
A Proofs for Section 3 (Amplification From Uniform Mixing)

Lemma 9. The implications in Figure 1 hold.

Proof. That (γ, ε)-Dobrushin implies γ-Dobrushin follows directly from Deε(K(x)‖K(x′)) ≤
TV(K(x),K(x′)).

To see that γ-Doeblin implies γ-Dobrushin we observe that the kernel of a γ-Doeblin operator must
satisfy infx k(x, y) ≥ (1− γ)pω(y) for any y. Thus, we can use the characterization of TV in terms
of a minimum to get

TV(K(x),K(x′)) = 1−
∫

(k(x, y) ∧ k(x′, y))λ(dy) ≤ 1− (1− γ)

∫
pω(y)λ(dy) = γ .

Finally, to get the γ-Doeblin condition for an operator K satisfying γ-ultra-mixing we recall from
[12, Lemma 4.1] that for such an operator we have that K(x) ≥ (1 − γ)ω̃K is satisfied for any
probability distribution ω̃ and x ∈ supp(ω̃). Thus, taking ω̃ to have full support we obtain Doeblin’s
condition with ω = ω̃K.

For convenience, we split the proof of Theorem 1 into four separate statements, each corresponding
to one of the claims in the theorem.

Recall that a Markov operator K ∈ K(X,Y) is γ-Dobrushin if supx,x′ TV(K(x),K(x′)) ≤ γ.

Theorem 10. Let M be an (ε, δ)-DP mechanism. If K is a γ-Dobrushin Markov operator, then the
composition K ◦M is (ε, γδ)-DP.

Proof. This follows directly from the strong Markov contraction lemma established by (author?)
[11] in the discrete case and by (author?) [12] in the general case (see also [26]). In particular, this
lemma states that for any divergence D in the sense of Csiszár we have D(µK‖νK) ≤ γD(µ‖ν).
Letting µ = M(D) and ν = M(D′) for some D ' D′ and applying this inequality to Deε(µK‖νK)
yields the result.

Next we prove amplification when K is a (γ, ε)-Dobrushin operator. Recall that a Markov operator
K ∈ K(X,Y) is (γ, ε)-Dobrushin if supx,x′ Deε(K(x)‖K(x′)) ≤ γ. We will require the following
technical lemmas in the proof of Theorem 13.

Lemma 11. Let µ⊥ν denote the fact supp(µ) ∩ supp(ν) = ∅. If K is (γ, ε)-Dobrushin, then we
have

sup
µ⊥ν

Deε(µK‖νK) ≤ γ .

Proof. Note that the condition on γ can be written as supx,x′ Deε(δxK‖δx′K) ≤ γ. This shows that
by hypothesis the condition already holds for the distributions δx⊥δx′ with x 6= x′. Thus, all we
need to do is prove that these distributions are extremal for Deε(µK‖νK) among all distributions
with µ⊥ν. Let µ⊥ν and define U = supp(µ) and V = supp(ν). Working in the discrete setting for
simplicity, we can write µ =

∑
x∈U µ(x)δx, with an equivalent expression for ν. Now we use the

joint convexity of Deε to write

Deε(µK‖νK) ≤
∑

x∈U
µ(x)Deε(δxK‖νK) ≤

∑

x∈U

∑

x′∈V
µ(x)ν(x′)Deε(δxK‖δx′K)

≤ sup
x 6=x′

D(δxK‖δ′xK) ≤ γ .

Lemma 12. Let a ∧ b , min{a, b}. Then we have

Deε(µ‖ν) = 1−
∫

(pµ(x) ∧ eεpν(x))λ(dx) .
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Proof. Define A = {x : pµ(x) ≤ eεpν(x)} to be set of points where µ is dominated by eεν, and let
Ac denote its complementary. Then we have the identities

∫
(pµ ∧ eεpν)dλ =

∫

A

dµ+ eε
∫

Ac
dν ,

∫
[pµ − eεpν ]+dλ =

∫

Ac
dµ− eε

∫

Ac
dν .

Thus we obtain the desired result since

Deε(µ‖ν) +

∫
(pµ ∧ eεpν)dλ =

∫
[pµ − eεpν ]+dλ+

∫
(pµ ∧ eεpν)dλ =

∫

Ac
dµ+

∫

A

dµ = 1 .

Theorem 13. Let M be an (ε, δ)-DP mechanism and let ε′ = log
(
1 + eε−1

δ

)
. If K is a (γ, ε′)-

Dobrushin Markov operator, then the composition K ◦M is (ε, γδ)-DP.

Proof. Fix µ = M(D) and ν = M(D′) for some D ' D′ and let θ = Deε(µ‖ν) ≤ δ. We start by
constructing overlapping mixture decompositions for µ and ν as follows. First, define the function
f = pµ ∧ eεpν and let ω be the probability distribution with density pω = f∫

fdλ
= f

1−θ , where we
used Lemma 12. Now note that by construction we have the inequalities

pµ − (1− θ)pω = pµ − pµ ∧ eεpν ≥ 0 ,

pν −
1− θ
eε

pω = pν − pν ∧ e−εpµ ≥ 0 .

Assuming without loss of generality that µ 6= ν, these inequalities imply that we can construct
probability distributions µ′ and ν′ such that

µ = (1− θ)ω + θµ′ ,

ν =
1− θ
eε

ω +

(
1− 1− θ

eε

)
ν′ .

