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Abstract

Motivated by cognitive radio networks, we consider the stochastic multiplayer
multi-armed bandit problem, where several players pull arms simultaneously and
collisions occur if one of them is pulled by several players at the same stage.
We present a decentralized algorithm that achieves the same performance as a
centralized one, contradicting the existing lower bounds for that problem. This
is possible by “hacking” the standard model by constructing a communication
protocol between players that deliberately enforces collisions, allowing them to
share their information at a negligible cost. This motivates the introduction of a
more appropriate dynamic setting without sensing, where similar communication
protocols are no longer possible. However, we show that the logarithmic growth of
the regret is still achievable for this model with a new algorithm.

1 Introduction

In the stochastic Multi Armed Bandit problem (MAB), a single player sequentially takes a decision
(or “pulls an arm”) amongst a finite set of possibilities [K] := {1, . . . ,K}. After pulling arm k ∈ [K]
at stage t ∈ N∗, the player receives a random reward Xk(t) ∈ [0, 1], drawn i.i.d. according to some
unknown distribution νk of expectation µk := E[Xk(t)]. Her objective is to maximize her cumulative
reward up to stage T ∈ N∗. This sequential decision problem, first introduced for clinical trials
[27, 25], involves an “exploration/exploitation dilemma” where the player must trade-off acquiring
vs. using information. The performance of an algorithm is controlled in term of regret, the difference
of the cumulated reward of an optimal algorithm knowing the distributions (νk)k∈[K] beforehand and
the cumulated reward of the player. It is known that any “reasonable” algorithm must incur at least a
logarithmic regret [19], which is attained by some existing algorithms such as UCB [1, 4].

MAB has been recently popularized thanks to its applications to online recommendation systems.
Many different variants of MAB and classes of algorithms have thus emerged in the recent years [see
11]. In particular, they have been considered for cognitive radios [16], where the problem gets more
intricate as multiple users are involved and they collide if they pull the same arm k at the same time
t, i.e., they transmit on the same channel. If this happens, they all receive 0 as a reward instead of
Xk(t), meaning that no message is transmitted.

If a central agent controls simultaneously all players’ behavior then a tight lower bound is known
[3, 18]. Yet this centralized problem is not adapted to cognitive radios, as it allows communication
between players at each time step; in practice, this induces significant costs in both energy and
time. As a consequence, most of the current interest lies in the decentralized case [20, 2, 5], which
presents another complication due to the feedback. Besides the received reward, an additional piece of
information may be observed at each time step. When this extra observation is the collision indicator,
Rosenski et al. [26] provided two algorithms for both a fixed and a varying number of players. They
are based on a Musical Chairs procedure that quickly assigns players to different arms. Besson and
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Kaufmann [8] provided an efficient UCB-based algorithm if Xk(t) is observed instead1. Lugosi and
Mehrabian [21] recently proposed an algorithm using no additional information. The performances
of these algorithms and the underlying model differences are summarized in Table 1, Section 1.1.

The first non trivial lower bound for this problem has been recently improved [20, 8]. These lower
bounds suggest that decentralization adds to the regret a multiplicative factor M, the number of
players, compared to the centralized case [3]. Interestingly, these lower bounds scale linearly with
the inverse of the gaps between the µk whereas this scaling is quadratic for most of the existing
algorithms. This is due to the fact that although collisions account for most of the regret, lower
bounds are proved without considering them.

Although it is out of our scope, the heterogeneous model introduced by Kalathil et al. [17] is worth
mentioning. In this case, the reward distribution depends on each user [6, 7]. An algorithm reaching
the optimal allocation without explicit communication between the players was recently proposed
[9].

Our main contributions are the following:

Section 2: When collisions are observed, we introduce a new decentralized algorithm that is
“hacking” the setting and induces communication between players through deliberate collisions. The
regret of this algorithm reaches asymptotically (up to some universal constant) the lower bound of
the centralized problem, meaning that the aforementioned lower bounds are unfortunately incorrect.

This algorithm relies on the unrealistic assumption that all users start transmitting at the very same
time. It also explains why the current literature fails to provide near optimal results for the multiplayer
bandits. It therefore appears that the assumption of synchronization has to be removed for practical
application of the multiplayer bandits problem. On the other hand, this technique also shows that
exhibiting lower bounds in multi-player MAB is more complex than in stochastic standard MAB.

Section 3: Without synchronization or collision observations, we propose the first algorithm with a
logarithmic regret. The dependencies in the gaps between rewards yet become quadratic.

1.1 Models

In this section, we introduce different models of multiplayer MAB with a known number of arms K
but an unknown number of players M ≤ K. The horizon T is assumed known to the players (for
simplicity of exposure, as the anytime generalization of results is now well understood [14]). At each
time step t ∈ [T ], given their (private) information, all players j ∈ [M ] simultaneously pull the arms
πj(t) and receive the reward rj(t) ∈ [0, 1] such that

rj(t) := Xπj(t)(t)(1− ηπj(t)(t)), where ηπj(t)(t) is the collision indicator defined by

ηk(t) := 1#Ck(t)>1 with Ck(t) := {j ∈ [M ] | πj(t) = k}.
The problem is centralized if players can communicate any information to each other. In that case,
they can easily avoid collisions and share their statistics. In opposition, the problem is decentralized
when players have only access to their own rewards and actions. The crucial concept we introduce is
(a)synchronization between players. With synchronization, the model is called static.
Assumption 1 (Synchronization). Player i enters the bandit game at the time τi = 0 and stays until
the final horizon T . This is common knowledge to all players.
Assumption 2 (Quasi-Asynchronization). Players enter at different times τi ∈ {0, . . . , T − 1} and
stay until the final horizon T . The τi are unknown to all players (including i).

With quasi-asynchronicity2, the model is dynamic and several variants already exist [26]. Denote by
M(t) the set of players in the game at time t (unknown but not random) and by µ(n) the n-th order
statistics of µ, i.e., µ(1) ≥ µ(2) ≥ . . . ≥ µ(K). The total regret is then defined for both static and
dynamic models by:

RT :=

T∑
t=1

#M(t)∑
k=1

µ(k) − Eµ

 T∑
t=1

∑
j∈M(t)

rj(t)

 .
1We stress that Xk(t) does not necessarily correspond to the received reward in case of collision.
2We prefer not to mention asynchronicity as players still use shared discrete time slots.
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As mentioned in the introduction, different observation settings are considered.

Collision Sensing: Player j observes ηπj(t)(t) and rj(t) at each time step.

No sensing: Player j only observes rj(t), i.e., a reward of 0 can indistinguishably come from a
collision with another player or a null statistic Xπj(t)(t).

Notice that as soon as P(Xk = 0) = 0, the No Sensing and Collision Sensing settings are equivalent.
The setting where both Xπj (t) and rj(t) are observed is also considered in the literature and is called
Statistic Sensing [8]. The No Sensing setting is the most difficult one as there is no extra observation.

Table 1 below compares the performances of the major algorithms, specifying the precise setting
considered for each of them. The second algorithm of Lugosi and Mehrabian [21] and our algorithms
also have problem independent bounds that are not mentioned in Table 1 for the sake of clarity. Due
to space constraints, ADAPTED SIC-MMAB, SIC-MMAB2 and their related results are presented in
Appendix C. Note that the two dynamic algorithms in Table 1 rely on different specific assumptions.

