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Abstract

We study learning properties of accelerated gradient descent methods for linear
least-squares in Hilbert spaces. We analyze the implicit regularization properties
of Nesterov acceleration and a variant of heavy-ball in terms of corresponding
learning error bounds. Our results show that acceleration can provides faster bias
decay than gradient descent, but also suffers of a more unstable behavior. As a
result acceleration cannot be in general expected to improve learning accuracy with
respect to gradient descent, but rather to achieve the same accuracy with reduced
computations. Our theoretical results are validated by numerical simulations.
Our analysis is based on studying suitable polynomials induced by the accel-
erated dynamics and combining spectral techniques with concentration inequalities.

1 Introduction

The focus on optimization is a major trend in modern machine learning, where efficiency is mandatory
in large scale problems [4]. Among other solutions, first order methods have emerged as methods of
choice. While these techniques are known to have potentially slow convergence guarantees, they also
have low iteration costs, ideal in large scale problems. Consequently the question of accelerating
first order methods while keeping their small iteration costs have received much attention, see e.g.
[33]. Since machine learning solutions are typically derived minimizing an empirical objective (the
training error), most theoretical studies have focused on the error estimated for this latter quantity.
However, it has recently become clear that optimization can play a key role from a statistical point of
view when the goal is to minimize the expected (test) error. On the one hand, iterative optimization
implicitly bias the search for a solution, e.g. converging to suitable minimal norm solutions [27]. On
the other hand, the number of iterations parameterize paths of solutions of different complexity [31].

The idea that optimization can implicitly perform regularization has a long history. In the context
of linear inverse problems, it is known as iterative regularization [11]. It is also an old trick for
training neural networks where it is called early stopping [15]. The question of understanding the
generalization properties of deep learning applications has recently sparked a lot of attention on
this approach, which has be referred to as implicit regularization, see e.g. [13]. Establishing the
regularization properties of iterative optimization requires the study of the corresponding expected
error by combining optimization and statistical tools. First results in this sense focused on linear
least squares with gradient descent and go back to [6, 31], see also [25] and references there in for
improvements. Subsequent works have started considering other loss functions [16], multi-linear
models [13] and other optimization methods, e.g. stochastic approaches [26, 18, 14].

In this paper, we consider the implicit regularization properties of acceleration. We focus on linear
least squares in Hilbert space, because this setting allows to derive sharp results and working in
infinite dimension magnify the role of regularization. Unlike in finite dimension learning bounds are
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possible only if some form of regularization is considered. In particular, we consider two of the most
popular accelerated gradient approaches, based on Nesterov acceleration [22] and (a variant of) the
heavy-ball method [24]. Both methods achieve acceleration by exploiting a so called momentum
term, which uses not only the previous, but the previous two iterations at each step. Considering
a suitable bias-variance decomposition, our results show that accelerated methods have a behavior
qualitatively different from basic gradient descent. While the bias decays faster with the number of
iterations, the variance increases faster too. The two effect balance out, showing that accelerated
methods achieve the same optimal statistical accuracy of gradient descent but they can indeed do
this with less computations. Our analysis takes advantage of the linear structures induced by least
squares to exploit tools from spectral theory. Indeed, the characterization of both convergence and
stability rely on the study of suitable spectral polynomials defined by the iterates. While the idea that
accelerated methods can be more unstable, this has been pointed out in [10] in a pure optimization
context. Our results quantify this effect from a statistical point of view. Close to our results is the
study in [9], where a stability approach is considered to analyze gradient methods for different loss
functions [5].

2 Learning with (accelerated) gradient methods

Let the input space X be a separable Hilbert space (with scalar product 〈·, ·〉 and induced norm ‖·‖)
and the output space be R 1. Let ρ be a unknown probability measure on the input-output space
X× R, ρX the induced marginal probability on X, and ρ(·|x) the conditional probability measure on
R given x ∈ X. We make the following standard assumption: there exist κ > 0 such that

〈x, x′〉 ≤ κ2 ∀x, x′ ∈ X, ρX-almost surely. (1)

The goal of least-squares linear regression is to solve the expected risk minimization problem

inf
w∈X

E(w), E(w) =

∫
X×R

(〈w, x〉 − y)2 dρ(x, y), (2)

where ρ is known only through the n i.i.d. samples (x1, y1), . . . , (xn, yn). In the following, we
measure the quality of an approximate solution ŵ with the excess risk

E(ŵ)− inf
X

E .

The search of a solution is often based on replacing (2) with the empirical risk minimization (ERM)

min
w∈X

Ê(w), Ê(w) =
1

n

n∑
i=1

(〈w, xi〉 − yi)2 . (3)

For least squares an ERM solution can be computed in closed form using a direct solver. However,
for large problems, iterative solvers are preferable and we next describe the approaches we consider.

First, it is useful to rewrite the ERM with vectors notation. Let y ∈ Rn with (y)i = yi and
X : X→ Rn s.t. (Xw)i = 〈w, xi〉 for i = 1 . . . , n. Here the norm ‖·‖n is norm in Rn multiplied by
1/
√
n. Let X∗ : Rn → X be the adjoint of X defined by X∗ y = 1

n

∑n
i=1 xiyi. Then, ERM becomes

min
w∈X

Ê(w) = ‖Xw − y‖2n . (4)

2.1 Gradient descent and accelerated methods

Gradient descent serves as a reference approach throughout the paper. For problem (4) it becomes

ŵt+1 = ŵt − αX∗ (X ŵt − y) (5)

with initial point ŵ0 = 0 and the step-size α that satisfy α < 1
κ2

2 The progress made by gradient
descent at each iteration can be slow and the idea behind acceleration is to use the information of the
previous directions in order to improves the convergence rate of the algorithm.

1As shown in Appendix this choice allows to recover nonparametric kernel learning as a special case.
2 The step-size α is the step-size at the t-th iteration and satisfies the condition 0 < α ‖X‖2op < 1 , where

‖·‖op denotes the operatorial norm. Since the operator X is bounded by κ (which means ‖X‖op ≤ κ) it is
sufficient to assume α < 1

κ2 .
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Heavy-ball

Heavy-ball is a popular accelerated method that adds the momentum ŵt − ŵt−1 at each iteration

ŵt+1 = ŵt − αX∗ (X ŵt − y) + β(ŵt − ŵt−1) (6)
with α, β ≥ 0, the case β = 0 reduces to gradient descent. In the quadratic case we consider it is
also called Chebyshev iterative method. The optimization properties of heavy-ball have been studied
extensively [24, 32]. Here, we consider the following variant. Let ν > 1, consider the varying
parameter heavy-ball replacing α, β in (6) with αt+1, βt+1 defined as:

αt =
4

κ2

(2t+ 2ν − 1)(t+ ν − 1)

(t+ 2ν − 1)(2t+ 4ν − 1)
βt =

(t− 1)(2t− 3)(2t+ 2ν − 1)

(t+ 2ν − 1)(2t+ 4ν − 1)(2t+ 2ν − 3)
,

for t > 0 and with initialization ŵ−1 = ŵ0 = 0, α1 = 1
κ2

4ν+2
4ν+1 , β1 = 0. With this choice and

considering the least-squares problem this algorithm is known as ν−method in the inverse problem
literature (see e.g. [11]). This seemingly complex parameters’ choice allows to relates the approach
to suitable orthogonal polynomials recursion as we discuss later.

Nesterov acceleration

The second form of gradient acceleration we consider is the popular Nesterov acceleration [22]. In
our setting, it corresponds to the iteration

ŵt+1 = v̂t − αX∗ (X v̂t − y) , v̂t = ŵt + βt (ŵt − ŵt−1) (7)

with the two initial points ŵ−1 = ŵ0 = 0, and the sequence βt chosen as

βt =
t− 1

t+ β
, β ≥ 1 . (8)

Differently from heavy-ball, Nesterov acceleration uses the momentum term also in the evaluation of
the gradient. Also in this case optimization results are well known [1, 29].

Here, as above, optimization results refer to solving ERM (3), (4), whereas in the following we study
to which extent the above iterations can used to minimize the expected error (2). In the next section,
we discuss a spectral approach which will be instrumental towards this goal.

3 Spectral filtering for accelerated methods

Least squares allows to consider spectral approaches to study the properties of gradient methods for
learning. We illustrate these ideas for gradient descent before considering accelerated methods.

Gradient descent as spectral filtering

Note that by a simple (and classical) induction argument, gradient descent can be written as

ŵt = α

t−1∑
j=0

(I− αΣ̂)j X∗ y .