Now we observe that the distributions µ′ and ν′ defined in this way have disjoint support. To see this
we first use the identity pµ = (1− θ)pω + θpµ′ to see that

pµ′(x) > 0 ≡ pµ(x)− (1− θ)pω(x) > 0 ≡ pµ(x)− pµ(x) ∧ eεpν(x) > 0 ≡ pµ(x) > eεpν(x) .

Thus we have supp(µ′) = {x : pµ(x) > eεpν(x)}. A similar argument applied to pν shows that on
the other hand supp(ν′) = {x : pµ(x) < eεpν(x)}, and thus µ′⊥ν′.
Finally, we proceed to use the mixture decomposition of µ and ν and the condition µ′⊥ν′ to bound
Deε(µK‖νK) as follows. By using the mixture decompositions we get

µ− eεν = θµ′ − eε
(

1− 1− θ
eε

)
ν′ = θ(µ′ − eε̃ν′) ,

where ε̃ = log
(
1 + eε−1

θ

)
≥ ε′. Thus, applying the definition of Deε , using the linearity of Markov

operators, and the monotonicity Deε̃ ≤ Deε′ we obtain the bound:

Deε(µK‖νK) = θDeε̃(µ
′K‖ν′K) ≤ θDeε′ (µ′K‖ν′K) ≤ γθ = γDeε′ (µ‖ν) ,

where the last inequality follows from Lemma 11.

Recall that a Markov operator K ∈ K(X,Y) is γ-Doeblin if there exists a distribution ω ∈ P(Y)
such that K(x) ≥ (1− γ)ω for all x ∈ X. The proof of amplification for γ-Doeblin operators further
leverages overlapping mixture decompositions like the one used in Theorem 13, but this time the
mixture arises at the level of the kernel itself.

Theorem 14. Let M be an (ε, δ)-DP mechanism. If K is a γ-Doeblin Markov operator, then the

composition K ◦M is (ε′, δ′)-DP with ε′ = log(1 + γ(eε − 1)) and δ′ = γ
(

1− eε′−ε(1− δ)
)

.
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Proof. Fix µ = M(D) and ν = M(D′) for some D ' D′. Let ω be a witness that K is γ-Doeblin
and let Kω be the constant Markov operator given by Kω(x) = ω for all x. Doeblin’s condition
K(x) ≥ (1− γ)ω = (1− γ)Kω(x) implies that the following is again a Markov operator:

K̃ =
K − (1− γ)Kω

γ
.

Thus, we can writeK as the mixtureK = (1−γ)Kω+γK̃ and then use the advanced joint convexity
property of Deε′ [2, Theorem 2] with ε′ = log(1 + γ(eε − 1)) to obtain the following:

Deε′ (µK‖νK) = Deε′ ((1− γ)ω + γµK̃‖(1− γ)ω + γνK̃)

= γDeε(µK̃‖(1− β)ω + βνK̃)

≤ γ
(

(1− β)Deε(µK̃‖ω) + βDeε(µK̃‖νK̃)
)
,

where β = eε
′−ε. Finally, using the immediate bounds Deε(µK̃‖νK̃) ≤ Deε(µ‖ν) and

Deε(µK̃‖ω) ≤ 1, we get

Deε′ (µK‖νK) ≤ γ(1− eε′−ε + eε
′−εδ) .

Our last amplification result applies to operators satisfying the ultra-mixing condition of (author?)
[12]. We say that a Markov operator K ∈ K(X,Y) is γ-ultra-mixing if for all x, x′ ∈ X we have
K(x) � K(x′) and dK(x)

dK(x′) ≥ 1 − γ. The proof strategy is based on the ideas from the previous
proof, although in this case the argument is slightly more technical as it involves a strengthening of
the Doeblin condition implied by ultra-mixing that only holds under a specific support.
Theorem 15. Let M be an (ε, δ)-DP mechanism. If K is a γ-ultra-mixing Markov operator, then
the composition K ◦M is (ε′, δ′)-DP with ε′ = log(1 + γ(eε − 1)) and δ′ = γδeε

′−ε.

Proof. Fix µ = M(D) and ν = M(D′) for some D ' D′. The proof follows a similar strategy
as the one used in Theorem 14, but coupled with the following consequence of the ultra-mixing
property: for any probability distribution ω and x ∈ supp(ω) we have K(x) ≥ (1 − γ)ωK [12,
Lemma 4.1]. We use this property to construct a collection of mixture decompositions for K as
follows. Let α ∈ (0, 1) and take ω̃ = (1− α)µ+ αν and ω = ω̃K. By the ultra-mixing condition
and the argument used in the proof of Theorem 14, we can show that

K̃ =
K − (1− γ)Kω

γ

is a Markov operator from supp(µ) ∪ supp(ν) into X. Here Kω is the constant Markov operator
Kω(x) = ω. Furthermore, the expression for K̃ and the definition of ω imply that

ω̃K̃ =
ω̃K − (1− γ)ω̃Kω

γ
= ω . (5)

Now note that the mixture decompositions µK = (1 − γ)ω + γµK̃ and νK = (1 − γ)ω + γνK̃
and the advanced joint convexity property of Deε′ [2, Theorem 2] with ε′ = log(1 + γ(eε − 1)) yield

