂θφ(m),φ(m))

∣∣∣Y1:n

]
= lim
m→∞

E
[
SWp(µ̂n, µ̂θψ(φ(m)),ψ(φ(m)))

∣∣∣Y1:n

]
= lim inf

m→∞
E
[
SWp(µ̂n, µ̂θψ(φ(m)),ψ(φ(m)))

∣∣∣Y1:n

]
≥ lim inf

m→∞
[SWp(µ̂n, µθψ(φ(m))

)− E
[
SWp(µθψ(φ(m))

, µ̂θψ(φ(m)),ψ(φ(m)))
∣∣∣Y1:n

]
] (S22)

≥ lim inf
m→∞

SWp(µ̂n, µθψ(φ(m))
)− lim sup

m→∞
E
[
SWp(µθψ(φ(m))

, µ̂θψ(φ(m)),ψ(φ(m)))
∣∣∣Y1:n

]
≥ SWp(µ̂n, µθ̄) (S23)
≥ inf
θ∈K

SWp(µ̂n, µθ)

where (S22) results from the triangle inequality and (S23) is obtained by A4 on one hand and by
lower semi-continuity on the other hand since µθψ(φ(n))

w−→ µθ̄ by A1. We conclude that the first
condition in (S21) holds.

Now, we fix O ⊂ Θ open. By definition of the infimum, there exists a sequence (θm)m∈N
in O such that SWp(µ̂n, µ̂θm,m) converges to infθ∈O SWp(µ̂n, µ̂θ,m). For any m ∈ N,

10



infθ∈O E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ E [SWp(µ̂n, µθm,m)|Y1:n]. Therefore,

lim sup
m→∞

inf
θ∈O

E [SWp(µ̂n, µ̂θ,m)|Y1:n]

≤ lim sup
m→∞

E [SWp(µ̂n, µ̂θm,m)|Y1:n]

≤ lim sup
m→∞

[SWp(µ̂n, µθm) + E [SWp(µθm , µ̂θm,m)|Y1:n]] by the triangle inequality

≤ lim sup
m→∞

SWp(µ̂n, µθm) by A4

= inf
θ∈O

SWp(µ̂n, µθ) by definition of (θm)m∈N

This shows that the second condition in (S21) holds, and hence, the sequence of functions θ 7→
E [SWp(µ̂n, µ̂θ,m)|Y1:n] epi-converges to θ 7→ SWp(µ̂n, µθ).

Now, we apply [1, Theorem 7.31]. By [1, Theorem 7.31(b)], (13) immediately follows from the
epi-convergence of θ 7→ E [SWp(µ̂n, µ̂θ,m)|Y1:n] to θ 7→ SWp(µ̂n, µθ).

Next, we show that [1, Theorem 7.31(a)] holds by finding for any η > 0 a compact set B ⊂ Θ and
N ∈ N such that, for all n ≥ N ,

inf
θ∈B

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] + η .

In fact, we simply show that there exists a compact set B ⊂ Θ and N ∈ N such that, for all
n ≥ N , infθ∈B E [SWp(µ̂n, µ̂θ,m)|Y1:n] = infθ∈Θ E [SWp(µ̂n, µ̂θ,m)|Y1:n]. On one hand, the
second condition in (S21) gives us

lim sup
m→∞

inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ inf
θ∈Θ

SWp(µ̂n, µθ) = εn .

We deduce that there exists mε/4 such that, for m ≥ mε/4,

inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ εn +
ε

4
. (S24)

with the ε of A5. When m ≥ mε/4, the set Θε/2 = {θ ∈ Θ : E[SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ εn + ε
2} is

non-empty as it contains θ∗ defined as E[SWp(µ̂n, µ̂θ∗,m)|Y1:n] = infθ∈Θ E[SWp(µ̂n, µ̂θ,m)|Y1:n].

On the other hand, by A4, there exists mε/2 such that, for m ≥ mε/2,

E [SWp(µθ, µ̂θ,m)|Y1:n] ≤ ε

2
. (S25)

Let θ belong to Θε/2 and m ≥ m∗ = max{mε/4,mε/2}. By the triangle inequality,

SWp(µ̂n, µθ) ≤ E [SWp(µ̂n, µ̂θ,m)|Y1:n] + E [SWp(µθ, µ̂θ,m)|Y1:n]

≤ εn + ε since θ ∈ Θε/2 and by (S25)

This means that, whenm ≥ m∗, Θε/2 ⊂ Θε,n, and since infθ∈Θ E [SWp(µ̂n, µ̂θ,m)|Y1:n] is attained
in Θε/2,

inf
θ∈Θε,n

E [SWp(µ̂n, µ̂θ,m)|Y1:n] = inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] . (S26)

By [1, Theorem 7.31(a)], (12) is a direct consequence of (S26) and the epiconvergence of θ 7→
E [SWp(µ̂n(ω), µ̂θ,m)|Y1:n] to θ 7→ SWp(µ̂n, µθ).