Equivalently using spectral calculus

ŵt = gt(Σ̂) X∗ y , with Σ̂ = X∗X,

where gt are the polynomials gt(σ) = α
∑t−1
j=0(I−ασ)j for all σ ∈ (0, κ2] and t ∈ N. Note that, the

polynomials gt are bounded by αt. A first observation is that gt(σ)σ converges to 1 as t→∞, since
gt(σ) converges to 1

σ . A second observation is that the residual polynomials rt(σ) = 1 − σgt(σ),
which are all bounded by 1, control ERM convergence since,

‖X ŵt − y‖n =
∥∥∥X gt(Σ̂) X∗ y− y

∥∥∥
n

=
∥∥∥gt(Σ̂)Σ̂y− y

∥∥∥
n

=
∥∥∥rt(Σ̂)y

∥∥∥
n
≤

∥∥∥rt(Σ̂)
∥∥∥
op
‖y‖n .

In particular, if y is in the range of Σ̂r for some r > 0 (source condition on y) improved convergence
rates can be derived noting that by an easy calculation

|rt(σ)σq| ≤
( q
α

)q (1

t

)q
.
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As we show in Section 4, considering the polynomials gt and rt allows to study not only ERM
but also expected risk minimization (2), by relating gradient methods to their infinite sample limit.
Further, we show how similar reasoning hold for accelerated methods. In order to do so, it useful to
first define the characterizing properties of gt and rt.

3.1 Spectral filtering

The following definition abstracts the key properties of the function gt and rt often called spectral
filtering function [2]. Following the classical definition we replace t with a generic parameter λ.

Definition 1.
The family {gλ}λ∈(0,1] is called spectral filtering function if the following conditions hold:

(i) There exist a constant E < +∞ such that, for any λ ∈ (0, 1]

sup
σ∈(0,κ2]

|gλ(σ)| ≤ E

λ
. (9)

(ii) Let rλ(σ) = 1− σ gλ(σ) there exist a constant F0 such that, for any λ ∈ (0, 1]

sup
σ∈(0,κ2]

|rλ(σ)| ≤ F0 . (10)

Definition 2. (Qualification)
The qualification of the spectral filtering function {gλ}λ is the maximum parameter q such that for
any λ ∈ (0, 1] there exist a constant Fq such that

sup
σ∈(0,κ2]

|rλ(σ)σq| ≤ Fqλq . (11)

Moreover we say that a filtering function has qualification∞ if (11) holds for every q > 0.

Methods with finite qualification might have slow convergence rates in certain regimes. The smallest
the qualification the worse the rates can be.

The discussion in the previous section shows that gradient descent defines a spectral filtering function
where λ = 1/t. More precisely, the following holds.

Proposition 1. Assume λ = 1
t for t ∈ N, then the polynomials gt related to the gradient descent

iterates, defined in (5), are a filtering function with parameters E = α and F0 = 1. Moreover it has
qualification∞ with parameters Fq = (q/α)q .

The above result is classical and we report a proof in the appendix for completeness. Next, we discuss
analogous results for accelerate methods and then compare the different spectral filtering functions.

3.2 Spectral filtering for accelerated methods

For the heavy-ball (6) the following result holds

Proposition 2. Assume κ ≤ 1, let ν > 0 and λ = 1
t2 for t ∈ N, then the polynomials gt related to

heavy-ball method (6) are a filtering function with parameters E = 2 and F0 = 1. Moreover there
exist a positive constant cν < +∞ such that the ν-method has qualification ν.

The proof of the above proposition follows combining several intermediate results from [11]. The
key idea is to show that the residual polynomials defined by heavy-ball iteration form a sequence of
orthogonal polynomials with respect to the weight function

ων(σ) =
σ2ν

σ
1
2 (1− σ)

1
2

,

which is a so called shifted Jacobi weight. Results from orthogonal polynomials can then be used to
characterize the corresponding spectral filtering function.
The following proposition considers Nesterov acceleration.
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Proposition 3. Assume λ = 1/t2, then the polynomials gt related to Nesterov iterates (7) are a
filtering function with constants E = 2α and F0 = 1. Moreover the qualification of this method is at

least 1/2 with constants Fq =
(
β2

α

)q
.

Filtering properties of the Nesterov iteration (7) have been studied recently in the context of inverse
problems [23]. In the appendix 7.3 we provide a simplified proof based on studying the properties of
suitable discrete dynamical systems defined by the Nesterov iteration (7).

3.3 Comparing the different filter functions

We summarize the properties of the spectral filtering function of the various methods for κ = 1.

Method E F0 Fq Qualification
Gradien descent 1 1 qq ∞

Heavy-ball 2 1 cν (q = ν) ν
Nesterov 2 1 β2q ≥ 1/2

The main observation is that the properties of the spectral filtering functions corresponding to the
different iterations depend on λ = 1/t for gradient descent, but on λ = 1/t2 for the accelerated
methods. As we see in the next section this leads to substantially different learning properties. Further
we can see that gradient descent is the only algorithm with qualification∞, even if the parameter
Fq = qq can be very large. The accelerated methods seem to have smaller qualification. In particular,
the heavy-ball method can attain a high qualification, depending on ν, but the constant cν is unknown
and could be large. For Nesterov accelerated method, the qualification is at least 1/2 and it’s an open
question whether this bound is tight or higher qualification can be attained.

In the next section, we show how the properties of the spectral filtering functions can be exploited to
study the excess risk of the corresponding iterations.

4 Learning properties for accelerated methods

We first consider a basic scenario and then a more refined analysis leading to a more general setting
and potentially faster learning rates.

4.1 Attainable case

Consider the following basic assumption.
Assumption 1. Assume there exist M > 0 such that |y| < M ρ-almost surely and w∗ ∈ X such that
E(w∗) = infX E.

Then the following result can be derived.
Theorem 1. Under Assumption 1, let ŵGDt and ŵacct be the t-th iterations respectively of gradient
descent (5) and an accelerated version given by (6) or (7). Assuming the sample-size n to be
large enough and let δ ∈ (0, 1/2) then there exist two positive constant C1 and C2 such that with
probability at least 1− δ

E(ŵGDt )− inf
H

E ≤ C1

(
1

t
+
t

n

)
log2 2

δ

E(ŵacct )− inf
H

E ≤ C2

(
1

t2
+
t2

n

)
log2 2

δ
.

where the constants C1 and C2 do not depend on n, t, δ, but depend on the chosen optimization
method.
Moreover by choosing the stopping rules tGD = O(n1/2) and tacc = O(n1/4) both algorithms have
learning rate of order 1√

n
.

The proof of the above results is given in the appendix and the novel part is the one concerning
accelerated methods, particularly Nesterov acceleration. The result shows how the number of iteration
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controls the learning properties both for gradient descent and accelerated gradient. In this sense
implicit regularization occurs in all these approaches. For any t the error is split in two contributions.
Inspecting the proof it is easy to see that, the first term in the bound comes from the convergence
properties of the algorithm with infinite data. Hence the optimization error translates into a bias
term. The decay for accelerated method is much faster than for gradient descent. The second term
arises from comparing the empirical iterates with their infinite sample (population) limit. It is a
variance term depending on the sampling in the data and hence decreases with the sample size.
For all methods, this term increases with the number of iterations, indicating that the empirical
and population iterations are increasingly different. However, the behavior is markedly worse for
accelerated methods. The benefit of acceleration seems to be balanced out by this more unstable
behavior. In fact, the benefit of acceleration is apparent balancing the error terms to obtain a final
bound. The obtained bound is the same for gradient descent and accelerated methods, and is indeed
optimal since it matches corresponding lower bounds [3, 7]. However, the number of iterations
needed by accelerated methods is the square root of those needed by gradient descent, indicating a
substantial computational gain can be attained. Next we show how these results can be generalized to
a more general setting, considering both weaker and stronger assumptions, corresponding to harder
or easier learning problems.

4.2 More refined result

Theorem 1 is a simplified version of the more general result that we discuss in this section. We
are interested in covering also the non-attainable case, that is when there is no w∗ ∈ X such that
E(w∗) = infX E. In order to cover this case we have to introduce several more definitions and
notations. In Appendix 8.2 we give a more detailed description of the general setting. Consider
the space L2

ρX
of the square integrable functions with the norm ‖f‖2ρX =

∫
X
f(x)2 dρX(x) and

extend the expected risk to L2
ρX

defining E(f) =
∫
X×R(f(x)− y)2 dρ(x, y). Let H ⊆ L2

ρX
be the

hypothesis space of functions such that f(x) = 〈w, x〉 ρX almost surely. Recall that, the minimizer
of the expected risk over L2

ρX
is the regression function fρ =

∫
X
y dρ(y|x). The projection fH over

the closure of the hypothesis space H is defined as

fH = arg min
g∈H

‖g − fρ‖ρX .