Deε′ (µK‖νK) ≤ γ
(

(1− β)Deε(µK̃‖ω) + βDeε(µK̃‖νK̃)
)

≤ γ
(

(1− β)Deε(µK̃‖ω) + βDeε(µ‖ν)
)

≤ γ
(

(1− β)Deε(µK̃‖ω) + βδ
)
,

where β = eε
′−ε. Using (5) we can expand the remaining divergence above as follows:

Deε(µK̃‖ω) = Deε(µK̃‖ω̃K̃) ≤ Deε(µ‖ω̃) ≤ αDeε(µ‖ν) ≤ αδ ,

where we used the definition of ω̃ and joint convexity. Since α was arbitrary, we can now take the
limit α→ 0 to obtain the bound Deε′ (µK‖νK) ≤ γδeε′−ε.

Proof of Theorem 1. It follows from Theorems 10, 13, 14 and 15.
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B Proofs for Section 4 (Amplification From Couplings)

Lemma 16. The transport operator Hπ with π ∈ C(µ, ν) satisfies µHπ = ν.

Proof. Take an arbitrary event E and note that:

(µHπ)(E) =

∫

X
Hπ(x)(E)µ(dx) =

∫

X

∫

E

hπ(x, y)µ(dx)λ(dy) =

∫

X

∫

E

pπ(x, y)

pµ(x)
µ(dx)λ(dy)

=

∫

X

∫

E

pπ(x, y)λ(dx)λ(dy) =

∫

E

pν(y)λ(dy) = ν(E) ,

where we used the coupling property
∫
X pπ(x, y)λ(dx) = pν(y).

Theorem 2. Let α ≥ 1, µ, ν ∈ P(X) and K ∈ K(X,Y). For any distribution ω ∈ P(X) and
coupling π ∈ C(ω, µ) we have

Rα(µK‖νK) ≤ Rα(ω‖ν) + sup
x∈supp(ν)

Rα((HπK)(x)‖K(x)) . (1)

Proof. Let ω ∈ P(X) and π ∈ C(ω, µ) be as in the statement, and let π′ = C(µ, ω). Note that taking
Hπ and Hπ′ to be the corresponding transport operators we have µ = µHπ′Hπ = ωHπ . Now, given
a λ ∈ P(X × X) let Π2(λ) =

∫
λ(dx, ·) denote the marginal of λ on the second coordinate. In

particular, if µ ⊗K denotes the joint distribution of µ and µK, then we have Π2(µ ⊗K) = µK.
Thus, by the data processing inequality we have

Rα(µK‖νK) = Rα(ωHπK‖νK) = Rα(Π2(ω ⊗HπK)‖Π2(ν ⊗K)) ≤ Rα(ω ⊗HπK‖ν ⊗K) .

The final step is to expand the RHS of the derivation above as follows:

e(α−1)Rα(ω⊗HπK‖ν⊗K) =

∫∫ (
d(ω ⊗HπK)

d(ν ⊗K)

)α
ν(dx)K(x, dy)

=

∫∫ (
pω(x)

∫
hπ(x, dz)k(z, y)

pν(x)k(x, y)

)α
ν(dx)K(x, dy)

=

∫∫ (
pω(x)

pν(x)

)α(∫
hπ(x, dz)k(z, y)

k(x, y)

)α
ν(dx)K(x, dy)

≤
(∫ (

pω(x)

pν(x)

)α
ν(dx)

)(
sup
x

∫ (∫
hπ(x, dz)k(z, y)

k(x, y)

)α
K(x, dy)

)

= e(α−1)Rα(ω‖ν) · e(α−1) supx Rα((HπK)(x)‖K(x)) ,

where the supremums are taken with respect to x ∈ supp(ν).

Lemma 3. Let M(D) = Lap(f(D), λ1) for some function f : D → R with global L1-sensitivity
∆ and let the Markov operator K be given by K(x) = Lap(x, λ2). The post-processed mechanism
(K ◦M) does not achieve (ε, 0)-DP for any ε < ∆

max{λ1,λ2} . Note that M achieves ( ∆
λ1
, 0)-DP and

K(f(D)) achieves ( ∆
λ2
, 0)-DP.

Proof. This can be shown by directly analyzing the distribution arising from the sum of two inde-
pendent laplace variables. Let Lap2(λ1, λ2) denote this distribution. In the following equations, we
assume x > 0. Due to symmetry around the origin, densities at negative values can be found by
looking instead at the corresponding positive location.
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Lap2(x;λ1, λ2) =

∫ ∞

−∞

1

2λ1
exp

(
−|x− t|

λ1

)
1

2λ2
exp

(
− |t|
λ2

)
dt

=
1

4λ1λ2

∫ ∞

−∞
exp

(
−λ2|x− t|+ λ1|t|

λ1λ2

)
dt

=
1

4λ1λ2

(∫ 0

−∞
e−

λ2(x−t)−λ1t
λ1λ2 dt+

∫ x

0

e−
λ2(x−t)+λ1t

λ1λ2 dt+

∫ ∞

x

e−
−λ2(x−t)+λ1t

λ1λ2 dt

)

