
Figure 4: The train set F1 score for three different values of the reward margin � in eq. 1 for the
Bibtex multi-label classification task.

A Fully-Supervised Setting

For multi-label classification, DVNs achieve 44.7 F1 score for Bibtex and 37.1 F1 score for Book-
marks, while SG-SPENs achieve 44.0 F1 score for Bibtex and 38.4 F1 score for Bookmarks. Since
for this task, the reward function is the oracle F1 score, the performance of SG-SPENs is on a par
with the fully supervised setting on Bibtex and Bookmarks.

For citation-field extraction, we train SG-SPEN and DVN with token-level accuracy as the reward
function on a training set of 300 labeled examples. SG-SPEN achieves 91.0% and DVN achieves
90.5% token-level accuracy. We also trained SG-SPEN with domain-knowledge based citation reward
function, which resulted in 90.6% token-level accuracy.

For shape parsing, we trained the neural shape parser in the supervised setting as described in Sharma
et al. (2018), which resulted in 60.0% intersection over union (IOU) comparing to 56.3% IOU of
SG-SPEN without labeled data. Neural shape parser requires more labeled training data for better
generalization.

B Selecting Reward Margin �

To show the importance of the reward margin in eq. 1, we train SG-SPEN for the Bibtex multi-label
classification task with three reward margin values of 0.01, 0.002, 0.001. Figure 4 shows the train set
F1 score for the first 100 training epochs. SG-SPEN guided by search with the margin value of 0.001
is not able to learn, while the one with the margin of 0.002 struggles at the beginning of the training
process as the search operator returns low reward output structures. SG-SPEN guided by search with
the larger margin value of 0.01 has a better start. In more complex problems such as shape parsing,
using a low reward margin can prevent the model from escaping low-reward regions. In general,
using a larger margin and increasing the search budget increases the accuracy of the model as the
search recovers better structures. Nevertheless, this higher accuracy is achieved at the price of an
expensive search, which may significantly slow down the training.

C Search Budget and Informative Constraints

For the shape parser task, we gather the number of informative constrains (pairs with different
reward rankings) of randomly selected batch of data at the first 1000 training steps (Figure 5, right).
SG-SPEN can quickly pick up informative constraints even for this difficult task where the reward
value of a notable portion of the search space is zero. We also observe that even at early stages of
training the gradient-descent inference returns programs with positive rewards acknowledging that
the SPEN rapidly learns to produce programs with valid structures.

We also collect the number search budget used by the search operator. We give the search budget of
100 to the search operator, which means it can randomly generate at most 100 structured outputs to
find an improved structured output with respect to reward function (with the reward margin of 0.1)

i

Figure 5: Left) The average number of used search budget for each example in the first 1000 training
iterations. Right) The number of informative constraints (pairs with different reward rankings) that
search-guided training found for batches of 50 randomly selected training points in the first 1000
training steps. SG-SPEN generates at-most one informative constraint for each example.

Figure 6: Left: Number of optimization constrains of R-SPEN vs SG-SPEN. Right: Train-set F1

score of R-SPEN, SG-SPEN, and DVN.

and the output of gradient-descent inference (eq. 1). As it is shown in Figure 5, left, the number of
explored structured outputs by the search operator is relatively very small considering the output
space (3995). At the very beginning of the training process, the structured output generated by
gradient-descent inference are very poor (mostly invalid programs), therefore, the search operator
is not successful in finding an improved structured output using the given search budget. However,
as soon as the search operator could find a valid program to guide SG-SPEN, the gradient-descent
inference starts predicting more valid programs, so search operator becomes more successful in
finding improved structured outputs without using the whole search budget.

D Multi-Label Classification

For the multi-label classification tasks we decompose the energy function into local energy and global
energy as suggested by Belanger & McCallum (2016). For the feature network in the local energy
term, we used 2-layer multi-layer perceptron (MLP) with 1000 hidden units with ReLU activation
function for the Bibtex dataset, and used 3-layer MLP with two layers of 1000 hidden units with
ReLU activation function for the Bookmarks dataset. We defined the global energy using 2-layer
MLP over output variables with 15 and 50 hidden units with SoftPlus activation functions for Bibtex
and Bookmarks, respectively. For SG-SPEN we used reward margin of 0.01, and tuned the number
of inference iteration from {10,15, 25,30}, ⌘ from {0.1, 0.5, 1.0, 2.0}, and ↵ from {1,10,100} using
the performance of models on validation set. For this setting we set noise scale as � = 2⌘. Bibtex
and Bookmarks datasets do not have standard validation sets, so we randomly select 20% of training
data as a fixed validation set for all the training models.

D.1 Detailed Comparison

To better explore the behavior of R-SPEN vs SG-SPEN, we look at the number of informative
constraints that each algorithm uses for training with the batch size of 100 examples and 10 inference
iterations during the first 5000 iteration of training. R-SPEN generates one potential constraint for

ii

every consecutive pairs (at most nine constraints for 10 iteration), while SG-SPEN generates only
one. However, a fraction of these constraints violate the margin (eq. 3). Figure 6, left, shows the
number of these constraints for R-SPEN and SG-SPEN. We also collect the train-set F1 score of the
same run for both algorithms as well as for DVN (Figure 6, right). SG-SPEN converges much faster
than R-SPEN and DVN while using a lower but more informative amount of optimization constraints.

E Citation Field Extraction

0.9

0.9

0.85

0.4

0.1

0.05

0.05

0.04

0.1

0.45

0.8

0.9

... ...

Input
 embedding

Tag
distribution

Convolutional layer
 with multiple filters

and different
window sizes

Max pooling
and

concatenation
Multi-layer perceptron

Tokens

Wei
Li
.

Deep
Learning

for

...

Energy

...

...

...

...