Let L : L2
ρX
→ L2

ρX
be the integral operator

Lf(x) =

∫
X

f(x′) 〈x, x′〉 dρX(x′) .

The first assumption we consider concern the moments of the output variable and is more general
than assuming the output variable y to be bounded as assumed before.
Assumption 2. There exist positive constant Q and M such that for all N 3 l ≥ 2,∫

R
|y|l dρ(y|x) ≤ 1

2
l!M l−2Q2 ρX almost surely.

This assumption is standard and satisfied in classification or regression with well behaved noise.
Under this assumption the regression function fρ is bounded almost surely

|fρ(x)| ≤
∫
R
|y| dρ(y|x) ≤

(∫
R
|y|2 dρ(y|x)

)1/2

≤ Q . (12)

The next assumptions are related to the regularity of the target function fH.
Assumption 3.
There exist a positive constant B such that the target function fH satisfy∫

X

(fH(x)− fρ(x))
2
x⊗ x dρX(x) � B2Σ .

This assumption is needed to deal with the misspecification of the model. The last assumptions
quantify the regularity of fH and the size (capacity) of the space H.
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Assumption 4.
There exist g0 ∈ L2

ρX
and r > 0 such that

fH = Lrg0 , with ‖g0‖ρX ≤ R.

Moreover we assume that there exist γ ≥ 1 and a positive constant cγ such that the effective dimension

N(λ) = Tr
(
L (L+ λI)

−1
)
≤ cγλ−

1
γ .

The assumption on N(λ) is always true for γ = 1 and c1 = κ2 and it’s satisfied when the eigenvalues
σi of L decay as i−γ . We recall that, the space H can be characterized in terms of the operator L,
indeed

H = L1/2
(
L2
ρX

)
.

Hence, the non-attainable corresponds to considering r < 1/2.

Theorem 2. Under Assumption 2, 3, 4, let ŵGDt and ŵacct be the t-th iterations of gradient descent
(5) and an accelerated version given by (6) or (7) respectively. Assuming the sample-size n to be
large enough, let δ ∈ (0, 1/2) and assuming r to be smaller than the qualification of the considered
algorithm (and equal to 1/2 in the case of Nesterov accelerated methods), then there exist two positive
constant C1 and C2 such that with probability at least 1− δ

E(ŵGDt )− inf
H

E ≤ C1

(
1

t2r
+
t

1
γ

n

)
log2 2

δ

E(ŵacct )− inf
H

E ≤ C2

(
1

t4r
+
t

2
γ

n

)
log2 2

δ
.

where the constants C1 and C2 do not depend on n, t, δ, but depend on the chosen optimization.
Choosing the stopping rules tGD = O(n

γ
2γr+1 ) and tacc = O(n

γ
4γr+2 ) both gradient descent and

accelerated methods achieve a learning rate of order O
(
n

−2γr
2γr+1

)
.

The only reason why we do not consider r < 1/2 in the analysis of Nesterov accelerated methods is
that our proof require the qualification of the method to be larger than 1 for technical reasons. However
we think that our result can be extended to that case, furthermore we think Nesterov qualification
to be larger than 1, however it’s an open question whether higher qualification can be attained. The
proof of the above result is given in the appendix. The general structure of the bound is the same
as in the basic setting, which is now recovered as a special case. However, in this more general
form, the various terms in the bound depend now on the regularity assumptions on the problem. In
particular, the variance depends on the effective dimension behavior, e.g. on the eigenvalue decay,
while the bias depend on the regularity assumption on fH. The general comparison between gradient
descent and accelerated methods follows the same line as in the previous section. Faster bias decay of
accelerated methods is contrasted by a more unstable behavior. As before, the benefit of accelerated
methods becomes clear when deriving optimal stopping time and corresponding learning bound:
they achieve the accuracy of gradient methods but in considerable less time. While heavy-ball and
Nesterov have again similar behaviors, here a subtle difference resides in their different qualifications,
which in principle lead to different behavior for easy problems, that is for large r and γ. In this
regime, gradient descent could work better since it has infinite qualification. For problems in which
r < 1/2 and γ = 1 the rates are worse than in the basic setting, hence these problems are hard.

4.3 Related work

In the convex optimization framework a similar phenomenon was pointed out in [10] where they
introduce the notion of inexact first-order oracle and study the behaviour of several first-order methods
of smooth convex optimization with such oracle. In particular they show that the superiority of
accelerated methods over standard gradient descent is no longer absolute when an inexact oracle
is used. This because acceleration suffer from the accumulation of the errors committed by the
inexact oracle. A relevant result on the generalization properties of learning algorithm is [5] in
which they introduce the notion of uniform stability and use it to obtain generalization error bounds
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for regularization based learning algorithms. Recently, to show the effectiveness of commonly
used optimization algorithms in many large-scale learning problems, algorithmic stability has been
established for stochastic gradient methods [14], as well as for any algorithm in situations where
global minima are approximately achieved [8]. For Nesterov’s accelerated gradient descent and heavy-
ball method, [9] provide stability upper bounds for quadratic loss function in a finite dimensional
setting. All these approaches focus on the definition of uniform stability given in [5]. Our approach
to the stability of a learning algorithm is based on the study of filtering properties of accelerated
methods together with concentration inequalities, we obtain upper bounds on the generalization error
for quadratic loss in a infinite dimensional Hilbert space and generalize the bounds obtained in [9]
by considering different regularity assumptions and by relaxing the hypothesis of the existence of a
minimizer of the expected risk on the hypothesis space.

5 Numerical simulation

In this section we show some numerical simulations to validate our results. We want to simulate the
case in which the eigenvalues σi of the operator L are σi = i−γ for some γ ≤ 1 and the non-attainable
case r < 1/2. In order to do this we observe that if we consider the kernel setting over a finite space
Z = {z1, . . . , zn} of size N with the uniform probability distribution ρZ, then the space L2(Z, ρZ)
becomes RN with the usual scalar product multiplied by 1/N . the operator L becomes a N ×N
matrix which entries are Li,j = K(zi, zj) for every i, j ∈ {1, . . . , N}, where K is the kernel, which
is fixed by the choice of the matrix L. We build the matrix L = UDUT with U ∈ RN×N orthogonal
matrix and D diagonal matrix with entries Di,i = i−γ . The source condition becomes fH = Lrg0

for some g0 ∈ RN , r > 0. We simulate the observed output as y = fH + N(0, σ) where N(0, σ) is
the standardx normal distribution of variance σ2. The sampling operation can be seen as extracting n
indices i1, . . . , in and building the kernel matrix K̂j,k = K(zij , zik) and the noisy labels ŷj = yij
for every j, k ∈ {1, . . . , n}. The Representer Theorem ensure that we can built our estimator f̂ ∈ RN
as f̂(z) =

∑n
j=1K(z, zij )cj where the vector c depends on the chosen optimization algorithm and

takes the form c = gt(K̂)y. The excess risk of the estimator f̂ is given by ‖f̂ − fH‖2L2
Z

.
For every algorithm considered, we run 50 repetitions, in which we sample the data-space and
compute the error ‖f̂t − fH‖2L2

Z

, where f̂t represents the estimator related to the t-th iteration of one
of the considered algorithms, and in the end we compute the mean and the variance of those errors.
In Figure 1 we simulate the error of all the algorithms considered for both attainable and non-attainable
case. We observe that both heavy-ball and Nesterov acceleration provides faster convergence rates
with respect to gradient descent method, but the learning accuracy is not improved. We observe
that the accelerated methods considered show similar behavior and that for “easy problem” (large r)
that gradient descent can exploits its higher qualification and perform similarly to the accelerated
methods.
In Figure 2 we show the test error related to the real dataset pumadyn8nh (available at
https://www.dcc.fc.up.pt/ ltorgo/Regression/puma.html). Even in this case we can observe the
behaviors shown in our theoretical results.

Fig. 1: Mean and variance of error ‖f̂t − fH‖2N for the t-th iteration of gradient descent (GD), Nesterov
accelerated algorithm and heavy-ball (ν = 1). Black dots shows the absolute minimum of the curves. The
parameters are chosen N = 104, n = 102, γ = 1, σ = 0.5. We show the attainable case (r = 1/2) in the left,
the “hard case” (r = 0.1 < 1/2) in the center and the “easy case” (r=2>1/2) in the right.
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Fig. 2: Test error on the real dataset pumadyn8nh using gradient descent (GD), Nesterov accelerated algorithm
and heavy-ball. In the left we use a gaussian kernel with σ = 1.2 and in the right a polynomial kernel of degree
9.