Finally, by the same reasoning that was done earlier in this proof for argminθ∈ΘSWp(µ̂n, µθ), the
set argminθ∈ΘE [SWp(µ̂n, µ̂θ,m)|Y1:n] is non-empty for m ≥ m∗.

3.5 Proof of Rate of convergence and asymptotic distribution: Proof of Theorem 5 and
Theorem 6

Proof of Theorem 5 and Theorem 6. The proof of Theorem 5 and Theorem 6 consists in showing
that the conditions of Theorem 4.2 and Theorem 7.2 in [11] respectively are satisfied: conditions (i),
(ii) and (iii) follow from A6, A7 and A8.
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4 Computational Aspects

The MSWE and MESWE are in general computationnally intractable, partly because the Sliced-
Wasserstein distance requires an integration over infinitely many projections. In this section, we
review the numerical methods used to approximate these two estimators.

Approximation of SWp: We recall the definition of the SW distance below.

SWp
p(µ, ν) =

∫
Sd−1

Wp
p(u

?
]µ, u

?
]ν)dσ(u) , (S27)

where σ is the uniform distribution on Sd−1 and for any measurable function f : Y → R and
ζ ∈ P(Y), f]ζ is the push-forward measure of ζ by f . We approximate the integral in (S27) by
selecting a finite set of projections U ⊂ Sd−1 and computing the empirical average:

SWp
p(µ, ν) ≈ 1

card(U)

∑
u∈U

Wp
p(u

?
]µ, u

?
]ν) (S28)

The quality of this approximation depends on the sampling of Sd−1. In our work, we use random
samples picked uniformly on Sd−1, as proposed in [12] and explained hereafter (see paragraph
“Sampling schemes”).

The Wasserstein distance between two one-dimensional probability densities µ and ν as defined in (6)
is also estimated by replacing the integrals with a Monte Carlo estimate, and we can use two distinct
methods to approximate this quantity.

The first approximation we consider is given by,

Wp
p(µ, ν) ≈ 1

K

K∑
k=1

∣∣∣F̃−1
µ (tk)− F̃−1

ν (tk)
∣∣∣p , (S29)

where {tk}Kk=1 are uniform and independent samples from [0, 1] and for ξ ∈ {µ, ν}, F̃−1
ξ is a linear

interpolation of F̄−1
ξ which denotes either the exact quantile function of ξ if ξ is discrete, or an

approximation by a Monte Carlo procedure. This last option is justified by the Glivenko-Cantelli
Theorem.

The second approximation is given by,

Wp
p(µ, ν) ≈ 1

K

K∑
k=1

∣∣∣sk − F̃−1
ν (F̃µ(sk))

∣∣∣p , (S30)

where {sk}Ki=1 are uniform and independent samples from µ and for ξ ∈ {µ, ν}, F̃ξ (resp. F̃−1
ξ ) is a

linear interpolation of F̄ξ (resp. F̄−1
ξ ) which denotes either the exact cumulative distribution function

(resp. quantile function) of ξ if ξ is discrete or an approximation by a Monte Carlo procedure.

Sampling schemes: We explain the methods that we used to generate i.i.d. samples from the uniform
distribution on the d-dimensional sphere Sd−1 and from multivariate elliptically contoured stable
distributions.

• Uniform sampling on the sphere. To sample from Sd−1, we form the d-dimensional vector
s by drawing each of its d components from the standard normal distribution N (0, 1) and
we normalize it: s′ = s/‖s‖2, so that s′ lies on the sphere.
• Sampling from multivariate elliptically contoured stable distributions. We recall that

if Y ∈ Rd is α-stable and elliptically contoured, i.e. Y ∼ EαSc(Σ,m), then its joint
characteristic function is defined as, for any t ∈ Rd,

E[exp(itTY )] = exp
(
−(tTΣt)α/2 + itTm

)
, (S31)

where Σ is a positive definite matrix (akin to a correlation matrix), m ∈ Rd is a location
vector (equal to the mean if it exists) and α ∈ (0, 2) controls the thickness of the tail. Ellipti-
cally contoured stable distributions are scale mixtures of multivariate Gaussian distributions
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[13, Proposition 2.5.2], whose densities are intractable, but can easily be simulated [14]: let
A ∼ Sα/2(β, γ, δ) be a one-dimensional positive (α/2)-stable random variable with β = 1,
γ = 2 cos(πα4 )2/α and δ = 0, and G ∼ N (0,Σ). Then, Y =

√
AG + m has (S31) as

characteristic function.

