
We thank all the reviewers for their time and constructive comments.1

Reviewer 3: We will move the experiments regarding the sampling complexity (table 1) and some discussions from2

the supplementary material to the main manuscript. Indeed, due to the 8-page constraint, the table and some of the3

discussions were moved to the supplementary material so that the algorithm could be fully presented in the main paper.4

We also planned on moving the table and more in detailed discussion back for the final paper if accepted.5

Reviewer 4:6

(1) We will make sure to reword/rewrite the first sentence of our intro.7

(2) The problem of learning Fourier sparse set functions whose Fourier support contain low Hamming weight frequencies8

arises in many domains. One application of this problem is learning sparse graphs/hypergraphs from observing their9

cut values [11]. Another application of this problem is learning decision trees with bounded depth [7,8]. Moreover,10

hyper-parameter tuning of deep nets can be cast as a decision tree learning problem [5] and hence our results can be11

used for this problem as well. From a higher level perspective, the technique of splitting a multidimensional function12

into a summation of (say k) functions each depending on a small subset of the input variables (say d variables) is a13

common assumption that makes learning tractable. Our algorithm allows for the learning of set functions that have this14

form with information-theoretically tight rates and optimal running times. We believe this itself is an important enough15

contribution and could open up many paths for further applications.16

All in all, we will make sure to rewrite the motivation part of the intro and mention all these applications more clearly.17

The sentence “Therefore, the family of Fourier sparse set functions whose Fourier support only contains low order18

terms is a natural and very important class to consider” Will be replaced by: “Therefore, the family of Fourier sparse set19

functions whose Fourier support only contains low order term is viewed as a natural and important class of functions to20

consider”.21

(3) In some places, such as the algorithm descriptions, it is important to specify the base of the log’s since there is22

no Big-Oh notation there. We decided to specify the base of the log’s everywhere for uniformity of presentation, but23

certainly agree that this is not needed in the Big-Oh notation.24

(4) Exact recovery of sparse functions in sublinear time is indeed possible. Consider a 1-sparse function, x(t) =25

x̂(f) ·(−1)f>t for all t ∈ {0, 1}n and some frequency f ∈ {0, 1}n. Consider x(0n) = x̂(f) and x(t) = x̂(f) ·(−1)f>t26

for some t 6= 0n. One can observe that x(0n) and x(t) have the same absolute value and potentially different signs. If27

their signs differ then (−1)f>t must be −1 and hence f>t = 1, and if their signs agree then f>t = 0. Therefore, by28

comparing the sign of x(0n) to the sign of x(t), it is possible to learn f>t. By learning f>t for all t ∈ {e1, e2, · · · en},29

where ei ∈ {0, 1}n is the ith standard basis vectors with ith entry equal to 1 and the rest of entries equal to 0, one can30

learn the frequency f bit by bit, using n samples and runtime. We show in section 3.1 that if the frequency f has a low31

Hamming weight, |f | ≤ d, then we can recover f more efficiently using O(d log n) samples and runtime as opposed to32

n. If x is k-sparse then the idea is to hash its Fourier transform x̂ into Ck buckets for some large constant C and then33

run this 1-sparse recovery primitive on each bucket. A constant fraction of the non-zero Fourier coefficients will be34

isolated in their buckets and hence the 1-sparse recovery will find them successfully. Then we repeat this procedure35

O(log k) times and in each round, the sparsity goes down by a constant factor. This general hashing and iterative36

peeling technique have been used for sublinear time sparse FFT of 1-D signals [3]. We solve the problem of sparse37

Fourier transform on the binary hypercube {0, 1}n (Hadamard transform) and achieve the optimal sample complexity38

and runtime for recovery of frequencies with bounded weight.39

(5) The result of [8] is not able to exactly recover sparse set functions in the noiseless setting. It also has a weaker40

recovery guarantee than [11] in the robust setting. Therefore, we compare our results against [11] which provides the41

stronger `2/`2 approximation guarantee and supports exact recovery in the noiseless setting.42

Reviewer 5:43

We thank the reviewer for the acknowledgment of our hashing schemes. Indeed, as an important contribution, we have44

removed assumptions on the randomness of the support as compared to previous work by Scheibler [10].45

Our hash function (Definition 7) is in fact similar to the projection defined in the paper "New Results for Learning Noisy46

Parities and Halfspaces". Theorem 7 of this paper proves that the problem of finding a θ-heavy Fourier coefficient47

can be reduced to the problem of learning parities under uniform distribution and classification noise. However, this48

problem is not known to be solvable in time poly(n) – in fact, this problem is closely related to the learning with errors,49

LWE problem, whose hardness has been used as a cryptographic assumption. Hence these techniques do not yield50

efficient recovery. We will add a discussion about this in the final version of our manuscript.51