Model Algorithm’s Reference Prior knowledge Asymptotic Upper bound (up to constant factor)

Centralized Multiplayer Theorem 1 [18] M
∑
k>M

log(T )
µ(M)−µ(k)

Decentralized, Stat. Sensing Theorem 11 [8] M M3
∑

1≤i<k≤K

log(T )(
µ(i)−µ(k)

)2

Decentralized, Col. Sensing Theorem 1 [26] µ(M)−µ(M+1)
MK log(T )(

µ(M)−µ(M+1)

)2
Decentralized, Col. Sensing SIC-MMAB (Thm 1) -

∑
k>M

log(T )
µ(M)−µ(k)

+MK log(T )

Decentralized, No Sensing Theorem 1.1 [21] M
MK log(T )(

µ(M)−µ(M+1)

)2
Decentralized, No Sensing Theorem 1.2 [21] M,µ(M)

MK2

µ(M)
log2(T ) +MK

log(T )

∆′

Decentralized, No Sensing ADAPT. SIC-MMAB (Eq (13)) µ(K)

∑
k>M

log(T )
µ(M)−µ(k)

+
M3K log(T )

µ(K)
log2

(
log(T )

)
Decentralized, No Sensing SIC-MMAB2 (Thm 3) µ(K) M

∑
k>M

log(T )
µ(M)−µ(k)

+ MK2

µ(K)
log(T )

Dec., Col. Sensing , Dynamic Theorem 2 [26] ∆̄(M)
M
√
K log(T )T

∆̄2
(M)

Dec., No Sensing, Dynamic DYN-MMAB (Thm 2) - MK log(T )

∆̄2
(M)

+
M2K log(T )

µ(M)

Table 1: Performances of different algorithms. Our algorithms and results are highlighted in
red. ∆̄(M) := mini=1,...,M (µ(i) − µ(i+1)) is the smallest gap among the top-M + 1 arms and
∆′ := min{µ(M) − µi | µ(M) − µi > 0} is the positive sub-optimality gap.

2 Collision Sensing: achieving centralized performances by communicating
through collisions

In this section, we consider the Collision Sensing static model and prove that the decentralized
problem is almost as complex, in terms of regret growth, as the centralized one. When players are
synchronized, we provide an algorithm with an exploration regret similar to the known centralized
lower bound [3]. This algorithm strongly relies on the synchronization assumption, which we leverage
to allow communication between players through observed collisions. The communication protocol
is detailed and explained in Section 2.2.3. This result also implies that the two lower bounds provided
in the literature [8, 20] are unfortunately not correct. Indeed, the factor M that was supposed to be
the cost of the decentralization in the regret should not appear.

Let us now describe our algorithm SIC-MMAB. It consists of several phases.

1. The initialization phase first estimates the number of players and assigns ranks among them.

2. Players then alternate between exploration phases and communication phases.
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(a) During the p-th exploration phase, each arm is pulled 2p times and its performance is
estimated in a Successive Accepts and Rejects fashion [22, 12].

(b) During the communication phases, players communicate their statistics to each other
using collisions. Afterwards, the updated common statistics are known to all players.

3. The last phase, the exploitation one, is triggered for a player as soon as an arm is detected as
optimal and assigned to her. This player then pulls this arm until the final horizon T .

2.1 Some preliminary notations

Players that are not in the exploitation phase are called active. We denote, with a slight abuse of
notation, by [Mp] the set of active players during the p-th phase of exploration-communication
and by Mp ≤ M its cardinality. Notice that Mp is non increasing because players never leave the
exploitation phase.
Any arm among the top-M ones is called optimal and any other arm is sub-optimal. Arms that
still need to be explored (players cannot determine whether they are optimal or sub-optimal yet) are
active. We denote, with the same abuse of notation, the set of active arms by [Kp] of cardinality
Kp ≤ K. By construction of our algorithm, this set is common to all active players at each stage.

Our algorithm is based on a protocol called sequential hopping [15]. It consists of incrementing
the index of the arm pulled by a specific player: if she plays arm πkt at time t, she will play
πkt+1 = πkt + 1 (mod [Kp]) at time t+ 1 during the p-th exploration phase.

2.2 Description of our protocol

As mentioned above, the SIC-MMAB algorithm consists of several phases. During the communication
phase, players communicate with each other. At the end of this phase, each player thus knows
the statistics of all players on all arms, so that this decentralized problem becomes similar to the
centralized one. After alternating enough times between exploration and communication phases,
sub-optimal arms are eliminated and players are fixed to different optimal arms and will exploit them
until stage T . The complete pseudocode of SIC-MMAB is given in Algorithm 1, Appendix A.1.

2.2.1 Initialization phase

The objective of the first phase is to estimate the number of players M and to assign internal
ranks to players. First, players follow the Musical Chairs algorithm [26], described in Pseudocode 4,
Appendix A.1, during T0 := dK log(T )e steps in order to reach an orthogonal setting, i.e., a position
where they are all pulling different arms. The index of the arm pulled by a player at stage T0 will
then be her external rank.

The second procedure, given by Pseudocode 5 in Appendix A.1, determines M and assigns a unique
internal rank in [M ] to each player. For example, if there are three players on arms 5, 7 and 2 at
t = T0, their external ranks are 5, 7 and 2 respectively, while their internal ranks are 2, 3 and 1.
Roughly speaking, the players follow each other sequentially hopping through all the arms so that
players with external ranks k and k′ collide exactly after a time k + k′. Each player then deduces M
and her internal rank from observed collisions during this procedure that lasts 2K steps.

In the next phases, active players will always know the set of active players [Mp]. This is how
the initial symmetry among players is broken and it allows the decentralized algorithm to establish
communication protocols.

2.2.2 Exploration phase

During the p-th exploration phase, active players sequentially hop among the active arms for Kp2
p

steps. Any active arm is thus pulled 2p times by each active player. Using their internal rank, players
start and remain in an orthogonal setting during the exploration phase, which is collision-free.

We denote byBs = 3
√

log(T )
2s the error bound after s pulls and by Tk(p) (resp. Sk(p)) the centralized

number of pulls (resp. sum of rewards) for the arm k during the p first exploration phases, i.e.,
Tk(p) =

∑M
j=1 T

j
k (p) where T jk (p) is the number of pulls for the arm k by player j during the p first
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exploration phases. During the communication phase, quantized rewards S̃jk(p) will be communicated
between active players as described in Section 2.2.3.

After a succession of two phases (exploration and communication), an arm k is accepted if

#
{
i ∈ [Kp]

∣∣ µ̃k(p)−BTk(p) ≥ µ̃i(p) +BTi(p)

}
≥ Kp −Mp,

where µ̃k(p) =
∑M
m=1 S̃

j
k(p)

Tk(p) is the centralized quantized empirical mean of the arm k3, which is an

approximation of µ̂k(p) = Sk(p)
Tk(p) . This inequality implies that k is among the top-Mp active arms

with high probability. In the same way, k is rejected if

#
{
i ∈ [Kp]

∣∣ µ̃i(p)−BTi(p) ≥ µ̃k(p) +BTk(p)

}
≥Mp,

meaning that there are at least Mp active arms better than k with high probability. Notice that each
player j uses her own quantized statistics S̃jk(p) to accept/reject an arm instead of the exact ones
Sjk(p). Otherwise, the estimations µ̃k(p) would indeed differ between the players as well as the sets
of accepted and rejected arms. With Bernoulli distributions, the quantization becomes unnecessary
and the confidence bound can be chosen as Bs =

√
2 log(T )/s.

2.2.3 Communication phase

In this phase, each active player communicates, one at a time, her statistics of the active arms to all
other active players. Each player has her own communicating arm, corresponding to her internal
rank. When the player j is communicating, she sends a bit at a time step to the player l by deciding
which arm to pull: a 1 bit is sent by pulling the communicating arm of player l (a collision occurs)
and a 0 bit by pulling her own arm. The main originality of SIC-MMAB comes from this trick which
allows implicit communication through collisions and is used in subsequent papers [13, 10, 24]. In
an independent work, Tibrewal et al. [28] also proposed an algorithm using similar communication
protocols for the heterogeneous case.

As an arm is pulled 2n times by a single player during the n-th exploration phase, it has been
pulled 2p+1 − 1 times in total at the end of the p-th phase and the statistic Sjk(p) is a real number in
[0, 2p+1−1]. Players then send a quantized integer statistic S̃jk(p) ∈ [2p+1−1] to each other in p+1

bits, i.e., collisions. Let n = bSjk(p)c and d = Sjk(p)− n be the integer and decimal parts of Sjk(p),
the quantized statistic is then n+ 1 with probability d and n otherwise, so that E[S̃jk(p)] = Sjk(p).