=
1

4λ1λ2

(∫ 0

−∞
e−

λ2x−(λ1+λ2)t
λ1λ2 dt+

∫ x

0

e−
λ2x+(λ1−λ2)t

λ1λ2 dt+

∫ ∞

x

e−
−λ2x+(λ1+λ2)t

λ1λ2 dt

)

=
1

4λ1λ2


 e−

λ2x−(λ1+λ2)t
λ1λ2

(λ1 + λ2)/λ1λ2

∣∣t=0

t=−∞ +

∫ x

0

e−
λ2x+(λ1−λ2)t

λ1λ2 dt+
e−
−λ2x+(λ1+λ2)t

λ1λ2

(λ1 + λ2)/λ1λ2

∣∣t=∞
t=x




The integration on the middle term varies between the cases λ1 = λ2 and λ1 6= λ2. Finishing this
derivation and replacing x with |x| to account for both positive and negative values, we get a complete
expression for our Lap2(λ1, λ2) density.

Lap2(x;λ1, λ2) =





1
4

(
( 1
λ1+λ2

+ 1
λ1−λ2

)e−
|x|
λ1 + ( 1

λ1+λ2
− 1

λ1−λ2
)e−

|x|
λ2

)
if λ1 6= λ2 ,

1
4λ2

1
e−
|x|
λ1 (λ1 + |x|) if λ1 = λ2 .

(6)

To finish this lemma, we need to derive the best (ε, 0)-DP guarantee offered by adding noise
from Lap2(λ1, λ2). From the post-processing property of DP and the commutivity of additive
mechanisms, we know this guarantee is upper-bounded by ∆/max{λ1, λ2}. A direct computation
of limx→∞ log(Lap2(x;λ1, λ2)/Lap2(x+ ∆;λ1, λ2)) results in ∆/max{λ1, λ2} in both cases of
equation (6). This arises from the limit depending entirely on the dominating term with the largest
exponent. Therefore, this lower-bounds the privacy guarantee by the same value. Thus we can
conclude this is the exact level of (ε, 0)-DP offered by this mechanism.

Theorem 4. Let α ≥ 1, µ, ν ∈ P(Rd) and let K ⊆ Rd be a convex set. Suppose K1, . . . ,Kr ∈
K(Rd,Rd) are Markov operators where Yi ∼ Ki(x) is obtained as9 Yi = ΠK(ψi(x)+Zi) with Zi ∼
N (0, σ2I), where the maps ψi : K→ Rd are L-Lipschitz for all i ∈ [r]. For any µ0, µ1, . . . , µr ∈
P(Rd) with µ0 = µ and µr = ν we have

Rα(µK1 · · ·Kr‖νK1 · · ·Kr) ≤
αL2

2σ2

r∑

i=1

L2(r−i)W∞(µi, µi−1)2 . (2)

Furthermore, if L ≤ 1 and W∞(µ, ν) = ∆, then

Rα(µK1 · · ·Kr‖νK1 · · ·Kr) ≤
α∆2Lr+1

2rσ2
. (3)

The proof of Theorem 4 relies on the following technical lemma about the effect of a projected
Lipschitz Gaussian operator on the∞-Wasserstein distance between two distributions.
Lemma 17. Let K ⊆ Rd be a convex set and ψ : K→ Rd be L-Lipschitz. Suppose K ∈ K(Rd,Rd)
is a Markov operator where Y ∼ K(x) is obtained as Y = ΠK(ψ(x) + Z) with Z ∼ N (0, σ2I).
Then, for any µ, ν ∈ P(Rd) we have W∞(µK, νK) ≤ LW∞(µ, ν).

Proof. Let π ∈ C(µ, ν) be a witness of W∞(µ, ν) = ∆. We construct a witness of W∞(µK, νK) ≤
L∆ as follows: sample (X,X ′) ∼ π and Z ∼ N (0, σ2I) and then let Y = ΠK(ψ(X) + Z)
and Y ′ = ΠK(ψ(X ′) + Z). It is clear from the construction that Law((Y, Y ′)) ∈ C(µK, νK).

9Here ΠK(x) = arg miny∈K ‖x− y‖ denotes the projection operator onto the convex set K ⊆ Rd.
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Furthermore, by the Lipschitz assumption on ψ and that fact that the map ΠK is contractive, the
following holds almost surely:

‖Y − Y ′‖ ≤ ‖ψ(X)− ψ(X ′)‖ ≤ L‖X −X ′‖ ≤ L∆ .

Proof of Theorem 4. We prove (2) by induction on r. For the base case r = 1 we apply Theorem 2
with ω = ν and a coupling π ∈ C(ν, µ) witnessing that W∞(µ, ν) = ∆. This choice of coupling
guarantees that for any x ∈ supp(ν) we have supp(Hπ(x)) ⊆ B∆(x), where B∆(x) is the ball
of radius ∆ around x. Note also that (HπK1)(x) = Hπ(x)K1. Thus, from (1) we obtain, using
Hölder’s inequality and the monotonicity of the logarithm, that:

Rα(µK1‖νK1) ≤ sup
x∈supp(ν)

Rα((HπK1)(x)‖K1(x)) ≤ sup
x∈supp(ν)

sup
y∈supp(Hπ(x))

Rα(K1(y)‖K1(x))

≤ sup
‖x−y‖≤∆

Rα(K1(y)‖K1(x)) .