6 Conclusion

In this paper, we have considered the implicit regularization properties of accelerated gradient methods
for least squares in Hilbert space. Using spectral calculus we have characterized the properties of
the different iterations in terms of suitable polynomials. Using the latter, we have derived error
bounds in terms of suitable bias and variance terms. The main conclusion is that under the considered
assumptions accelerated methods have smaller bias but also larger variance. As a byproduct they
achieve the same accuracy of vanilla gradient descent but with much fewer iterations. Our study
opens a number of potential theoretical and empirical research directions. From a theory point of
view, it would be interesting to consider other learning regimes, for examples classification problems,
different loss functions or other regularity assumptions beyond classical nonparametric assumptions,
e.g. misspecified models and fast eigenvalues decays (Gaussian kernel). From an empirical point of
view it would be interesting to do a more thorough investigation on a larger number of simulated and
real data-sets of varying dimension.
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7 Appendix: regularization properties for accelerated algorithms

7.1 Regularization properties for gradient descent

Proof of Proposition 1

Proof.
Since σ ∈ (0, κ2] and α is chosen such that α ≤ 1

κ2 it holds that (1− ασ) ≤ 1 for every and so for
the definitions of gt and rt it holds

sup
σ∈(0,κ2]

|gt(σ)| ≤ αt

sup
σ∈(0,κ2]

|rt(σ)| ≤ 1

hence Landweber polynomials verify (9) and (10) with E = α and F0 = 1.
For what concern the qualification of this method, for every q ≥ 0 the maximum of the function
rt(σ)σq is attained at σ = 1

α
q
t+q , so we get

0 ≤ rt(σ)σq ≤
(

1

α

)q (
q

t+ q

)q
≤
( q
α

)q (1

t

)q
,

hence we prove (11) for every q ≥ 0 with Fq =
(
q
α

)q
and complete the proof.

7.2 Regularization properties for heavy-ball

For the sake of simplicity assume κ ≤ 1. Before proceeding with the analysis of the ν-method we
state one lemma, which will be useful in the following.
Lemma 1.
Let gt be a family of polynomials of degree t− 1 with t ∈ N and rt the associated residuals.

Assume the residuals satisfy

|rt(σ)| ≤ 1 ∀σ ∈ [0, 1], t ∈ N (13)

then it holds that
|gt(σ)| ≤ 2t2 ∀σ ∈ [0, 1] .

Proof.
Using the definition of the residual and the Mean Value Theorem there exist σ̄ ∈ [0, σ] such that

gt(σ) =
1− rt(σ)

σ
=
rt(0)− rt(σ)

σ
= −r′t(σ̄) .

where r′t denotes the first derivative of rt.
Markov’s inequality for polynomials implies that

sup
σ∈[0,1]

|r′t(σ)| ≤ 2t2 sup
σ∈[0,1]

|rt(σ)| ,

hence it holds
gt(σ) ≤ sup

σ̄∈[0,1]

|r′t(σ̄)| ≤ 2t2 .

Fixed ν > 0 the residual polynomials {rt}t associated to the ν-method form a sequence of orthogonal
polynomials with respect to the weight function

ων(σ) =
σ2ν

σ
1
2 (1− σ)

1
2

,

which is a shifted Jacobi weight, hence the residual polynomials {rt}t are normalized shifted copies
of Jacobi polynomials, where the normalization is due to the constraint rt(0) = 1.
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Thanks to the properties of orthogonal polynomials, they satisfy Christoffel-Darboux recurrence
formula (see e.g. [30])

rt+1 = rt(σ) + βt+1 (rt(σ)− rt−1(σ))− αt+1σrt(σ) , t ≥ 1

and a straightforward computation shows that this recursion on our problem carries over to the iterates
ŵt of the associated method

ŵt+1 = ŵt − αt+1 X∗ (X ŵt − y) + βt+1(ŵt − ŵt−1) .

where, for every t > 1, the parameters αt, βt are defined by

αt =4
(2t+ 2ν − 1)(t+ ν − 1)

(t+ 2ν − 1)(2t+ 4ν − 1)

βt =
(t− 1)(2t− 3)(2t+ 2ν − 1)

(t+ 2ν − 1)(2t+ 4ν − 1)(2t+ 2ν − 3)
,

with initialization ŵ−1 = ŵ0 = 0, α1 = 4ν+2
4ν+1 , β1 = 0.

In particular it holds the following result from [11].
Theorem 3.
The residual polynomials {rt}t of the ν-method (ν fixed) are uniformely bounded for all t ∈ N,

|rt(σ)| ≤ 1 σ ∈ [0, 1];

they further satisfy
|σνrt(σ)| ≤ cνt−2ν ∀σ ∈ [0, 1] (14)

with appropriate constants 0 < cν < +∞.

Proof of Proposition 2

Proof.
Theorem 3 states that (10) holds true with F0 = 1 and that the qualification of the method is ν.
Moreover by the Lemma 1 we get that also that (9) holds with E = 1.

7.3 Regularization properties for Nesterov’s acceleration

Nesterov iterates (7) can be written as

ŵt+1 = ŵt + βt (ŵt − ŵt−1)− αX∗ (X (ŵt + βt (ŵt − ŵt−1))− y) =

=
[
(βt + 1)

(
I− αΣ̂

)]
ŵt +

[
−βt

(
I− αΣ̂

)]
ŵt−1 + αX∗ y

and since ŵt = gt

(
Σ̂
)

X∗ y it can be easily proved that the polynomials gt and the residual rt satisfy
the following recursions

gt+1(σ) = (1− ασ) [gt(σ) + βt (gt(σ)− gt−1(σ))] + α (15)
rt+1(σ) = (1− ασ) [rt(σ) + βt (rt(σ)− rt−1(σ))] (16)

for every t ∈ N with initialization g−1 = g0 = 0 and r−1 = r0 = 1.
Moreover, we can rewrite (16) as

rt+1(σ) = (1− ασ)

[
(1− θt)rt(σ) + θt

(
rt−1(σ) +

1

θt−1
(rt(σ)− rt−1(σ))

)]
(17)

where for every t ∈ N θt is defined such that

βt =
θt
θt−1

(1− θt−1) ,

in particular, the choice (8) implies

θt =
β

t+ β
. (18)

With these choices we can state a first proposition about the properties of the residual polynomials of
the Nesterov’s accelerated method.
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Proposition 4.
Let rt satisfy the recursion (17) where the step-size α is chosen such that ακ2 < 1 and θt defined in
(18), the for all r ∈ [0, 1/2]

σr|rt(σ)| ≤
(
β2

α

)r
t−2r (19)

for all σ ∈ [0, κ2].

Proof.
Let σ ∈ [0, κ2], following [23] we can see the right hand of (17) as a convex combination between rt
and

Rt(σ) = rt−1(σ) +
1

θt−1
(rt(σ)− rt−1(σ)) .

We can observe that polynomials rt and Rt satisfy the following recursions
rt+1(σ) = (1− ασ)(1− θt)rt(σ) + θt(1− ασ)Rt(σ)

Rt+1(σ) = −ασ
θt

(1− θt)rt(σ) + (1− ασ)Rt(σ)

By computing the square of the polynomials and rescaling them in order to get the two mixed term to
be opposite, we obtain that

ασ

θ2
t

r2
t+1(σ) + (1− ασ)R2

t+1 = (1− ασ)

[
(1− θt)2ασ

θ2
t

r2
t (σ) + (1− ασ)R2

t (σ)

]
We can observe that parameters θt satisfy the following

1 ≥ θt ≥
θt−1

1 + θt−1

which implies
(1− θ2

t )

θ2
t

≤ 1

θ2
t−1

.

Hence we get that
ασ

θ2
t

r2
t+1(σ) + (1− ασ)R2

t+1 ≤(1− ασ)

[
ασ

θ2
t−1

r2
t (σ) + (1− ασ)R2

t (σ)

]
≤(1− ασ)t

[
ασ

θ2
0

r2
1(σ) + (1− ασ)R2

1(σ)

]
where the second inequality follows by induction.
Finally, using that θ0 = 1 and R0 = 1, yields that

ασ

θ2
t−1

r2
t (σ) + (1− ασ)R2

t ≤ (1− ασ)t+1 .

This inequality implies that both the terms in the sum are smaller that (1− ασ)t+1, hence
|Rt(σ)| ≤ 1 (20)

σr2
t (σ) ≤

θ2
t−1

α
(1− ασ)t+1 (21)

By induction it follows from (20) that (19) holds for r = 0:
|rt(σ)| ≤ 1

because rt+1 is a convex combination of rt and Rt multiplied by (1− ασ).
While (21) implies (19) for r = 1/2. The remaining cases r ∈ (0, 1/2) follow by interpolation.