An active player can have three possible statuses during the communication phase:
1. either she is receiving some other players’ statistics about the arm k. In that case, she

proceeds to Receive Protocol (see Pseudocode 1).
2. Or she is sending her quantized statistics about arm k to player l (who is then receiving). In

that case, she proceeds to Send Protocol (see Pseudocode 2) to send them in a time p+ 1.
3. Or she is pulling her communicating arm, while waiting for other players to finish communi-

cating statistics among them.

Communicated statistics are all of length p+ 1, even if they could be sent with shorter messages, in
order to maintain synchronization among players. Using their internal ranks, the players can com-
municate in turn without interfering with each other. The general protocol for each communication
phase is described in Pseudocode 3 below.

At the end of the communication phase, all active players know the statistics S̃jk(p) and so which
arms to accept or reject. Rejected arms are removed right away from the set of active arms. Thanks
to the assigned ranks, accepted arms are assigned to one player each. The remaining active players
then update both sets of active players and arms as described in Algorithm 1, line 21.

This communication protocol uses the fact that a bit can be sent with a single collision. Without
sensing, this can not be done in a single time step, but communication is still somehow possible. A
bit can then be sent in log(T )

µ(K)
steps with probability 1− 1

T . Using this trick, two different algorithms
relying on communication protocols are proposed in Appendix C for the No Sensing setting.

3For a player j already exploiting since the pj-th phase, we instead use the last statistic S̃jk(p) = S̃jk(p
j).
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Receive Protocol
Input: p (phase number), l (own internal rank),

[Kp] (set of active arms)
Output: s (statistic sent by the sending

player)
1: s← 0 and π ← index of the l-th active arm
2: for n = 0, . . . , p do
3: Pull π
4: if ηπ(t) = 1 then # other player sends 1
5: s← s+ 2n end if
6: end for
7: return s # sent statistics

Pseudocode 1: receive statistics of length
p+ 1.

Send Protocol
Input: l (player receiving), s (statistics to

send), p (phase number), j (own internal rank),
[Kp] (set of active arms)
1: m← binary writing of s of length p+ 1, i.e.,
s =

∑p
n=0 mn2

n

2: for n = 0, . . . , p do
3: if mn = 1 then
4: Pull the l-th active arm # send 1
5: else Pull the j-th active arm # send 0
6: end if
7: end for

Pseudocode 2: send statistics s of length
p+ 1 to player l.

Communication Protocol
Input: s (personal statistics of previous phases), p (phase number), j (own internal rank), [Kp] (set of active

arms), [Mp] (set of active players)
Output: S̃ (quantized statistics of all active players)

1: For all k, sample s̃[k] =

{
bs[k]c+ 1 with probability s[k]− bs[k]c
bs[k]c otherwise

# quantization

2: Define Ep := {(i, l, k) ∈ [Mp]× [Mp]× [Kp] | i 6= l} and set S̃j ← s̃
3: for (i, l, k) ∈ Ep do # Player i sends stats of arm k to player l
4: if i = j then Send (l, s̃[k], p, j, [Kp]) # player communicating
5: else if l = j then S̃i[k]← Receive(p, j, [Kp]) # player receiving
6: else for p+ 1 time steps do Pull the j-th active arm end for # wait while others communicate
7: end if
8: end for
9: return S̃

Pseudocode 3: player with rank j proceeds to the p-th communication phase.

2.2.4 Regret bound of SIC-MMAB

Theorem 1 bounds the expected regret incurred by SIC-MMAB. Due to space constraints, its proof is
delayed to Appendix A.2.
Theorem 1. With the choice T0 = dK log(T )e, for any given set of parameters K, M and µµµ:

E
[
RT
]
≤ c1
∑
k>M

min

{
log(T )

µ(M) − µ(k)

,
√
T log(T )

}
+ c2KM log(T )

+ c3KM
3 log2

(
min

{
log(T )

(µ(M) − µ(M+1))2
, T

})
where c1, c2 and c3 are universal constants.

The first, second and third terms respectively correspond to the regret incurred by the exploration, ini-
tialization and communication phases, which dominate the regret due to low probability events of bad
initialization or incorrect estimations. Notice that the minmax regret scales with O(K

√
T log(T )).

Experiments on synthetic data are described in Appendix A.3. They empirically confirm that SIC-
MMAB scales better than MCTopM [8] with the gaps ∆, besides having a smaller minmax regret.

2.3 In contradiction with existing lower bounds?

Theorem 1 is in contradiction with the two existing lower bounds [8, 20], however SIC-MMAB
respects the conditions required for both. It was thought that the decentralized lower bound
was Ω

(
M
∑
k>M

log(T )
µ(M)−µ(k)

)
, while the centralized lower bound was already known to be

Ω
(∑

k>M
log(T )

µ(M)−µ(k)

)
[3]. However, it appears that the asymptotic regret of the decentralized

case is not that much different from the latter, at least if players are synchronized. Indeed, SIC-MMAB
takes advantage of this synchronization to establish communication protocols as players are able to
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communicate through collisions. Subsequent papers [10, 24] recently improved the communication
protocols of SIC-MMAB to obtain both initialization and communication costs constant in T , confirm-
ing that the lower bound of the centralized case is also tight for the decentralized model considered
so far.

Liu and Zhao [20] proved the lower bound “by considering the best case that they do not collide”.
This is only true if colliding does not provide valuable information and the policies just maximize
the losses at each round, disregarding the information gathered for the future. Our algorithm is built
upon the idea that the value of the information provided by collisions can exceed in the long run the
immediate loss in rewards (which is standard in dynamic programming or reinforcement learning
for instance). The mistake of Besson and Kaufmann [8] is found in the proof of Lemma 12 after the
sentence “We now show that second term in (25) is zero”. The conditional expectation cannot be
put inside/outside of the expectation as written and the considered term, which corresponds to the
difference of information given by collisions for two different distributions, is therefore not zero.
These two lower bounds disregarded the amount of information that can be deduced from collisions,
while SIC-MMAB obviously takes advantage of this information.

Our exploration regret reaches, up to a constant factor, the lower bound of the centralized problem
[3]. Although it is sub-logarithmic in time, the communication cost scales with KM3 and can thus
be predominant in practice. Indeed for large networks, M3 can easily be greater than log(T ) and the
communication cost would then prevail over the other terms. This highlights the importance of the
parameter M in multiplayer MAB and future work should focus on the dependency in both M and T
instead of only considering asymptotic results in T .

Synchronization is not a reasonable assumption for practical purposes and it also leads to undesirable
algorithms relying on communication protocols such as SIC-MMAB. We thus claim that this assump-
tion should be removed in the multiplayer MAB and the dynamic model should be considered instead.
However, this problem seems complex to model formally. Indeed, if players stay in the game only for
a very short period, learning is not possible. The difficulty to formalize an interesting and nontrivial
dynamic model may explain why most of the literature focused on the static model so far.

3 Without synchronization, the dynamic setting
From now on, we no longer assume that players can communicate using synchronization. In the
previous section, it was crucial that all exploration/communication phases start and end at the same
time. This assumption is clearly unrealistic and should be alleviated, as radios do not start and end
transmitting simultaneously. We also consider the more difficult No Sensing setting in this section.

We assume in the following that players do not leave the game once they have started. Yet, we
mention that our results can also be adapted to the cases when players can leave the game during
specific intervals or share an internal synchronized clock [26]. If the time is divided in several
intervals, DYN-MMAB can be run independently on each of these intervals as suggested by Rosenski
et al. [26]. In some cases, players will be leaving in the middle of these intervals, leading to a large
regret. But for any other interval, every player stays until its end, thus satisfying Assumption 2.