Now note that the Markov operator K1 can be obtained by post-processing K̃1(x) = N (ψ1(x), σ2I)
with the projection ΠK. Thus, by the data processing inequality we obtain

sup
‖x−y‖≤∆

Rα(K1(y)‖K1(x)) ≤ sup
‖x−y‖≤∆

Rα(K̃1(y)‖K̃1(x))

= sup
‖x−y‖≤∆

α‖ψ1(x)− ψ1(y)‖2
2σ2

≤ α∆2L2

2σ2
.

For the inductive case we suppose that (2) holds for some r ≥ 1 and consider the case r + 1, in
which we need to bound Rα(µK1 · · ·Kr+1‖νK1 · · ·Kr+1). Let µ0, µ1, . . . , µr+1 be a sequence of
distributions with µ0 = µ and µr+1 = ν. Applying (1) with ω = µ1K1 · · ·Kr and some coupling
π ∈ C(µ1K1 · · ·Kr, µK1 · · ·Kr) we have

Rα(µK1 · · ·Kr+1‖νK1 · · ·Kr+1) ≤ Rα(µ1K1 · · ·Kr‖νK1 · · ·Kr)

+ sup
x∈supp(νK1···Kr)

Rα((HπKr+1)(x)‖Kr+1(x)) .

By the inductive hypothesis, the first term in the RHS above can be bounded as follows:

Rα(µ1K1 · · ·Kr‖νK1 · · ·Kr) ≤
αL2

2σ2

r∑

i=1

L2(r−i)W∞(µi+1, µi)
2

=
αL2

2σ2

r+1∑

i=2

L2(r+1−i)W∞(µi, µi−1)2 .

To bound the second term we assume the coupling π is a witness of
W∞(µ1K1 · · ·Kr, µK1 · · ·Kr) = ∆′, in which case a similar argument to the one we used
in the base case yields:

sup
x

Rα((HπKr+1)(x)‖Kr+1(x)) ≤ sup
x

sup
y∈supp(Hπ(x))

Rα(Kr+1(y)‖Kr+1(x))

≤ sup
‖x−y‖≤∆′

Rα(Kr+1(y)‖Kr+1(x))

≤ α∆′2L2

2σ2
≤ αL2r+2W∞(µ1, µ)2

2σ2
,

where the last inequality follows from Lemma 17. Plugging the last three inequalities together we
finally obtain

Rα(µK1 · · ·Kr+1‖νK1 · · ·Kr+1) ≤ αL2r+2W∞(µ1, µ0)2

2σ2
+
αL2

2σ2

r+1∑

i=2

L2(r+1−i)W∞(µi, µi−1)2

=
αL2

2σ2

r+1∑

i=1

L2(r+1−i)W∞(µi, µi−1)2 .
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When L ≤ 1, we can obtain (3) from (2) as follows. First, construct a sequence of distributions
µ0, . . . , µr such that ∆i , W∞(µi, µi−1) = ∆0L

i for i ∈ [r], where ∆0 = ∆
L

1−L
1−Lr is a normaliza-

tion constant chosen such that
∑
i∈[r] ∆i = ∆. With this choice plugged into (2) we obtain

Rα(µK1 · · ·Kr‖νK1 · · ·Kr) ≤
αL2

2σ2
r∆2

0L
2r =

α∆2Lr+1r

2σ2

(
L−

1
2 − L 1

2

L−
r
2 − L r

2

)2

=
α∆2Lr+1r

2σ2
φ(L)2 .

Now we note the function φ(L) defined above is increasing in [0, 1] and furthermore limL→1 φ(L) =
1
r , which can be checked by applying L’Hôpital’s rule twice. Thus, we can plug the inequality
φ(L) ≤ 1

r above to obtain (3).

But we still need to show that a sequence µ0, . . . , µr with ∆i as above exists. To construct such a
sequence we let π ∈ C(µ, ν) be a witness of W∞(µ, ν) = ∆, take random variables (X,X ′) ∼ π,
and define µi = Law((1 − θi)X + θiX

′) with θi = ∆0

∆

∑i
j=1 L

j = 1−Li
1−Lr . Clearly we get

µ0 = Law(X) = µ and µr = Law(X ′) = ν.

To see that W∞(µi, µi−1) ≤ ∆0L
i we construct a coupling between µi and µi−1 as follows: sample

(X,X ′) ∼ π and let Y = (1 − θi)X + θiX
′ and Y ′ = (1 − θi−1)X + θi−1X

′. Clearly we have
Law((Y, Y ′)) ∈ C(µi, µi−1). Furthermore, with probability one the following holds:

‖Y − Y ′‖ = ‖(θi−1 − θi)X − (θi−1 − θi)X ′‖ =
∆0

∆
Li‖X −X ′‖ ≤ ∆0L

i ,

where the last inequality uses that π is a witness of W∞(µ, ν) ≤ ∆. This concludes the proof.

Theorem 5. Let ` : K × D → R be a C-Lipschitz, β-smooth, ρ-strongly convex loss function. If
η ≤ 2

β+ρ , then NoisyProjSGD(D, `, η, σ, ξ0) satisfies (α, αεi)-RDP at index i, where εn = 2C2

σ2

and εi = 2C2

(n−i)σ2 (1− 2ηβρ
β+ρ )

n−i+1
2 for 1 ≤ i ≤ n− 1.