...

...

...

author title ...

Fil
ter

 si
ze

Fi
lte

r s
iz

e

Figure 7: The parameterization of energy function using for citation-field extraction.

E.1 Methods

SG-SPEN: We define the energy network using convolution neural networks over both word rep-
resentation of input tokens and output tag distributions as shown in Figure 7. We use pretrained
Glove vector representation with dimension of 50 for all the baselines, 1 however, we update word
representations during the training.

R-SPEN: We use exactly the same energy function as SG-SPEN. The main difference between
R-SPEN and SG-SPEN is their training algorithm.

DVN: Similar to R-SPEN, for DVN, we use exactly the same energy function as SG-SPEN. Also
we find that DVNs learn better in our setting by optimizing the mean squared loss: kE(y,x) �
↵R(y,x)k22.

GE uses human-written soft-constraints as labeled features to constrain the model’s prediction with
respect to unlabeled data. For GE, we include the results from Mann & McCallum (2010) for the
same setting, for which they have used the same test set and 1000 unlabeled training data.

Iterative Beam Search: We started from a random tag sequence, and then iteratively run beam
search with beam size of K until the top K sequences remains the same within ten iterations. We
re-run this iterative beam search with ten random restarts and reports the accuracy of the sequence
with the highest score.

PG: We also train a recurrent neural network (RNN) using policy gradient methods. For each word
in the input sequence, the model will predict the output tag given the last hidden states of RNNs, last
predicted tag and current input. The rewards are the value of our human-knowledge score function
over the input token sequence and predicted output of RNNs. To reduce the variance of gradients,
we use two different baseline models: exponential moving average (EMA) baseline and parametric
baseline. EMA defines the baseline as weighted average over history rewards and the current reward:
Bt = B ↵B + (1 � �)r, where r is the average reward of the current batch and � is the
decaying rate. For the parametric baseline, we use the current token xt, previous hidden state ht�1,
and output yt�1 from RNN to predict the baseline using linear regression: Bt(xt, ht�1, yt�1) =
W [ht�1;xt; yt�1] + b, where W and b are the parameters of the baseline learned by minimizing the
mean square distance between the baseline and reward. During training, we found that the probability
distribution produced by policy function ⇡✓ tends to polarize before the model becomes optimal. To

1https://nlp.stanford.edu/projects/glove/

iii

0.8

1e-5

1e-5

0.01

1e-5

...

...

...

...

...

Convolutional layer

Program

circle(16,16,12)
triangle(32,48,16)

+

circle(16,24,12)
­

Energy

1e-5

1e-5

1e-3

1e-5

0.9

circle(16,16,12) -...

CNN

Output

distribution

Input

image
Multi-layer perceptron

Figure 8: The parameterization of energy function for shape parsing. The network has two parts: first
takes the probability distribution over the output program and outputs a fixed dimension embedding,
and the second part takes the binary images as input, which is convolved to give fixed length
embedding. The two embeddings are concatenated and passed through an MLP to output energy
function.

maintain the exploration ability of the model, we add entropy regularization in our object function. In
our experiments, we also attempted to re-normalize the probability of sampled sequences, but since it
did not show better performances in this dataset, we exclude it in our final PG models.

MMRN has the same architecture as PG, but trained with the max-margin objective (Peng et al.,
2017).

E.2 Hyper-Parameter Tuning

We select the hyper-parameters using grid search and based on the performance of models on the
validation set.

For DVN, R-SPEN, and SG-SPEN, we tuned ⌘ from {0.1,0.5,1.0,2.0}, the number of iteration = {15,
20, 25, 30, 35}, as well as the number of filters of text cnn = {64, 128, 256}. For SG-SPEN, we also
explored ↵ = {1,10,100}, and interestingly larger values of ↵ was preferred based on the performance
on validation set.

For PG and MMRN baselines, we used beam size of 10, and tuned the dimension of hidden layers =
{10, 30, 50}, learning rate = {0.01, 0.001}, batch size = {16, 128, 512}. In addition, for PG + EMA
where baseline is Bt = B ↵B+(1�↵)r, we chose ↵ = {0.5, 0.7, 0.9}. We also tuned the weight
of entropy gradient of PG from {0.1, 1.0}.

F Shape Parser

Neural shape parser includes an encoder and a decoder. The encoder consists of 2d convolution
and max pooling layers with ReLU non-linearity, that takes an image as input and gives a fixed
dimensional feature vector as output. The decoder is a GRU, that takes the image features as input at
every time step. The hidden state of the GRU at every time step is transformed by two fully connected
layers and a softmax layer to output a distribution over program instructions. we select the number of
GRUs’ hidden states from {512, 1024, 2028}, dropout rate from {0.2, 0.4, 0.6, 0.8}, and learning rate
from {0.01, 0.05, 0.001}.

The training is done using policy gradient algorithm with running average baseline with gamma of 0.9
and mini batch of 64 images. We use stochastic gradient descent with 0.9 momentum. For R-SPEN,
DVN, and SG-SPEN, we use the energy architecture of Figure 8, and tuned ⌘ from {0.1, 0.5, 1.0, 2.0}
and inference iteration from {15, 20, 25, 30}. We use � = 0.1, � = 2⌘, and ↵ = 100.

iv

	Introduction
	Structured Prediction Energy Networks
	Search-Guided Training
	Related Work
	Experiments
	Multi-label Classification
	Citation Field Extraction
	Results and Discussion
	Semi-Supervised Setting

	Shape Parsing
	Results and discussion

	Conclusion
	Fully-Supervised Setting
	Selecting Reward Margin
	Search Budget and Informative Constraints
	Multi-Label Classification
	Detailed Comparison

	Citation Field Extraction
	Methods
	Hyper-Parameter Tuning

	Shape Parser