By a scaled version of Lemma 1 it holds that
|gt(σ)| ≤ 2αt2 ∀σ ∈ [0, κ2] .

Proof of Proposition 3

Proof. The proof follows immediately by the above results.
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8 Appendix: generalization bound via spectral/regularized algorithm

8.1 Learning with kernels

The setting in this paper recover non-parametric regression over a RKHS as a special case. Let Ξ×R
be a probability space with distribution µ, the goal is to minimize the risk

E(f) =

∫
Ξ×R

(y − f(ξ))2 dµ(ξ, y).

A common way to build an estimator is to consider a symmetric kernel K : Ξ × Ξ → R which
is positive definite, which means that for every m ∈ N and ξ1, . . . , ξn ∈ Ξ the matrix with the
entries K(ξi, ξj) for i, j = 1, . . . ,m. This kernel defines a unique Hilbert space of function HK

with the inner product 〈·, ·〉K and such that for all ξ ∈ Ξ, Kξ(·) = K(ξ, ·) ∈ HK and the following
reproducing property holds for all f ∈ HK , f(ξ) = 〈f,Kξ〉K . By introducing the feature map
Ψ : Ξ → HK defined by Ψ(ξ) = Kξ, and we further consider Ψ : Ξ × R → HK × R, where
Ψ(ξ, y) = (Kξ, y), which provide HK × R the probability distribution µΨ. Denoting X = HK and
ρ = µΨ we come back to our previous setting, in fact by the change of variable (Kξ, y) = (x, y) we
have∫

Ξ×R
(y − f(ξ))2 dµ(ξ, y) =

∫
Ξ×R

(y − 〈f,Kξ〉K)2 dµ(ξ, y) =

∫
X×R

(y − 〈f, x〉K)2 dρ(x, y) .

8.2 Mathematical setting

Let’s consider the hypothesis space

H =
{
f : X→ R | ∃w ∈ X with f(x) = 〈w, x〉 ρX-almost surely

}
,

which under assumptio 1 is a subspace of the Hilbert space of the square integral functions from X to
R with respect to the measure ρX

L2
ρX

=

{
f : X→ R | ‖f‖2ρX = 〈f, f〉ρX :=

∫
X

f(x)2 dρX(x) < +∞
}
.

The function that minimizes the expected risk over all possible measurable functions is the regression
function [28].

fρ = arg min
f :X→R

E(f), E(f) =

∫
X×R

(f(x)− y)2 dρ(x, y)

fρ(x) =

∫
R
y dρ(y|x) ∀x ∈ X, ρX-almost surely.

which under assumption 1 the regression function fρ belongs to L2
ρX

.
Assuming (1) implies that a solution fH for the problem

inf
H

E,

which is equivalent to 2, is the projection of the regression function fρ into the closure of H in L2
ρX

.
In fact a standard result (see e.g. [28]) show that for all f in L2

ρX

E(f) = ‖f − fρ‖2ρX + E(fρ) . (22)

We now introduce some useful operators. Let S : X→ L2
ρX

be the linear map defined by Sw = 〈w, ·〉
which is bounded by k for (1), in fact for the Cauchy–Schwarz inequality

‖Sw‖2ρX =

∫
X

〈w, x〉2 dρX(x) ≤ κ2 ‖w‖2 .

Furthermore, we consider the the adjoint operator S∗ : L2
ρX
→ X (i.e. the operator which satisfy

〈Sw, f〉ρX = 〈w, S∗f〉), the covariance operator Σ : X → X given by Σ = S∗S and the operator
L : L2

ρX
→ L2

ρX
defined by L = SS∗. It’s easy to observe that these operators are defined as follows

S∗f =

∫
X

xf(x) dρX(x), Σw =

∫
X

〈w, x〉x dρX(x), Lf =

∫
X

f(x) 〈x, ·〉 dρX(x)
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and that the operators Σ and L are linear positive-definite trace class operators bounded by κ2.
Moreover, for any w ∈ X it holds the following isometry property [28]

‖Sw‖ρX =
∥∥∥√Σw

∥∥∥ .
Similarly we define the sampling operator X : X→ Rn by (Xw)i = 〈w, xi〉 for i = 1 . . . , n where
the norm ‖·‖n in Rn is the Euclidean norm multiplied by 1/

√
n, it’s adjoint operator X∗ : Rn → X

and the empirical covariance operator Σ̂ = X∗X, that are defined as

X∗ y =
1

n

n∑
i=1

xiyi, Σ̂w =
1

n

n∑
i=1

〈w, xi〉xi .

Similarly to the previous case X and Σ̂ are bounded by κ and κ2 respectively.

From (22) it’s easy to see that problem (2) can be rewritten as

inf
w∈X
‖Sw − fρ‖2ρX .

Moreover, for the projection theorem it holds true that

S∗fρ = S∗fH ,

which implies that problem 2 can be rewritten as

inf
w∈X

‖Sw − fH‖2ρX . (23)

A regularization approach applied to the empirical risk minimization problem

inf
w∈X

‖Xw − y‖2n . (24)

leads to an estimated solution of the form

ŵλ = gλ(Σ̂) X∗ y , (25)

where gλ is a regularization function satisfying Definition 1 with qualification q (Definition 2).
Differently from the inverse problem setting we are trying to approximate a solution to the ideal
problem (23) with a solution of the empirical problem (24) where X, y are not only approximation of
the ideal version S, fH but are defined in different space.
Using the same regularization approach to the ideal problem we can define the unknown regularized
solution as

wλ = gλ(Σ)S∗fH . (26)
The performance of regularization algorithms ŵλ can be measured in terms of the excess risk
‖Sŵλ − fH‖2ρX . Assuming that fH ∈ H, which implies that there exists some w∗ such that
fH = Sw∗, it can be measured in terms of X-norm ‖ŵλ − w∗‖ which is closely related to∥∥L−1/2S (ŵλ − w∗)

∥∥
ρX

=
∥∥L−1/2 (Sŵλ − fH)

∥∥
ρX

since for all w ∈ X∥∥∥L−1/2Sw
∥∥∥
ρX
≤ ‖w‖ .

In what follows, we will measure the performance of algorithms in terms of a broader class of norms,
‖L−a (Sŵλ − fH)‖ρX , where a ∈ [0, 1/2] is such that L−afH is well defined.
Differently from the Assumption 4 here we consider a more general assumption on the target function
and we don’t assume any condition on the effective dimension N(λ).
Assumption 5.
There exist g0 ∈ L2

ρX
such that

fH = Φ(L)g0 , with ‖g0‖ρX ≤ R,

where Φ : [0, κ2] → [0,+∞) is a non-decreasing, operator monotone index function such that
Φ(0) = 0 and Φ(κ2) < +∞. Moreover, for some ζ ∈ [0, q], the function Φ(u)u−ζ is non-decreasing,
and the qualification q of gλ covers the index function Φ, which means that there exist a constant
c > 0 such that for all 0 < λ < κ2,

c
λq

Φ(λ)
≤ inf
λ≤u≤κ2

uq

Φ(u)
.
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We are ready to state our general result.
Theorem 4.
Under Assumption 2, 3, 5, let ŵλ defined in (25), a ∈ [0, 1/2], δ ∈ (0, 1/2) and λ ∈ (0, 1). Assume

the qualification q of the chosen method to be larger than 1 and the sample-size n satisfy the following
condition

n ≥ 32κ2β

4λ
, β = log

4κ2 (N(λ) + 1)

δ ‖Σ‖
,

then with probability at least 1− δ it holds true that∥∥L−a (Sŵλ − fH)
∥∥
ρX
≤ λ−a

(
C̃1

nλ
1
2∨(1−ζ)

+

(
C̃2 +

C̃3√
nλ

)
Φ(λ) + C̃4

√
N(λ)

n

)
log2 2

δ

where the constants C̃1, C̃2, C̃3, C̃4 does not depend on n, λ, δ.
In the follow we denote with C a positive constant which does not depend on n, δ, λ and can be
different every times it appears.
In particular, assuming λ = O

(
n−θ

)
, and n to be large enough, then with probability at least 1− δ∥∥L−a (Sŵλ − fH)
∥∥2

ρX
≤ Cλ−2a

(
Φ(λ)2 +

N(λ)

n

)
log2 2

δ
. (27)

Moreover assuming Holder source condition Φ(u) = ur and that there exist γ ≥ 1, cγ > 0 such that
N(λ) ≤ cγλ−

1
γ then with probability at least 1− δ inequality 27 can be rewritten as∥∥L−a (Sŵλ − fH)

∥∥2

ρX
≤ Cλ−2a

(
λ2r +

λ−
1
γ

n

)
log2 2

δ
, (28)

where if we choose a = 0, λ = O(n−
γ

2γr+1 ) we obtain the convergence result

‖Sŵλ − fH‖2ρX ≤ C
(
n

−2rγ
2rγ+1

)
log2 2

δ
. (29)

8.3 Lemmas for Theorem 4

We firstly observe that Definition 1 and 2 of regularization function with qualification q are equivalent
to the following:

sup
α∈[0,1]

sup
λ∈(0,1]

sup
u∈(0,κ2]

|uαgλ(u)| ≤ E′λ1−α (30)

sup
α∈[0,q]

sup
λ∈(0,1]

sup
u∈(0,κ2]]

|rλ(u)uαλ−α| ≤ F ′q .

where E′ = max(E,F0 + 1) and F ′q = max(F0, Fq).