In this section, Assumption 2 holds. At each stage t = tj + τj , player j does not know t but only tj
(duration since joining). We denote by T j = T − τj the (known) time horizon of player j.

3.1 A logarithmic regret algorithm

As synchronization no longer holds, we propose the DYN-MMAB algorithm, relying on different tools
than SIC-MMAB. The main ideas of DYN-MMAB are given in Section 3.2. Its thorough description as
well as the proof of the regret bound are delayed to Appendix B due to space constraints.

The regret incurred by DYN-MMAB in the dynamic No Sensing model is given by Theorem 2 and
its proof is delayed to Appendix B.2. We also mention that DYN-MMAB leads to a Pareto optimal
configuration in the more general problem where users’ reward distributions differ [17, 6, 7, 9].
Theorem 2. In the dynamic setting, the regret incurred by DYN-MMAB is upper bounded as follows:

E[RT ] ≤ O

(
M2K log(T )

µ(M)
+
MK log(T )

∆̄2
(M)

)
,

where M = #M(T ) is the total number of players in the game and ∆̄(M) = min
i=1,...,M

(µ(i)−µ(i+1)).
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3.2 A communication-less protocol

DYN-MMAB’s ideas are easy to understand but the upper bound proof is quite technical. This section
gives some intuitions about DYN-MMAB and its performance guarantees stated in Theorem 2.

A player will only follow two different sampling strategies: either she samples uniformly at random
in [K] during the exploration phase; or she exploits an arm and pulls it until the final horizon. In the
first case, the exploration of the other players is not too disturbed by collisions as they only change
the mean reward of all arms by a common multiplicative term. In the second case, the exploited arm
will appear as sub-optimal to the other players, which is actually convenient for them as this arm is
now exploited.

During the exploration phase, a player will update a set of arms called Occupied ⊂ [K] and an
ordered list of arms called Preferences ∈ [K]?. As soon as an arm is detected as occupied (by
another player), it is then added to Occupied (which is the empty set at the beginning). If an arm is
discovered to be the best one amongst those that are neither in Occupied nor in Preferences, it
is then added to Preferences (at the last position). An arm is active for player j if it was neither
added to Occupied nor to Preferences by this player yet.

To handle the fact that players can enter the game at anytime, we introduce the quantity γj(t), the
expected multiplicative factor of the means defined by

γj(t) =
1

t

t+τj∑
t′=1+τj

E
[
(1− 1

K
)mt′−1

]
,

where mt is the number of players in their exploration phase at time t. The value of γj(t) is unknown
to the player and random but it only affects the analysis of DYN-MMAB and not how it runs.

The objective of the algorithm is still to form estimates and confidence intervals of the performances
of arms. However, it might happen that the true mean µk does not belong to this confidence interval.
Indeed, this is only true for γj(t)µk, if the arm k is still free (not exploited). This is the first point of
Lemma 1 below. Notice that as soon as the confidence interval for the arm i dominates the confidence
interval for the arm k, then it must hold that γj(t)µi ≥ γj(t)µk and thus arm i is better than k.

The second crucial point is to detect when an arm k is exploited by another player. This detection will
happen if a player receives too many 0 rewards successively (so that it is statistically very unlikely
that this arm is not occupied). The number of zero rewards needed for player j to disregard arm k is
denoted by Ljk, which is sequentially updated during the process (following the rule of Equation (4)
in Appendix B.1), so that Ljk ≥ 2e log(T j)/µk. As the probability of observing a 0 reward on a free
arm k is smaller than 1− µk/e, no matter the current number of players, observing Ljk successive 0
rewards on an unexploited arm happens with probability smaller than 1

(T j)2 .

The second point of Lemma 1 then states that an exploited arm will either be quickly detected as
occupied after observing Ljk zeros (if Ljk is small enough) or its average reward will quickly drop
because it now gives zero rewards (and it will be dominated by another arm after a relatively small
number of pulls). The proof of Lemma 1 is delayed to Appendix B.2.
Lemma 1. We denote by r̂jk(t) the empirical average reward of arm k for player j at stage t+ τj .

1. For any player j and arm k, if k is still free at stage t+ τj , then

P
[
|r̂jk(t)− γj(t)µk| > 2

√
6 K log(T j)

t

]
≤ 4

(T j)2
.

We then say that the arm k is correctly estimated by player j if |r̂jk(t) − γj(t)µk| ≤

2
√

6 K log(T j)
t holds as long as k is free.

2. On the other hand, if k is exploited by some player j′ 6= j at stage t0 +τj , then, conditionally
on the correct estimation of all the arms by player j, with probability 1−O

(
1
T j

)
:

• either k is added to Occupied at a stage at most t0 + τj +O
(
K log(T )

µk

)
by player j,

• or k is dominated by another unoccupied arm i (for player j) at stage at most
O
(
K log(T )

µ2
i

)
+ τj .
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It remains to describe how players start exploiting arms. After some time (upper-bounded by
Lemma 10 in Appendix B.2), an arm which is still free and such that all better arms are occupied
will be detected as the best remaining one. The player will try to occupy it, and this happens as soon
as she gets a positive reward from it: either she succeeds and starts exploiting it, or she fails and
assumes it is occupied by another player (this only takes a few number of steps, see Lemma 1). In the
latter case, she resumes exploring until she detects the next available best arm. With high probability,
the player will necessarily end up exploiting an arm while all the better arms are already exploited by
other players.

4 Conclusion
We have presented algorithms for different multiplayer bandits models. The first one illustrates
why the assumption of synchronization between the players is basically equivalent to allowing
communication. Since communication through collisions is possible with other players at a sub-
logarithmic cost, the decentralized multiplayer bandits is almost equivalent to the centralized one for
the considered model. However, this communication cost has a large dependency in the number of
agents in the network. Future work should then focus on considering both the dependency in time
and the number of players as well as developing efficient communication protocols.

Our major claim is that synchronization should not be considered anymore, unless communication is
allowed. We thus introduced a dynamic model and proposed the first algorithm with a logarithmic
regret.
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A Complementary material for Section 2

A.1 Algorithm description

We here describe in detail the SIC-MMAB algorithm. All the pseudocodes are described from the
point of view of a single player, which is the natural way to describe a decentralized algorithm. First,
this algorithm relies on the Musical Chairs algorithm, introduced by Rosenski et al. [26]. We recall it
in Pseudocode 4.

MusicalChairs Protocol
Input: [Kp] (set of active arms), T0 (time of procedure)
Output: Fixed (external rank)

1: Initialize Fixed← −1
2: for T0 time steps do
3: if Fixed = −1 then
4: Sample k uniformly at random in [Kp] and play it in round t
5: if ηk(t) = 0 (rk(t) > 0 for No Sensing setting) then
6: Fixed← k end if # The player stays in arm k if no collision
7: else Play Fixed end if
8: end for
9: return Fixed # External rank

Pseudocode 4: reach an orthogonal setting in T0 steps.

The initialization phase then consists of a second procedure. Its purpose is to estimate M and to
assign different ranks in [M ] to all players. This procedure is described in Pseudocode 5 below.
SIC-MMAB is finally described in Algorithm 1.