To prove Theorem 5 we will use the following well-known fact about convex optimization: gradient
iterations on a strongly convex function are strict contractions. The lemma below provides an
expression for the contraction coefficient.
Lemma 18. Let K ⊆ Rd be a convex set and suppose the function f : K → R is β-smooth
and ρ-strongly convex. If η ≤ 2

β+ρ , then the map ψ(x) = x − η∇f(x) is L-Lipschitz on K with

L =
√

1− 2ηβρ
β+ρ < 1.

Proof. This follows from a standard calculation in convex optimization; see e.g. [7, Theorem 3.12].
We reproduce the proof here for completeness. Recall from [7, Lemma 3.11] that if a function f is
β-smooth and ρ-strongly convex, then for any x, y ∈ K we have

βρ

β + ρ
‖x− y‖2 +

1

β + ρ
‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 .

Using this inequality, one can show the following:

‖ψ(x)− ψ(y)‖2 = ‖(x− η∇f(x))− (y − η∇f(y))‖2

= ‖x− y‖2 + η2‖∇f(x)−∇f(y)‖2 − 2η〈∇f(x)−∇f(y), x− y〉

≤
(

1− 2ηβρ

β + ρ

)
‖x− y‖2 + η

(
η − 2

β + ρ

)
‖∇f(x)−∇f(y)‖2

≤
(

1− 2ηβρ

β + ρ

)
‖x− y‖2 ,

where the last inequality uses our assumption on η.

Proof of Theorem 5. Fix 1 ≤ i ≤ n−1 and letD ' D′ be two datasets differing on the ith coordinate.
Let ξ , ξi−1 ∈ P(Rd) represent the distribution of xi−1 in the execution of Algorithm 1 with inputD.
Since D and D′ differ only on the ith coordinate, the distribution of xi−1 on input D′ is also ξ. Now
let ψ0(x) = x−η∇x`(x, zi), ψ′0(x) = x−η∇x`(x, z′i), and ψj(x) = x−η∇x`(x, zi+j) for j ∈ [r]
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with r = n− i. Defining the Markov operators Kj , j ∈ {0, . . . , r}, where Yj ∼ Kj(x) is given by
Kj(x) = ΠK(ψj(x) +Z) with Z ∼ N (0, η2σ2I), we immediately obtain that the distribution of the
output xn of NoisyProjSGD(D, `, η, σ) can be written as ξK0K1 · · ·Kr. Similarly, the distribution
of the output of NoisyProjSGD(D′, `, η, σ) can be written as ξK ′0K1 · · ·Kr, where K ′0(x) =
N (ψ′0(x), η2σ2I). Therefore, to obtain the Rényi differential privacy of NoisyProjSGD(D, `, η, σ)
at index i we need to bound Rα(ξK0K1 · · ·Kr‖ξK ′0K1 · · ·Kr).

With the goal to apply Theorem 4, we first define µ = ξK0 and ν = ξK ′0 and use the Lipschitz
assumption on ` to conclude that W∞(µ, ν) ≤ 2ηC. Indeed, consider the coupling π ∈ C(µ, ν)
obtained by sampling (Y, Y ′) ∼ π as follows: sample X ∼ ξ and Z ∼ N (0, η2σ2I), and then
let Y = ΠK(ψ0(X) + Z) and Y ′ = ΠK(ψ′0(X) + Z). Now, since `(·, zi) and `(·, z′i) are both
C-Lipschitz and ΠK is contractive, we see that the following holds almost surely under π:

‖Y − Y ′‖ ≤ ‖ψ0(X)− ψ′0(X)‖ = η‖∇x`(X, zi)−∇x`(X, z′i)‖
≤ η (‖∇x`(X, zi)‖+ ‖∇x`(X, zi)‖) ≤ 2ηC .

Thus, W∞(µ, ν) ≤ 2ηC as claimed.

Next we note that the assumption η ≤ 2
β+ρ together with Lemma 18 imply that ψj , j ∈ [r], are all

L-Lipschitz with L =
√

1− 2ηβρ
β+ρ < 1. Thus we can apply Theorem 4 with ∆ = 2ηC to obtain

Rα(ξK0K1 · · ·Kr‖ξK ′0K1 · · ·Kr) ≤
2αη2C2Ln−i+1

(n− i)η2σ2
=

2αC2

(n− i)σ2

(
1− 2ηβρ

β + ρ

)n−i+1
2

.

This concludes the analysis of the case i < n.

For the case i = n we need to bound Rα(ξK0‖ξK ′0), where now ξ is the distribution of xn−1, and
the operators K0 and K ′0 are defined as above. By Hölder’s inequality, monotonicity of the logarithm,
the contractiveness of ΠK and the Lipschitz assumption on ` we have

Rα(ξK0‖ξK ′0) ≤ sup
x∈supp(ξ)

Rα(K0(x)‖K ′0(x)) ≤ sup
x∈Rd

Rα(K0(x)‖K ′0(x))

≤ sup
x∈Rd

αη2‖∇x`(x, zn)−∇x`(x, z′n)‖2
2η2σ2

≤ 2αC2

σ2
.