In this section we give some lemmas which are at the base of the proof of the learning bound.

Deterministic estimates
The deterministic estimates concern the convergence term in the error bound

Swλ − fH = Sgλ(Σ)S∗fH − fH = (gλ(L)L− I)fH = −rλ(L)fH

and it holds true the following lemma from [19].
Lemma 2.
Under Assumption 4, let wλ given by (26), we have for all a ∈ [0, ζ],∥∥L−a (Swλ − fH)

∥∥
ρ
≤ cgRΦ(λ)λ−a, cg =

F ′q
c ∧ 1

,

and
‖wλ‖ ≤ E′Φ(κ2)κ−(2ζ∧1)λ−( 1

2−ζ)+ .

Probabilistic estimates
Next lemma concern the concentration of the empirical mean of random variable in a Hilbert space.
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Lemma 3.
Let w1, . . . , wm be i.i.d. random variables in a Hilbert space with norm ‖·‖ and assume there exist
two positive constants B and σ2 such that

E
[
‖w1 − E [w1]‖l

]
≤ 1

2
l!Bl−2σ2 , ∀ l ≥ 2 .

Then for any 0 < δ < 1/2, the following holds with probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

wi − E [wi]

∥∥∥∥∥ ≤ 2

(
B

m
+

σ√
m

)
log

2

δ
.

In the following two lemmas we control in probability the approximation of the covariance operator
Σ with the empirical covariance Σ̂.
Lemma 4.
Let 0 < δ < 1/2, it holds with probability at least 1− δ:∥∥∥Σ− Σ̂

∥∥∥
op
≤
∥∥∥Σ− Σ̂

∥∥∥
HS
≤ 6κ2

√
n

log
2

δ
,

where ‖·‖HS denotes the Hilbert-Schmidt norm.

This lemma is a consequence of the lemma above, (see e.g. [3] for a proof).
Lemma 5.
Let δ ∈ (0, 1) and λ > 0. With probability at least 1− δ the following holds:∥∥∥Σ

−1/2
λ

(
Σ− Σ̂

)
Σ̂
−1/2
λ

∥∥∥
op
≤ 4κ2β

3nλ
+

√
2κ2β

nλ
, β = log

4κ2 (N(λ) + 1)

δ ‖Σ‖op

where we denote Σλ := Σ + λI and Σ̂λ := Σ̂ + λI.

A proof of this result can be found in [17].
Lemma 6.
Let c, δ ∈ (0, 1) and λ > 0. Assume

n ≥ 32κ2β

(
√

9 + 24c− 3)2λ
, β = log

4κ2 (N(λ) + 1)

δ ‖Σ‖op
then it holds with probability at least 1− δ∥∥∥Σ

−1/2
λ Σ̂

1/2
λ

∥∥∥2

op
≤ 1 + c∥∥∥Σ

1/2
λ Σ̂

−1/2
λ

∥∥∥2

op
≤ (1− c)−1

In particular we will choose c = 2/3.

Proof.
The condition

4κ2β

3nλ
+

√
2κ2β

nλ
≤ c

can be seen as a second degree inequality, and it’s equivalent to the assumption

n ≥ 32κ2β

(
√

9 + 24c− 3)2λ
, β = log

4κ2 (N(λ) + 1)

δ ‖Σ‖
.

Applying Lemma 5 it holds true that∥∥∥Σ
−1/2
λ

(
Σ− Σ̂

)
Σ̂
−1/2
λ

∥∥∥
op
≤ c .

18



Now, we can prove that∥∥∥Σ
−1/2
λ Σ̂

1/2
λ

∥∥∥2

op
=
∥∥∥Σ
−1/2
λ Σ̂λΣ̂

−1/2
λ

∥∥∥
op

=
∥∥∥Σ
−1/2
λ

(
Σ− Σ̂

)
Σ̂
−1/2
λ + I

∥∥∥
op

≤
∥∥∥Σ
−1/2
λ

(
Σ− Σ̂

)
Σ̂
−1/2
λ

∥∥∥
op

+ ‖I‖op ≤ c+ 1

which proves the first part of the thesis.
From [7] we get∥∥∥Σ

1/2
λ Σ̂

−1/2
λ

∥∥∥2

op
=
∥∥∥Σ

1/2
λ Σ̂−1

λ Σ
1/2
λ

∥∥∥
op

=

∥∥∥∥(I− Σ
−1/2
λ

(
Σ− Σ̂

)
Σ̂
−1/2
λ

)−1
∥∥∥∥
op

≤ (1− c)−1

which completes the proof.

The last important lemma regards the concentration of the empirical quantities Σ̂wλ,X
∗ y around the

ideal ones Σwλ, S
∗fH.

Lemma 7.
Under Assumptions 2, 3, 4, let δ ∈ (0, 1/2) and wλ given by (26), then the following holds with

probability at least 1− δ:∥∥∥Σ
−1/2
λ

[ (
Σ̂wλ −X∗ y

)
− (Σwλ − S∗fH)

]∥∥∥ ≤ ( C1

nλ
1
2∨(1−ζ)

+

√
C2Φ(λ)2

nλ
+
C3N(λ)

n

)
log

2

δ

where

C1 =8
(
κM + κ2E′Φ(κ2)κ−(2ζ∧1)

)
C2 =96c2gR

2κ2

C3 =32(3B2 + 4Q2) .

Proof.
Let ξi = Σ

−1/2
λ (〈w, xi〉 − yi)xi for every i ∈ 1, . . . , n, for the sake of simplicity we consider the

random variable ξ = Σ
−1/2
λ (〈w, x〉 − y)x independent and identically distributed to ξi for every

i ∈ {1, . . . , n}. Now a simple calculation shows that

E[ξ] = Σ
−1/2
λ (Σwλ − S∗fH) .

In order to apply Lemma 3, we bound E ‖ξ − E [ξ]‖l for any N 3 l ≥ 2, in fact by using Holder
inequality we get

E ‖ξ − E [ξ]‖l ≤ E [‖ξ‖ − E ‖ξ‖]l ≤ 2l−1
(
E ‖ξ‖l + (E ‖ξ‖)l

)
≤ 2lE ‖ξ‖l . (31)

We can proceed bounding

E ‖ξ‖l =E
[∥∥∥Σ

−1/2
λ (y − 〈wλ, x〉)x

∥∥∥l]
=E

[∥∥∥Σ
−1/2
λ x

∥∥∥l |y − 〈wλ, x〉|l]
≤2l−1E

[∥∥∥Σ
−1/2
λ x

∥∥∥l (|y|l + | 〈wλ, x〉 |l
)]

.

Now, thanks to (1) and Cauchy-Schwarz inequality, it holds that∥∥∥Σ
−1/2
λ x

∥∥∥ ≤ κ√
λ

(32)

| 〈wλ, x〉 | ≤ ‖wλ‖ ‖x‖ ≤ κ ‖wλ‖ . (33)
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Thus we get, using again Cauchy-Schwarz inequality

E ‖ξ‖l ≤ 2l−1

(
κ√
λ

)l−2

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2 (
|y|l + (κ ‖wλ‖)l−2 | 〈wλ, x〉 |2

)]
. (34)

Regarding the first term of the sum, by Assumption 2,

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

|y|l
]

=

∫
X

∥∥∥Σ
−1/2
λ x

∥∥∥2
∫
R
|y|l dρ(y|x) dρX(x)

≤1

2
l!M l−2Q2

∫
X

∥∥∥Σ
−1/2
λ x

∥∥∥2

dρX(x) .

Observing that ‖w‖ = Tr (w ⊗ w) it holds that∫
X

∥∥∥Σ
−1/2
λ x

∥∥∥2

dρX(x) =

∫
X

Tr
(

Σ
−1/2
λ x⊗ xΣ

−1/2
λ

)
dρX(x) = Tr

(
Σ
−1/2
λ ΣΣ

−1/2
λ

)
= N(λ) ,

(35)
we get

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

|y|l
]
≤ 1

2
l!M l−2Q2N(λ) . (36)

Besides, Cauchy-Schwarz inequality implies that

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

| 〈wλ, x〉 |2
]
≤ 3E

[∥∥∥Σ
−1/2
λ x

∥∥∥2 (
| 〈wλ, x〉 − fH(x)|2 + |fH(x)− fρ(x)|2 + |fρ(x)|2

)]
.