Estimate_M Protocol
Input: k ∈ [K] (external rank)
Output: M (estimated number of players), j (internal rank)

1: Initialize M ← 1, j ← 1 and π ← k # estimates of M and the internal rank
2: for 2k time steps do
3: Pull π; if ηπ(t) = 1 then M ←M + 1 and j ← j + 1 end if # increases if collision
4: end for
5: for 2(K − k) time steps do
6: π ← π + 1 (mod K) and pull π # sequential hopping
7: if ηπ(t) = 1 then M ←M + 1 end if # increases if collision
8: end for
9: return M, j

Pseudocode 5: estimate M and assign ranks to the players.
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Algorithm 1 SIC-MMAB algorithm
Input: T (horizon)

1: Initialization Phase:
2: Initialize Fixed← −1 and T0 ← dK log(T )e
3: k ←MusicalChairs ([K], T0)
4: (M, j)← Estimate_M (k) # estimated number of players and assigned internal rank
5: Initialize p← 1; Mp ←M ; [Kp]← [K] and S̃, s,T← Zeros(K) # Zeros(K) returns a

vector of length K containing only zeros
6: while Fixed = −1 do

7: Exploration Phase:
8: π ← j-th active arm # start of a new phase
9: for Kp2

p time steps do
10: π ← π + 1 (mod [Kp]) and play π in round t # sequential hopping
11: s[π]← s[π] + rπ(t) # Update individual statistics
12: end for

13: Communication Phase:
14: S̃p ← Communication( s, p, j, [Kp], [Mp]) and S̃l ← S̃l

p for every active player l
15: T [k]← T [k] +Mp2

p for every active arm k

16: Update Statistics: # recall that Bs = 3
√

log(T )
2s here

17: Rej← set of active arms k verifying #
{
i ∈ [Kp]

∣∣ M∑
l=1

S̃l[i]

T [i] −BT [i] ≥

M∑
l=1

S̃l[k]

T [k] +BT [k]

}
≥Mp

18: Acc← set of active arms k verifying #
{
i ∈ [Kp]

∣∣ M∑
l=1

S̃l[k]

T [k] −BT [k] ≥

M∑
l=1

S̃l[i]

T [i] +BT [i]

}
≥

Kp −Mp, ordered according to their indices
19: if Mp − j + 1 ≤ length(Acc) then Fixed← Acc[Mp − j + 1] # Start exploiting
20: else # Update all the statistics
21: Mp ←Mp − length(Acc) and [Kp]← [Kp] \ (Acc ∪ Rej)
22: end if
23: p← p+ 1
24: end while

25: Exploitation Phase: Pull Fixed until T

A.2 Regret analysis of SIC-MMAB

In this section, we prove the regret bound for SIC-MMAB algorithm given by Theorem 1. In what
follows, the statement “with probability 1−O(δ(T )), it holds that f(T ) = O(g(T ))" means that
there is a universal constant c ∈ R+ such that f(T ) ≤ cg(T ) with probability at least 1− cδ(T ).

We first decompose the regret as follows:

RT = Rinit +Rcomm +Rexplo, (1)

where



Rinit = Tinit

M∑
k=1

µ(k) − Eµ
[ Tinit∑
t=1

M∑
j=1

rj(t)
]

with Tinit = T0 + 2K,

Rcomm = Eµ
[ ∑
t∈Comm

M∑
j=1

(µ(j) − rj(t))
]

with Comm the set of communication steps,

Rexplo = Eµ
[∑
t∈Explo

M∑
j=1

(µ(j) − rj(t))
]

with Explo = {Tinit + 1, . . . , T} \ Comm.
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A communication step is defined as a time step where a player is communicating statistics, i.e.,
using Send Protocol. These terms respectively correspond to the regret due to the initialization phase,
the communication and the regret of both exploration and exploitation phases.

A.2.1 Initialization analysis

The initialization regret is obviously bounded byM(T0+2K) as the initialization phase lasts T0+2K
steps. Lemma 2 provides the probability to reach an orthogonal setting at time T0. If this orthogonal
setting is reached, the initialization phase is successful. In that case, the players then determine M
and a unique internal rank using Pseudocode 5. This is shown by observing that players with external
ranks k and k′ will exactly collide at round T0 + k + k′.

Lemma 2. After a time T0, all players pull different arms with probability at least 1−M exp
(
−T0

K

)
.

Proof. As there is at least one arm that is not played by all the other players at each time step, the
probability of having no collision at time t for a single player j is lower bounded by 1

K . It thus holds:

P
[
∀t ≤ T0, η

j(t) = 1
]
≤
(

1− 1

K

)T0

≤ exp

(
−T0

K

)
.

For a single player j, her probability to encounter only collisions until time T0 is at most exp
(
−T0

K

)
.

The union bound over the M players then yields the desired result.

A.2.2 Exploration regret

This section aims at proving Lemma 3, which bounds the exploration regret.

Lemma 3. With probability 1−O
(
K log(T )

T +M exp
(
−T0

K

))
,

Rexplo = O

∑
k>M

min

{
log(T )

µ(M) − µ(k)
,
√
T log(T )

} .

The proof of Lemma 3 is divided in several auxiliary lemmas. It first relies on the correctness of the
estimations before taking the decision to accept or reject any arm.

Lemma 4. For any arm k and positive integer n, P[∃p ≤ n : |µ̃k(p)− µk| ≥ BTk(p)] ≤ 4n
T .

Proof. For any arm k and positive integer n, Hoeffding inequality gives the following, classical

inequality in MAB: P[∃p ≤ n : |µ̂k(p)−µk| ≥
√

2 log(T )
Tk(p) ] ≤ 2n

T . It remains to bound the estimation
error due to quantization.

Notice that
∑M
j=1(S̃jk − bS

j
kc) is the sum of M independent Bernoulli at each phase p. Hoeffding

inequality thus also claims that P[|
∑M
j=1(S̃jk(p)− Sjk(p))| ≥

√
log(T )M

2 ] ≤ 2
T . As Tk(p) ≥M , it

then holds P[∃p ≤ n : |µ̃jk(p)− µ̂jk(p)| ≥
√

log(T )
2Tk(p) ] ≤ 2n

T . Using the triangle inequality with this
bound and the first Hoeffding inequality of the proof yields the final result.

For both exploration and exploitation phases, we control the number of times an arm is pulled before
being accepted or rejected.

Proposition 1. With probability 1−O
(
K log(T )

T +M exp
(
−T0

K

))
, every optimal arm k is accepted

after at most O
(

log(T )
(µk−µ(M+1))2

)
pulls during exploration phases, and every sub-optimal arm k is

rejected after at most O
(

log(T )
(µ(M)−µk)2

)
pulls during exploration phases.

Proof. With probability at least 1 −M exp
(
−T0

K

)
, the initialization is successful, i.e., all players

have been assigned different ranks. The remaining of the proof is conditioned on that event.
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As there are at most log2(T ) exploration-communication phases, |µ̃k(p)− µk| ≤ BTk(p) holds for

any arm and phase with probability 1 − O
(
K log(T )

T

)
thanks to Lemma 4. The remaining of the

proof is conditioned on that event.

We first consider an optimal arm k. Let ∆k = µk − µ(M+1) be the gap between the arm k and the
first sub-optimal arm. We assume ∆k > 0 here, the case of equality holds considering log(T )

0 =∞.
Let sk be the first integer such that 4Bsk ≤ ∆k.

With Tk(p) =
∑p
l=1Ml2

l the number of times an active arm has been pulled after the p-th exploration
phase, it holds that

T (p+ 1) ≤ 3T (p) as Mp is non-increasing. (2)

For some p ∈ N, T (p − 1) < sk ≤ T (p) or the arm k is active at time T . In the second case, it is
obvious that k is pulled less than O(sk) times. Otherwise, the triangle inequality for such a p, for any
active sub-optimal arm i, yields µ̃k(p)−BTk(p) ≥ µ̃i(p) +BTi(p).

So the arm k is accepted after at most p phases. Using the same argument as in [23], it holds
sk = O

(
log(T )

(µk−µ(M+1))2

)
, and also for Tk(p) thanks to Equation (2). Also, k can not be wrongly

rejected conditionally on the same event, as it can not be dominated by any sub-optimal arm in term
of confidence intervals.

The proof for the sub-optimal case is similar if we denote ∆k = µ(M) − µk.

In the following, we keep the notation tk = min
{

c log(T )

(µk−µ(M))
2 , T

}
, where c is a universal constant

such that with the probability considered in Proposition 1, the number of exploration pulls before
accepting/rejecting k is at most tk.