C Proofs for Section 5 (Diffusion Mechanisms)

Theorem 6. Let f : Dn → Rd and let P = (Pt)t≥0 by a Markov semigroup on Rd satisfying
Assumption 1. If the mechanism Mf

t (D) = Pt(f(D)) has intrinsic sensitivity Λ(t), then it satisfies
(α, αΛ(t))-RDP for any α > 1 and t > 0.

The proof of Theorem 6 relies, first of all, on the following lemma.

Lemma 19. Let ϕ : [t,∞)→ R be a function satisfying ϕ(s) > 0 and lims→∞ ϕ(s) = 1. Suppose
there exists a function κ(s) and a constant c > 0 such that for all s ≥ t we have d

dsϕ(s) ≥
−cκ(s)ϕ(s). Then ϕ(t) ≤ exp

(
c
∫∞
t
κ(s)ds

)
.

Proof. The bound follows from a direct application of the fundamental theorem of calculus. Indeed,
noting lims→∞ logϕ(s) = 0, we have

− logϕ(t) = lim
s→∞

logϕ(s)− logϕ(t) =

∫ ∞

t

(
d

ds
logϕ(s)

)
ds

=

∫ ∞

t

(
d
dsϕ(s)

ϕ(s)

)
ds ≥ −c

∫ ∞

t

κ(s)ds .
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In order to apply this lemma to bound the Rényi DP of the diffusion mechanism Mf
t we will need to

compute the derivative with respect to t of the Rényi divergence between Pt(x) and Pt(x′). To be
able to evaluate this derivative we will use some well-known relations between the kernel pt(x, y) of
a semigroup with invariant measure λ and its generator L, as well as further calculus rules for the
carré du champ operator Γ. We now introduce the required properties without proof and recall they
are standard facts in the theory of symmetric diffusion processes (see, e.g., [1]), and in particular they
hold for any Markov semigroup satisfying Assumption 1.

1. (Reversible Fokker-Planck Equation) For any x, y, t we have d
dtpt(x, y) = Lypt(x, y),

where Ly denotes the generator operating on y 7→ pt(x, y).

2. (Integration by Parts) We have
∫

Γ(f, g)dλ = −
∫

(Lf)gdλ for any f, g where the integrals
are defined.

3. (Chain Rule for Γ) For any differentiable function φ we have Γ(φ(f), g) = φ′(f)Γ(f, g)
for any functions f, g where the terms are defined.

4. (Product Rule for Γ) We have Γ(fg, h) = fΓ(g, h) + gΓ(f, h) for any functions f, g, h
where the terms are defined.

Proof of Theorem 6. Let us define the function φ(u) = uα for α > 1 and note that the derivatives of
φ satisfy the following identities:

φ′(u) = α
φ(u)

u
, (7)

φ′′(u) = α(α− 1)
φ(u)

u2
, (8)

−uφ′′(u) =
d

du
(φ(u)− uφ′(u)) . (9)

Now fix datasets D ' D′ and let x = f(D) and x′ = f(D′). With this notation we have
Mf
t (D) = Pt(x), Mf

t (D′) = Pt(x
′) and Rα(Pt(x)‖Pt(x′)) = 1

α−1 logϕ(t), where we defined

ϕ(t) ,
∫
φ

(
pt(x, y)

pt(x′, y)

)
pt(x

′, y)λ(dy) .

Since P has a unique invariant measure λ, then we must have limt→∞
pt(x,y)
pt(x′,y) = 1 for any x, y, and

therefore limt→∞ ϕ(t) = 1. Thus, by Lemma 19, to obtain the desired bound it suffices to show that
the inequality d

dtϕ(t) ≥ −α(α− 1)κx,x′(t)ϕ(t) holds for t > 0.

We will now show that this inequality is indeed satisfied. For simplicity, let use define the notation
pt(y) , pt(x, y), qt(y) , pt(x

′, y), rt(y) , pt(y)
qt(y) and ∂t , d

dt . With these, we now can apply the
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properties of P and φ to compute the derivative of ϕ(t) as follows:10

∂tϕ(t) =

∫
∂t (φ(rt)qt) by Leibniz’s rule ,

=

∫
φ′(rt)(∂trt)qt + φ(rt)(∂tqt) by calculus of ∂t ,

=

∫
φ′(rt)

(Lpt)qt − (Lqt)pt
qt

+ φ(rt)(Lqt) by Reversible Fokker-Planck Equation ,

=

∫
φ′(rt)(Lpt) + (φ(rt)− rtφ′(rt))(Lqt) by re-arranging ,

= −
∫

Γ(φ′(rt), pt) + Γ(φ(rt)− rtφ′(rt), qt) by Integration by Parts ,

= −
∫
φ′′(rt)Γ(rt, pt) + Γ(φ(rt)− rtφ′(rt), qt) by Chain Rule for Γ ,

= −
∫
φ′′(rt)Γ(rt, pt)− rtφ′′(rt)Γ(rt, qt) by Chain Rule for Γ and (9) ,

= −α(α− 1)

∫
φ(rt)

r2
t

(Γ(rt, pt)− rtΓ(rt, qt)) by (8) ,

= −α(α− 1)

∫
φ(rt)qt

(
qtΓ(rt, pt)− ptΓ(rt, qt)

p2
t

)
by definition of rt .