Optimization methods: Computing the MSWE and MESWE implies minimizing the (expected)
Sliced-Wasserstein distance over the set of parameters. In our experiments, we used different
optimization methods as we detail below.

• Multivariate Gaussian distributions. We derive the explicit gradient expressions of the
approximate SW2

2 distance with respect to the mean and scale parameters m and σ2, and we
use the ADAM stochastic optimization method with the default parameter settings suggested
in [15]. For the MSWE, we use (S30) to approximate the one-dimensional Wasserstein
distance, and we evaluate directly the Gaussian density of the generated samples, utilizing
the fact that the projection of a Gaussian of parameters (m, σ2I) along u ∈ Sd−1 is a
1D normal distribution of parameters (〈u,m〉, σ2〈u, u〉). In this case, the gradient of the
approximate SW2

2 between µ = N (m, σ2I) and the empirical distribution associated to n
samples drawn by N (m?, σ

2
?I), denoted by ν̂, is given by,

∇mSW2
2(µ, ν̂) =

1

card(U) card(S)

∑
u∈U,s∈S

( ∣∣∣s− F̃−1
u?] ν̂

(F̃u?]µ(s))
∣∣∣2N (s; 〈u,m〉, σ2 ‖u‖2)

s− 〈u,m〉
σ2 ‖u‖2

u

)
,

∇σ2SW2
2(µ, ν̂) =

1

card(U) card(S)

∑
u∈U,s∈S

( ∣∣∣s− F̃−1
u?] ν̂

(F̃u?]µ(s))
∣∣∣2N (s; 〈u,m〉, σ2 ‖u‖2)

1

2σ2

(
(s− 〈u,m〉)2

σ2 ‖u‖2
− 1

))
,

where U ⊂ Sd−1 is a finite set of random projections picked uniformly on Sd−1, S is a finite
subset in R, and for any s ∈ S, N (s; 〈u,m〉, σ2 ‖u‖2) denotes the density function of the
Gaussian of parameters (〈u,m〉, σ2 ‖u‖2) evaluated at s.

For the MESWE, we use (S29) and evaluate the empirical distribution of generated samples
instead of their normal density. Therefore, the gradient of the approximate SW2

2 between
the empirical distributions corresponding to one generated dataset of m samples drawn
from N (µ, σ2I) and n samples drawn from N (µ?, σ

2
?I), respectively denoted by µ̂ and ν̂,

is obtained with,

∇mSW2
2(µ̂, ν̂) =

−2

card(U).K

∑
u∈U

K∑
k=1

∣∣∣F̃−1
u?] µ̂

(tk)− F̃−1
u?] ν̂

(tk)
∣∣∣u ,

∇σ2SW2
2(µ̂, ν̂) =

1

card(U).K

∑
u∈U

K∑
k=1

∣∣∣F̃−1
u?] µ̂

(tk)− F̃−1
u?] ν̂

(tk)
∣∣∣ 〈u,m〉 − F̃−1

u?] µ̂
(tk)

σ2
.

• Multivariate elliptically contoured stable distributions. When comparing MESWE to
MEWE, we approximate these estimators using the derivative-free optimization method
Nelder-Mead (implemented in Scipy), following the approach in [6].
When illustrating the theoretical properties of MESWE, we proceed in the same way as
for the multivariate Gaussian experiment: we compute the explicit gradient expression of
the approximate SW2

2 distance with respect to the location parameter m, and we use the
ADAM stochastic optimization method with the default settings. Equation (S32) gives the
formula of the gradient of the approximate SW2

2 between the empirical distributions of
one generated dataset of m samples drawn from EαSc(I,m) and n samples drawn from
EαSc(I,m?), respectively denoted by µ̂ and ν̂, with respect to m.

∇mSW2
2(µ̂, ν̂) =

−2

card(U).K

∑
u∈U

K∑
k=1

∣∣∣F̃−1
u?] µ̂

(tk)− F̃−1
u?] ν̂

(tk)
∣∣∣u . (S32)
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• High-dimensional real data using GANs. We use the ADAM optimizer provided by
TensorFlow GPU.

Computing infrastructure: The experiment comparing the computational time of MESWE and
MEWE was conducted on a daily-use laptop (CPU intel core i7, 1.90GHz × 8 and 16GB of RAM).
The neural network experiment was run on a cluster with 4 relatively modern GPUs.
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