For both exploration and exploitation phases, the decomposition used in the centralized case [3] holds
because there is no collision during these two types of phases (conditionally on the success of the
initialization phase):

Rexplo =
∑
k>M

(µ(M) − µ(k))T
explo
(k) +

∑
k≤M

(µ(k) − µ(M))(T
explo − T explo

(k) ), (3)

where T explo = #Explo and T explo
(k) is the centralized number of time steps where the k-th best arm is

pulled during exploration or exploitation phases.

Lemma 5. With probability 1−O
(
K log(T )

T +M exp
(
−T0

K

))
, the following hold simultaneously:

i) for a sub-optimal arm k, (µ(M) − µk)T explo
k = O

(
min

{
log(T )

µ(M)−µk
,
√
T log(T )

})
.

ii)
∑
k≤M

(µ(k) − µ(M))(T
explo − T explo

(k) ) = O
( ∑
k>M

min

{
log(T )

µ(M)−µ(k)
,
√
T log(T )

})
.

Proof. i) From Proposition 1, T explo
k ≤ O

(
min

{
log(T )

(µ(M)−µk)2 , T

})
with the considered prob-

ability, so (µ(M) − µk)T explo
k = O

(
min

{
log(T )

(µ(M)−µk) , (µ(M) − µk)T

})
. The function ∆ 7→

min

{
log(T )

∆ , ∆T

}
is maximized for ∆ =

√
log(T )
T and its maximum is

√
T log(T ). Thus, the

inequality min

{
log(T )

∆ , ∆T

}
≤ min

{
log(T )

∆ ,
√
T log(T )

}
always holds for ∆ ≥ 0 and yields

the first point.
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ii) We (re)define the following: t̂k the number of exploratory pulls before accepting/rejecting the arm

k, Ml the number of active player during the l-th exploration phase, T (p) =
p∑
l=1

2lMl and N the

total number of exploration phases.

T (p) describes the total number of exploration pulls processed at the end of the p-th exploration
phase on every active arm for p < N . Since the N -th phase may remain uncompleted, T (N) is then
greater that the number of exploration pulls at the end of the N -th phase.

With probability 1 − O
(
K log(T )

T +M exp
(
−T0

K

))
, the initialization is successful, any arm is

correctly accepted or rejected and t̂k ≤ tk for all k. The remaining of the proof is conditioned on that
event. We now decompose the proof in two main parts given by Lemmas 6 and 7 proven below.

Lemma 6. Conditionally on the success of the initialization phase and on correct estimations of all
arms:∑

k≤M

(µ(k) − µ(M))(T
explo − T explo

(k) ) ≤
∑
j>M

∑
k≤M

N∑
p=1

2p(µ(k) − µ(M))1min(t̂(j),t̂(k))>T (p−1).

Lemma 7. Conditionally on the success of the initialization phase and on correct estimations of all
arms:∑

k≤M

N∑
p=1

2p(µ(k) − µ(M))1min(t̂(j),t̂(k))>T (p−1) ≤ O
(

min

{
log(T )

µ(M) − µ(j)
,
√
T log(T )

})
.

These two lemmas directly yield the second point in Lemma 5.

Proof of Lemma 6. Let us consider an optimal arm k. During the p-th exploration phase, there are
two possibilities:

• either k has already been accepted, i.e., t̂k ≤ T (p− 1). Then the arm k is pulled the whole
phase, i.e., Kp2

p times.

• Or k is still active. Then it is pulled 2p times by each active player, i.e., it is pulled Mp2
p

times in total. This means that it is not pulled (Kp −Mp)2
p times.

From these two points, it holds that T explo
k ≥ T explo −

N∑
p=1

2p(Kp −Mp)1t̂k>T (p−1).

Notice that Kp − Mp is the number of active sub-optimal arms. By definition, Kp − Mp =∑
j>M

1t̂(j)>T (p−1). We thus get that T explo
k ≥ T explo −

∑
j>M

N∑
p=1

2p1min(t̂(j),t̂k)>T (p−1).

The double sum actually is the number of times a sub-optimal arm is pulled instead of k. This yields
the result when summing over all optimal arms k.

Proof of Lemma 7. Let us define Aj =
∑
k≤M

N∑
p=1

2p(µ(k) − µ(M))1min(t̂j ,t̂(k))>T (p−1) the cost asso-

ciated to the sub-optimal arm j. Lemma 7 upper bounds Aj for any sub-optimal arm j.

Recall that t(k) = min

(
c log(T )

(µ(k)−µ(M))
2 , T

)
for a universal constant c. The proof is conditioned on

the event t̂(k) ≤ t(k), so that if we define ∆(p) =
√

c log(T )
T (p−1) , the inequality t̂(k) > T (p− 1) implies

µ(k) − µ(M) < ∆(p). We also write N j the first integer such that t̂j ≤ T (N j). It follows:

Aj ≤
∑
k≤M

Nj∑
p=1

2p∆(p)1t̂(k)>T (p−1)
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≤
Nj∑
p=1

∆(p) (T (p)− T (p− 1)) as
∑
k≤M

1t̂(k)>T (p−1) = Mp.

= c log(T )

Nj∑
p=1

∆(p)

(
1

∆(p+ 1)
+

1

∆(p)

)(
1

∆(p+ 1)
− 1

∆(p)

)

≤ (1 +
√

3)c log(T )

Nj∑
p=1

(
1

∆(p+ 1)
− 1

∆(p)
) thanks to Equation (2).

≤ (1 +
√

3)c log(T )
1

∆(N j + 1)
by convention,

1

∆(1)
= 0.

By definition of N j , we have tj ≥ T (N j − 1). Thus, ∆(N j) ≥
√

c log(T )
tj

and Equation (2) gives

∆(N j + 1) ≥
√

c log(T )
3tj

. It then holds Aj ≤ (3 +
√

3)
√
c tj log(T ). The result follows since

tj = O
(

min
{ log(T )

(µ(M)−µj)2 , T
})

.

Using the two points of Lemma 5, along with Equation (3), yields Lemma 3.

A.2.3 Communication cost

We now focus on theRcomm term in Equation (1). Lemma 8 states it is negligible compared to log(T )
and has a significant impact on the regret only for small values of T .

Lemma 8. With probability 1−O
(
K log(T )

T +M exp
(
−T0

K

))
, the following holds:

Rcomm = O
(
KM3 log2

(
min

{
log(T )

(µ(M) − µ(M+1))2
, T

}))
.

Proof. As explained in Section 2.2.3, the length of the communication phase p ∈ [N ] is at most
KM2(p + 1), where N is the number of exploration phases. The cost of communication is then
smaller than KM3

∑N
p=1(p+ 1) ≤ O

(
KM3N2

)
. Proposition 1 in Appendix A.2.2, claims with

the considered probability that N is at most O
(

log
(

min

{
log(T )

(µ(M)−µ(M+1))2 , T

}))
, which yields

Lemma 8.

A.2.4 Total regret

The choice T0 = dK log(T )e along with Lemmas 2, 3 and 8 claim that a bad event occurs with
probability at mostO

(
K log(T )

T + M
T

)
. The average regret due to bad events is thus upper bounded by

O(KM log(T )). Using these lemmas along with Equation (1) finally yields the bound in Theorem 1.

A.3 Experiments

We compare in Figure 1 the empirical performances of SIC-MMAB with the MCTopM algorithm[8]
on generated data4. We also compared with the MusicalChairs algorithm [26], but its performance
was irrelevant and out of scale. This is mainly due to its scaling with 1/∆2, besides presenting large
constant terms in its regret. Also, its main advantage comes from its scaling with M , which is here
small for computational reasons. All the considered regret values are averaged over 200 runs. The
experiments are run with Bernoulli distributions. Thus, there is no need to quantize the sent statistics

and a tighter confidence bound Bs =
√

2 log(T )
s is used.

Figure 1a represents the evolution of the regret for both algorithms with the following problem
parameters: K = 9, M = 6, T = 5× 105. The means of the arms are linearly distributed between

4The code is available at https://github.com/eboursier/sic-mmab.
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0.9 and 0.89, so the gap between two consecutive arms is 1.25 × 10−3. The switches between
exploration and communication phases for SIC-MMAB are easily observable. A larger horizon (near
40 times larger) is required for SIC-MMAB to converge to a constant regret, but this alternation
between the phases could not be visible for such a value of T .