The last step in the proof is to verify the following identify, which follows from the rules of calculus
under Γ:

Γ(log rt, log rt) =
1

rt
Γ(rt, log rt) by Chain Rule for Γ ,

=
1

r2
t

Γ(rt, rt) by Chain Rule for Γ ,

=
1

r2
t

Γ

(
rt,

pt
qt

)
by definition of rt ,

=
1

r2
t

(
1

qt
Γ(rt, pt) + ptΓ

(
rt,

1

qt

))
by Product Rule for Γ ,

=
1

r2
t

(
1

qt
Γ(rt, pt)−

pt
q2
t

Γ(rt, qt)

)
by Chain Rule for Γ ,

=
qtΓ(rt, pt)− ptΓ(rt, qt)

p2
t

by definition of rt .

Now we finally put the last two derivations together to conclude that

d

dt
ϕ(t) = −α(α− 1)

∫
φ

(
pt(x, y)

pt(x′, y)

)
pt(x

′, y)Γ

(
log

pt(x, y)

pt(x′, y)

)
λ(dy)

≥ −α(α− 1)κx,x′(t)

∫
φ

(
pt(x, y)

pt(x′, y)

)
pt(x

′, y)λ(dy)

= −α(α− 1)κx,x′(t)ϕ(t) .

Corollary 7. Let f : Dn → Rd have global L2-sensitivity ∆ and P = (Pt)t≥0 be the Ornstein-
Uhlenbeck semigroup with parameters θ, ρ. For any α > 1 and t > 0 the mechanism Mf

t (D) =

Pt(f(D)) satisfies (α, αΛ(t))-RDP with Λ(t) = θ∆2

2ρ2(e2θt−1)
.

10All integrals in this derivation are with respect to the invariant measure dλ, which is omitted for convenience.
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Proof. Using the expression of the kernel of Pt with respect to the invariant measure λ we first
compute

log

(
pt(x, y)

pt(x′, y)

)
=
θeθt〈x− x′, y〉
ρ2(e2θt − 1)

.

Next we use the expression Γ(f) = ρ2‖∇f‖2 for the carré du champ operator to obtain

κx,x′(t) =
θ2e2θt‖x− x′‖2
ρ2(e2θt − 1)2

.

Applying the easily verifiable integral formula
∫ ∞

t

e2θs

(e2θs − 1)2
ds =

1

2θ(e2θt − 1)

in the definition of Λ(t) yields the desired result.

Theorem 8. Suppose f : Dn → Rd has global L2-sensitivity ∆ and satisfies supD ‖f(D)‖ ≤ R. If
θR2 ≤ 4dρ2 then we have EOU(θ,ρ,t)

EGM(θ,ρ,t) ≤ 1 for all t ≥ 0 and limt→∞
EOU(θ,ρ,t)
EGM(θ,ρ,t) = 0. In particular,

taking θ = log
(

1 + d∆2

2εR2

)
and ρ2 = θ∆2

2ε(e2θ−1)
with ε > 0, the mechanismMf

t satisfies (α, αε)-RDP

at time t = 1 and we have EOU(θ,ρ,1)
EGM(θ,ρ,1) ≤

(
1 + d∆2

2εR2

)−1

.

Proof. First note that at time t = 0 we have EOU(θ, ρ, 0) = EGM(θ, ρ, 0) = 0. Thus, to see that
EOU(θ, ρ, t) ≤ EGM(θ, ρ, t) for t > 0 it is enough to check that d

dtEOU(θ, ρ, t) ≤ d
dtEGM(θ, ρ, t) for

t ≥ 0. Indeed, differentiating (4), this follows from the boundedness of f and θR2 ≤ 4dρ2 by noting:

d

dt
EOU(θ, ρ, t) ≤ 2dρ2e−2θt + 2θR2e−θt(1− e−θt) ≤ 2dρ2e−2θt + 8dρ2e−θt(1− e−θt)

= 2dρ2e−2θt(4eθt − 3) ≤ 2dρ2e2θt =
d

dt
EGM(θ, ρ, t) ,

where the last two steps use the inequality 4es − 3 ≤ e4s, s ≥ 0, and the definition of σ̃2. To see
that the ratio converges to 0 we just observe that the limit of EOU(θ, ρ, t) is finite while EGM(θ, ρ, t)
grows to infinity as t→∞.

The privacy bound in the case with a fixed level of privacy at t = 1 follows from directly from
Corollary 7. The error bound follows substituting the chosen parameters in the expression for the
mean squared error. In the first place, we use the definitions of σ̃2 and ρ2 to get

EGM(θ, ρ, 1) = dσ̃2 =
dρ2(e2θ − 1)

θ
=
d∆2

2ε
.

On the other hand, substituting the choice for ρ on the error of the Ornstein-Uhlenbeck mechanism
and using the boundedness of f we get

EOU(θ, ρ, 1) ≤ (1− e−θ)2R2 +
dρ2

θ
(1− e−2θ) = (1− e−θ)2R2 +

d∆2

2ε
e−2θ .

Finally, plugging the choice of θ in this last expression yields:

(1− e−θ)2R2 +
d∆2

2ε
e−2θ =

R2
(
d∆2

2εR2

)2

+R4 d∆2

2εR2

(
R2 + d∆2

2ε

)2 =
d∆2

2ε

1

1 + d∆2

2εR2

.
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