For the first term, Lemma 2 and inequality (32) implies that

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

| 〈wλ, x〉 − fH(x)|2
]
≤κ

2

λ
E
[
| 〈wλ, x〉 − fH(x)2|

]
=
κ2

λ
‖Swλ − fH‖2ρ

≤c2gR2κ2 Φ(λ)2

λ
.

The second term can be controlled using Assumption 3,

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

|fH(x)− fρ(x)|2
]

=E
[
Tr
(

Σ
−1/2
λ x⊗ xΣ

−1/2
λ

)
(fH(x)− fρ(x))2

]
=E

[
Tr
(
Σ−1
λ (fH(x)− fρ(x))2x⊗ x

)]
= Tr

(
Σ−1
λ E

[
(fH(x)− fρ(x))2x⊗ x

])
≤B2 Tr

(
Σ−1
λ Σ

)
= B2N(λ) .

For the last term, by (12) and (35) we obtain

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

|fρ(x)|2
]
≤ Q2E

[∥∥∥Σ
−1/2
λ x

∥∥∥2
]

= Q2N(λ) .

Therefore we obtain

E
[∥∥∥Σ

−1/2
λ x

∥∥∥2

| 〈wλ, x〉 |2
]
≤ 3

(
c2gR

2κ2 Φ(λ)2

λ
+
(
B2 +Q2

)
N(λ

)
.

Now, putting this together with (36) in (34) we get

E ‖ξ‖l ≤2l−1

(
κ√
λ

)l−2 [
1

2
l!M l−2Q2N(λ) + 3 (κ ‖wλ‖)l−2

(
c2gR

2κ2 Φ(λ)2

λ
+
(
B2 +Q2

)
N(λ)

)]
≤2l−1 1

2
l!

(
κM + κ2 ‖wλ‖√

λ

)l−2(
Q2N(λ) + 3

(
c2gR

2κ2 Φ(λ)2

λ
+
(
B2 +Q2

)
N(λ)

))
≤2l−1 1

2
l!

(
κM + κ2 ‖wλ‖√

λ

)l−2(
3c2gR

2κ2 Φ(λ)2

λ
+
(
3B2 + 4Q2

)
N(λ)

)
.
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Now by inequality (31) and Lemma 2 we obtain

E ‖ξ − E [ξ]‖l ≤ 1

2
l!

(
4
(
κM + κ2E′Φ(κ2)κ−(2ζ∧1)

)
λ

1
2∨(1−ζ)

)l−2

8

(
3c2gR

2κ2 Φ(λ)2

λ
+
(
3B2 + 4Q2

)
N(λ)

)
.

The proof follows by applying Lemma 3.

Operator inequalities

Lemma 8 ([12], Cordes inequalities).
LetA,B be two positive bounded linear operators on a separable Hilbert space, then for all s ∈ [0, 1]

‖AsBs‖op ≤ ‖AB‖
s
op .

Lemma 9 ([20, 21]).
Let ψ be an operator monotone index function on [0, b], with b > 1. Then there is a constant
cψ < +∞ depending on b − a, such that for any pair B1, B2 such that ‖B1‖op , ‖B2‖op ≤ a, of
non-negative self-adjoint operators on some Hilbert space, it holds,

‖ψ(B1)− ψ(B2)‖ ≤ cψψ
(
‖B1 −B2‖op

)
.

Moreover, there is c′ψ > 0 such that

c′ψ
λ

ψ(λ)
≤ u

ψ(u)

whenever 0 < λ < u ≤ a ≤ b.

8.4 Proof of Theorem 4

Proof.
It is a standard approach to decompose the error in the following way∥∥L−a (Sŵλ − fH)

∥∥
ρX

=
∥∥L−a[S (ŵλ − wλ) + (Swλ − fH)

]∥∥
ρX

≤
∥∥L−aS (ŵλ − wλ)

∥∥
ρX︸ ︷︷ ︸

stability

+
∥∥L−a (Swλ − fH)

∥∥
ρX︸ ︷︷ ︸

convergence

. (37)

With this error decomposition the first term of the sum depends on how much the empirical and
ideal problem are related, while the second term depends on the convergence properties of the
regularization method used.

Convergence
Lemma 2 implies that the convergence term can be controlled with∥∥L−a (Swλ − fH)

∥∥
ρX
≤ cgRΦ(λ)λ−a . (38)

Stability
Regarding the stability term we first observe that by Lemma 4, 6 (with c = 2/3) and 7 and assuming

n ≥ 32κ2β

4λ
, β = log

4κ2 (N(λ) + 1)

δ ‖Σ‖
then with probability at least 1− δ it holds true that∥∥∥Σ

−1/2
λ Σ̂

1/2
λ

∥∥∥2

op
∨
∥∥∥Σ

1/2
λ Σ̂

−1/2
λ

∥∥∥2

op
≤ ∆1∥∥∥Σ

−1/2
λ

[ (
Σ̂wλ −X∗ y

)
− (Σwλ − S∗fH)

]∥∥∥ ≤ ∆2∥∥∥Σ− Σ̂
∥∥∥
op
≤
∥∥∥Σ− Σ̂

∥∥∥
HS
≤ ∆3
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where

∆1 = 3

∆2 =

(
C1

nλ
1
2∨(1−ζ)

+

√
C2Φ(λ)2

nλ
+
C3N(λ)

n

)
log

2

δ

∆3 =
6κ2

√
n

log
2

δ
.

We now begin with the following inequality∥∥L−aS (ŵλ − wλ)
∥∥
ρX
≤
∥∥∥L−aSΣ

a− 1
2

λ

∥∥∥
op

∥∥∥Σ
1
2−a
λ Σ̂

a− 1
2

λ

∥∥∥
op

∥∥∥Σ̂
1
2−a
λ (ŵλ − wλ)

∥∥∥
where, thanks to spectral theorem and Cordes inequality, the first two terms can be controlled as
follows: ∥∥∥L−aSΣ

a−1/2
λ

∥∥∥
op
≤
∥∥∥L−aSΣa−

1
2

∥∥∥
op
≤ 1∥∥∥Σ

1
2−a
λ Σ̂

a−1/2
λ

∥∥∥
op

=
∥∥∥Σ

1
2 (1−2a)

λ Σ̂
− 1

2 (1−2a)

λ

∥∥∥
op
≤ ∆

1
2−a
1 .

Now adding and subtracting the mixed-term Σ̂
1
2−a
λ gλ(Σ̂)Σ̂wλ and using triangular inequality we

obtain∥∥L−aS (ŵλ − wλ)
∥∥
ρX
≤∆

1
2−a
1

(∥∥∥Σ̂
1
2−a
λ

(
ŵλ − gλ(Σ̂)Σ̂wλ

)∥∥∥+
∥∥∥Σ̂

1
2−a
λ rλ(Σ̂)wλ

∥∥∥)
=∆

1
2−a
1

(∥∥∥Σ̂
1
2−a
λ gλ(Σ̂)

(
X∗ y− Σ̂wλ

)∥∥∥+
∥∥∥Σ̂

1
2−a
λ rλ(Σ̂)wλ

∥∥∥) . (39)

Estimating
∥∥∥Σ̂

1
2
−a

λ gλ(Σ̂)
(

X∗ y− Σ̂wλ

)∥∥∥ :
We first have∥∥∥Σ̂

1
2−a
λ gλ(Σ̂)

(
X∗ y− Σ̂wλ

)∥∥∥ ≤ ∥∥∥Σ̂
1
2−a
λ gλ(Σ̂)Σ̂

1
2

λ

∥∥∥
op

∥∥∥Σ̂
− 1

2

λ Σ
1
2

λ

∥∥∥
op

∥∥∥Σ
− 1

2

λ

(
X∗ y− Σ̂wλ

)∥∥∥ .
Now, thanks to the definition of regularization function gλ and since Σ̂ is bounded by κ2∥∥∥Σ̂

1
2−a
λ gλ(Σ̂)Σ̂

1
2

λ

∥∥∥
op
≤ sup
u∈[0,κ2]

|(u+ λ)1−agλ(u)|

≤ sup
u∈[0,κ2]

|(u1−a + λ1−a)gλ(u)|

≤2E′λ−a .