Figure 1b represents the evolution of the final regret as a function of the gap ∆ between two
consecutive arms in a logarithmic scale. The problem parameters K, M and T are the same.
Although MCTopM seems to provide better results with larger values of ∆, SIC-MMAB seems to have
a smaller dependency in 1/∆. This confirms the theoretical results claiming that MCTopM scales with
∆−2 while SIC-MMAB scales with ∆−1. This can be observed on the left part of Figure 1b where the
slope for MCTopM is approximately twice as large as for SIC-MMAB. Also, a different behavior of the
regret appears for very low values of ∆ which is certainly due to the fact that the regret only depends
on T for extremely small values of ∆ (minmax regret).
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Figure 1: Performance comparison between SIC-MMAB and MCTopM algorithms.

B Complementary material for Section 3

B.1 DYN-MMAB description

This section thoroughly describes DYN-MMAB algorithm. Its pseudocode is given in Algorithm 2 be-
low. We first describe the rules explaining when a player adds an arm to Occupied or Preferences.

An arm k is added to Occupied (it may already be in Preferences) if only 0 rewards have been
observed during a whole block of Ljk pulls on arm k for player j. Such a block ends when Ljk
observations have been gathered on arm k and a new block is then restarted. Ljk is an estimation
of the required number of successive 0 to observe before considering an arm as occupied with high
probability. Its value at stage t+ τj , L

j
k(t), is thus constantly updated using the current estimation of

a lower bound of µk:

Ljk(t+ 1)← min

 2e log(T j)(
r̂jk(t+ 1)−Bj(t+ 1)

)+ , L
j
k(t)

 and Ljk(0) = +∞, (4)

where r̂jk(t) is the empirical mean reward on the arm k at stage t + τj , Bj(t) = 2
√

6 K log(T j)
t ,

x+ = max(x, 0) and 2e log(T j)
0 = +∞. This rule is described at lines 12-15 in Algorithm 2.

An active arm k is added to Preferences (at last position) if it is better than any other active arm, in
term of confidence interval. This rule is described at lines 16-18 in Algorithm 2.

Another rule needs to be added to handle the possible case of an arm in Preferences already
exploited by another player. As soon as an arm k in Preferences becomes worse (in terms of
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Algorithm 2 DYN-MMAB algorithm
Input: T j (personal horizon)

1: p← 1, Fixed← −1 and initialize Preferences, Occupied as empty lists
2: T,Ttemp,S,Stemp ← Zeros(K) and define L as a vector of K elements equal to∞
3: rinf [k]← 0 and rsup[k]← 1 for every arm k # Initialize the confidence intervals

4: Exploration Phase: # Bj(t) = 2
√

6 K log(T j)
t here

5: while Fixed = −1 do
6: Pull k ∼ U([K]); T temp[k]← T temp[k] + 1 and T [k]← T [k] + 1
7: Stemp[k]← Stemp[k] + rk(t) and S[k]← S[k] + rk(t)

8: For all arms i, rinf [i]←
(
S[i]
T [i] −B

j(t)
)+

and rsup[i]← min
(
S[i]
T [i] +Bj(t), 1

)
9: L[k]← min

(
2e log(T j)
rinf [k] , L[k]

)
10: if k = Preferences[p] and rk(t) > 0 then Fixed← k end if # no collision

on the arm to exploit
11: if Preferences[p] ∈ Occupied then p← p+ 1 end if # exploited by another player
12: if T temp[k] ≥ L[k] then # end of sliding window
13: if Stemp[k] = 0 then Add k to Occupied end if # estimate that k is occupied
14: Reset Stemp[k], T temp[k]← 0
15: end if
16: if for some active arm i and all other active arms l, rinf [i] > rsup[l] then
17: Add i to Preferences (last position) # i is better than any other active arm
18: end if
19: if there is some l not in Preferences[1 : p], such that rinf [l] > rsup[Preferences[p]]

then add Preferences[p] to Occupied
20: end if # the mean of the available best arm has significantly dropped
21: end while

22: Exploitation Phase: Pull Fixed until T j

confidence intervals) than an active arm or an arm with a higher index in Preferences, then k is
added to Occupied. This rule is described at lines 19-20 in Algorithm 2.

Following these rules, as soon as there is an arm in Preferences, player j tries to occupy the
p-th arm in Preferences (starting with p = 1), yet she still continues to explore. As soon as she
encounters a positive reward on it, she occupies it and starts the exploitation phase. If she does not
end up occupying an optimal arm, this arm will be added to Occupied at some point. The player then
increments p and tries to occupy the next available best arm. This point is described at lines 10-11
in Algorithm 2. Notice that Preferences can have more than p elements, but the player must not
exploit the q-th element of Preferences with q > p yet as it can lead the player in exploiting a
sub-optimal arm.

B.2 Theoretical analysis

B.2.1 Auxiliary lemmas

This section is devoted to the proof of Theorem 2. It first proves the first point of Lemma 1.

Proof of Lemma 1.1. We first introduceZt := Xk(t+τj)(1−ηk(t+τj))1πj(t+τj)=k and pt := E[Zt].
Notice that pt ≤ 1

K because 1πj(t+τj)=k is a Bernoulli of parameter 1
K in the exploration phase.

Chernoff bound states that:

P
[ t∑
t′=1

(Zt′ − E[Zt′ ]) ≥ tδ
]
≤ min

λ>0
e−λtδ E

[ t∏
t′=1

eλ(Zt′−E[Zt′ ])
]
.

By convexity, eλz ≤ 1 + z(eλ − 1) for z ∈ [0, 1]. It thus holds:

E
[
eλ(Zt−E[Zt])

]
≤ e−λpt

(
1 + pt(e

λ − 1)
)
≤ e−λptept(e

λ−1) as 1 + x ≤ ex.
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≤ ept(e
λ−1−λ) ≤ e

eλ−1−λ
K as pt ≤

1

K
and eλ − 1− λ ≥ 0.

It can then be deduced:

P
[ t∑
t′=1

(Zt′ − E[Zt′ ]) ≥ tδ
]
≤ min

λ>0
e−λtδet

eλ−1−λ
K . For λ = log(1 +Kδ) :

≤ exp

(
− t

K
h(Kδ)

)
with h(u) = (1 + u) log(1 + u)− u.

Similarly, we show for the negative error: P
[ t∑
t′=1

(Zt′ − E[Zt′ ]) ≤ −tδ
]
≤ exp

(
− t
Kh(−Kδ)

)
.

Either t ≤ 16
3 K log(T j) and the desired inequality holds almost surely, or Kδ < 1 with δ =√

16 log(T j)
3tK . As h(x) ≥ 3x2

8 for |x| < 1, it then holds

P
[∣∣∣ t∑
t′=1

(Zt′ − E[Zt′ ])
∣∣∣ ≥ tδ] ≤ 2e−

3t(Kδ)2

8K and after multiplication with
K

t
:

P

[∣∣∣K
t

t+τj∑
t′=1+τj

Xk(t′)(1− ηk(t′))1πj(t′)=k − γj(t)µk
∣∣∣ ≥√16K log(T j)

3t

]
≤ 2

(T j)2
. (5)

Chernoff bound also provides a confidence interval on the number of pulls on a single arm:

P

[∣∣∣T jk (t)− t

K

∣∣∣ ≥√6t log(T j)

K

]
≤ 2

(T j)2
. (6)

From Equation (6), it can be directly deduced that P
[
|KT

j
k (t)

t − 1| ≥
√

6K log(T j)
t

]
≤ 2

(T j)2 . As

r̂jk(t) ≤ 1,

P

[∣∣∣KT jk (t)

t
r̂jk(t)− r̂jk(t)

∣∣∣ ≥√6K log(T j)

t

]
≤ 2

(T j)2
. (7)

As KT jk (t)

t r̂jk(t) = K
t

t+τj∑
t′=1+τj

Xk(t′)(1− ηk(t′))1πj(t′)=k, using the triangle inequality with Equa-

tions (5) and (7) finally yields P
[
|r̂jk(t)− γj(t)µk| ≥ 2

√
6 K log(T j)

t

]
≤ 4

(T j)2 .