Thus we obtain∥∥∥Σ̂
1
2−a
λ gλ(Σ̂)

(
X∗ y− Σ̂wλ

)∥∥∥ ≤ 2E′λ−a∆
1
2
1

∥∥∥Σ
− 1

2

λ

(
Σ̂wλ −X∗ y

)∥∥∥ .
Now, adding and subtracting Σ

− 1
2

λ (Σwλ − S∗fH) we obtain∥∥∥Σ
− 1

2

λ

(
Σ̂wλ −X∗ y

)∥∥∥ ≤∥∥∥Σ
− 1

2

λ

[(
Σ̂wλ −X∗ y

)
− (Σwλ − S∗fH)

]∥∥∥+
∥∥∥Σ
− 1

2

λ (Σwλ − S∗fH)
∥∥∥

≤
∥∥∥Σ
− 1

2

λ

[(
Σ̂wλ −X∗ y

)
− (Σwλ − S∗fH)

]∥∥∥+
∥∥∥Σ
− 1

2

λ S∗
∥∥∥
op
‖Swλ − fH‖

≤∆2 + cgRΦ(λ) ,

where in the last inequality we use Lemma 2 and that
∥∥∥Σ
− 1

2

λ S∗
∥∥∥ ≤ 1. We thus obtain that∥∥∥Σ̂

1
2−a
λ gλ(Σ̂)

(
X∗ y− Σ̂wλ

)∥∥∥ ≤ 2E′λ−a∆
1
2
1 (∆2 + cgRΦ(λ)) . (40)
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Estimating
∥∥∥Σ̂

1
2
−a

λ rλ(Σ̂)wλ

∥∥∥ :
Note that from the definition of wλ it holds that

wλ = gλ(Σ)S∗Φ(L)g0 = gλ(Σ)Φ(Σ)S∗g0 ,

and thus,∥∥∥Σ̂
1
2−a
λ rλ(Σ̂)wλ

∥∥∥ ≤ R ∥∥∥Σ̂
1
2−a
λ rλ(Σ̂)gλ(Σ)Φ(Σ)S∗

∥∥∥
op

= R
∥∥∥Σ̂

1
2−a
λ rλ(Σ̂)gλ(Σ)Φ(Σ)Σ

1
2

∥∥∥
op
.

Now we have∥∥∥Σ̂
1
2−a
λ rλ(Σ̂)gλ(Σ)Φ(Σ)Σ

1
2

∥∥∥
op
≤
∥∥∥Σ̂

1
2−a
λ rλ(Σ̂)Σ̂

1
2

λ

∥∥∥
op

∥∥∥Σ̂
− 1

2

λ Σ
1
2

λ

∥∥∥
op

∥∥∥Σ
− 1

2

λ Σ
1
2

∥∥∥
op
‖gλ(Σ)Φ(Σ)‖op

≤∆
1
2
1

∥∥∥Σ̂1−a
λ rλ(Σ̂)

∥∥∥
op
‖gλ(Σ)Φ(Σ)‖op .

For the first term we get∥∥∥Σ̂1−a
λ rλ(Σ̂)

∥∥∥ ≤ sup
u∈[0,κ2]

|(u+ λ)1−arλ(u)| ≤ 2F ′qλ
1−a ,

while for the second term we have

‖gλ(Σ)Φ(Σ)‖op ≤ sup
u∈[0,κ2]

|gλ(u)Φ(u)| .

Now if 0 < u ≤ λ, as Φ(u) is non-decreasing, Φ(u) ≤ Φ(λ), hence by (9) we obtain

gλ(u)Φ(u) ≤ E′Φ(λ)λ−1 .

When λ ≤ u ≤ κ2, following from Lemma 9, there is a constant c′Φ ≥ 1 such that

Φ(u)u−1 ≤ c′ΦΦ(λ)λ−1 ,

thus, by (9), we get
gλ(u)Φ(u) = gλ(u)uΦ(u)u−1 ≤ E′c′ΦΦ(λ)λ−1 .

Therefore for all 0 < u ≤ κ2, gλ(u)Φ(u) ≤ E′c′ΦΦ(λ)λ−1 and we can conclude that∥∥∥Σ̂
1
2−a
λ rλ(Σ̂)wλ

∥∥∥
op
≤ 2R∆

1
2
1 F
′
qE
′c′ΦΦ(λ)λ−a . (41)

Learning bounds
We are now ready to state the learning bound related to the regularized solution ŵλ = gλ(Σ̂) X∗ y.
By combining (37), (38), (39), (40), (41) we obtain that with probability at least 1− δ∥∥L−a (Sŵλ − fH)

∥∥
ρX
≤ cgRΦ(λ)λ−a

+ ∆1−a
1 2E′ (∆2 + cgRΦ(λ))λ−a

+ ∆1−a
1 2RF ′qE

′c′ΦΦ(λ)λ−a .

Since

∆2 ≤

(
C1

nλ
1
2∨(1−ζ)

+

√
C2Φ(λ)2

nλ
+

√
C3N(λ)

n

)
log

2

δ

and log 2
δ ≥ 1 for all δ ∈ (0, 1/2), we can rewrite the above inequality as∥∥L−a (Sŵλ − fH)

∥∥
ρX
≤ λ−a

(
C̃1

nλ
1
2∨(1−ζ)

+

(
C̃2 +

C̃3√
nλ

)
Φ(λ) + C̃4

√
N(λ)

n

)
log

2

δ

where

C̃1 =2∆1−a
1 E′C1 = 16 31−aE′

(
κM + κ2E′Φ(κ2)κ−(2ζ∧1)

)
C̃2 =cgR+ 2∆1−a

1 E′R
(
cg + c′ΦF

′
q

)
C̃3 =2

√
C2∆1−a

1 E′ = 2
√

96c2gR
2κ231−aE′

C̃4 =2
√
C3∆1−a

1 E′ = 2
√

32(3B2 + 4Q2)31−aE′ .
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which complete the proof of the first part of the thesis.
Computing the square of the previous we have

∥∥L−a (Sŵλ − fH)
∥∥2

ρX
≤ 3λ−2a

( C̃1

nλ
1
2∨(1−ζ)

)2

+

(
C̃2 +

C̃3√
nλ

)2

Φ(λ)2 +

(
C̃4

√
N(λ)

n

)2
 log2 2

δ
.

Assuming λ to be of the order O
(
n−θ

)
, for some θ ∈ (0, 1), then

lim
n→∞

1

nλ
= 0 , lim

n→∞
Φ(λ) = 0 ,

thus, assuming n to be large enough, we can ignore the second order terms, hence we have that for
some positive constant C which does not depend on n, λ, δ, it holds true that∥∥L−a (Sŵλ − fH)

∥∥2

ρX
≤ Cλ−2a

(
Φ(λ)2 +

N(λ)

n

)
log2 2

δ
. (42)

Now if we assume Holder condition Φ(u) = ur and N(λ) ≤ cγλ−
1
γ then (42) implies

∥∥L−a (Sŵλ − fH)
∥∥2

ρX
≤ Cλ−2a

(
λ2r +

λ−
1
γ

n

)
log2 2

δ
.

By balancing the two terms

λ2r =
λ−

1
γ

n
we get the choice for the regularization parameter

λ = O(n−
γ

2γr+1 )

which in the case a = 0 directly implies (29).

8.5 Proof of Theorem 1 and 2

Proof.
Both Theorem 1 and 2 follow from Theorem 4 by choosing λ = 1

t for gradient descent and λ = 1
t2

for accelerated methods.
However in the estimation of the term

∥∥∥Σ̂
1
2−a
λ rλ(Σ̂)wλ

∥∥∥ of the stability (39) we use the the fact that
the qualification of the method is at least 1. We can obtain the same result for Nesterov method by
assuming furthermore that the parameter r of the source condition to be larger than 1/2. We have∥∥∥Σ̂

1
2

λ rλ(Σ̂)wλ

∥∥∥ ≤ ∥∥∥Σ̂
1
2

λ rλ(Σ̂)
∥∥∥
op
‖wλ‖ =

∥∥∥∥(Σ̂ + λI
) 1

2

rλ(Σ̂)

∥∥∥∥
op

‖wλ‖ .

Thanks to the source condition we have that the norm wλ is bounded

‖wλ‖ = ‖gλ(Σ)ΣrS∗g0‖ ≤
∥∥∥gλ(Σ)Σr+

1
2

∥∥∥
op
‖g0‖ ≤ κ2r−1E′ ‖g0‖ .

On the other hand ∥∥∥Σ̂
1
2

λ rλ(Σ̂)
∥∥∥
op
≤ sup
u∈[0,κ2]

∣∣∣(√u+ λ
)
rλ(u)

∣∣∣ ≤ 2F ′qλ
1/2 .

This complete the proof.
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