The second point of Lemma 1 is proved below.

Proof of Lemma 1.2. The previous point gives that with probability 1−O
(
K
T j

)
, player j correctly

estimated all the free arms until stage T . The remaining of the proof is conditioned on this event. We
also assume that t0 is the first stage where k is occupied for the proof. The general result claimed in
Lemma 1 directly follows.

When t0 is small, the second case will happen, i.e., the number of pulls on the arm k is small and its
average reward can quickly drop to 0. When t0 is large, γj(t)µk is tightly estimated so that Ljk is
small. Then, the first case will happen, i.e., the arm k will be quickly detected as occupied.

a) We first assume t0 ≤ 12K log(T j). The empirical reward after T jk (t) ≥ T jk (t0) pulls is r̂jk(t) =
r̂jk(t0)T jk (t0)

T jk (t)
, because all pulls after the stage t0 + τj will return 0 rewards. However, using Chernoff

bound as in Equation (6), it appears that if t0 ≤ 12K log(T j) then T jk (t0) ≤ 18 log(T j) with

probability 1−O
(

1
T j

)
, so r̂jk(t) ≤ 18 log(T j)

T jk (t)
.
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Conditionally on the correct estimations of the arms, there is at least an unoccupied arm i with
µi ≤ µk. Therefore with ti = 72Ke log(T j)

µ2
i

, as ti ≥ 12K log(T j), Chernoff bound guarantees that

the following holds, with probability at least 1− 2
T j ,

3ti
2K
≥ T jk (ti) ≥

ti
2K

=
36e log(T j)

µ2
i

. (8)

This gives that r̂jk(ti) ≤ µi
2e . After stage τj + d′K log(T j)

µ2
i

, where d′ is some universal constant, the
error bounds of both arms are upper bounded by µi

8e . The confidence intervals would then be disjoint

for the arms k and i. So k will be detected as worse than i after a time at most O
(
K log(T )

µ2
i

)
as

T j ≤ T .

b) We now assume that 12K log(T j) ≤ t0 ≤ 24λK log(T j)
µ2
k

with λ = 16e2. It still holds r̂jk(t) =

r̂jk(t0)T jk (t0)

T jk (t)
. Correct estimations of the free arms are assumed in this proof, so in particular

r̂jk(t) ≤
(µk +Bj(t0))T jk (t0)

T jk (t)
. (9)

As in Equation (8), it holds that T jk (t0) ≤ 3t0

2K with probability 1 − O
(

1
T j

)
and thus Bj(t0) ≤

6

√
log(T j)

T jk (t0)
. Also, T jk (t) ≥ d log(T j)

2µiµk
for t = dK log(T j)

µ2
i

. Equation (9) then becomes

r̂jk(t) ≤
µkT

j
k (t0)

T jk (t)
+
Bj(t0)T jk (t0)

T jk (t)
≤ 36λ

d
µi +

6
√
T jk (t0) log(T j)

T jk (t)
≤

(
36λ

d
+

72
√
λ

d

)
µi.

Thus, for a well chosen d, the empirical reward verifies r̂jk(t) ≤ µi
2e . We then conclude as for the first

case that the arm k would be detected as worse than the free arm i after a time O
(
K log(T )

µ2
i

)
.

c) The last case corresponds to t0 > 24λK log(T j)
µ2
k

. It then holds Bj(t0) ≤ µk√
λ

= µk
4e .

By definition, Ljk ≤
2e log(T j)

r̂jk−Bj(t)
. Conditionally on the correct estimation of the free arms, it holds that

γj(t)µk − 2Bj(t) ≤ r̂jk −Bj(t) ≤ µk. So with the choice of Ljk described by Equation (4), as long
as k is free,

2e log(T j)

µk
≤ Ljk ≤ 2e log(T j)

γj(t)µk − 2Bj(t)

≤ 2e2 log(T j)

µk − 2eBj(t)
.

(10)

As Bj(t0) ≤ µk
4e , it holds that Ljk(t0) ≤ 4e2 log(T j)

µk
. Since Ljk is non-increasing by definition, this

actually always holds for any t larger than t0.

From that point, Equation (8) gives that with probability 1−O
(

1
T j

)
, the arm k will be pulled at least

2Ljk times between stage t0 + 1 and t0 + 24KLjk with probability 1−O
(

1
T j

)
. Thus, a whole block

of Ljk pulls receiving only 0 rewards on k happens before stage t0 + 24KLjk.

The arm k is then detected as occupied after a time O
(
K log(T j)

µk

)
from t0, leading to the result.

Lemma 9. At any stage, no free arm k is falsely detected as occupied by player j with probability
1−O

(
K
T j

)
.
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Proof. As shown above, with probability 1 − O
(
K
T j

)
, player j correctly estimated the average

rewards of all the free arms until stage T . The remaining of the proof is conditioned on that event.
As long as k is free, it can not become dominated by some arm that was not added to Preferences
before k, so it can not be added to Occupied from the rule given at lines 19-20 in Algorithm 2.

For the rule of lines 12-15, Equation (10) gives that

Ljk(t′) ≥ 2e log(T j)

µk
at each stage t′ ≤ t. (11)

As in Appendix A.2.1, the probability of detecting L successive 0 rewards on a free arm k is then
smaller than

(
1− µk

e

)L ≤ exp
(
−Lµke

)
.

Using this along with Equation (11) yields that with probability 1−O
(

1
(T j)2

)
, at least one positive

reward will be observed on arm k in a single block. The union bound over all blocks yields the
result.

Finally, Lemma 10 yields that, after some time, any player starts exploiting an arm while all the better
arms are already occupied by other players.

Lemma 10. We denote ∆̄(k) = min
i=1,...,k

(µ(i) − µ(i+1)). With probability 1 − O
(
K
T j

)
, it holds

that for a single player j, there exists kj such that after a stage at most t̄kj + τj , she is ex-
ploiting the kj-th best arm and all the better arms are also exploited by other players, where

t̄kj = O
(
K log(T )

∆̄2
(kj)

+ kj
K log(T )
µ(kj)

)
.

Proof. Player j correctly estimates all the arms until stage T , with probability 1 − O
(
K
T j

)
. The

remaining of the proof is conditioned on that event. We define t̄i = cK log(T j)
∆̄2

(i)

+ i cK log(T j)
µ(i)

for some

universal constant c and kj (random variable) defined as

kj = min
{
i ∈ [K] | i-th best arm not exploited by another player at stage t̄i + τj

}
. (12)

k∗j (kj-th best arm) is the best arm not exploited by another player (than player j) after the stage
t̄kj + τj . The considered set is not empty as M ≤ K.

Lemma 9 gives that with probability 1−O
(
K
T j

)
, k∗j is not falsely detected as occupied until stage

T . All arms below k∗j will be detected as worse than k∗j after a time dK log(T j)
∆̄2

(kj)

for some universal

constant d.

By definition of kj , any arm i∗ better than k∗j is already occupied at stage t̄i + τj . Lemma 1, gives

that with probability 1−O
(

1
T j

)
, either i∗ is detected as occupied after stage t̄i + τj + d′K log(T j)

µ(i)

or dominated by k∗j after stage d2K log(T j)
∆̄2

(kj)

+ τj for some universal constants d′ and d2.

Thus the player detects the arm k∗j as optimal and starts trying to occupy k∗j at a stage at most

t̃ = max
(
t̄kj−1 + d′K log(T j)

µ(kj)
,max(d, d2)K log(T j)

∆̄2
(kj)

)
+ τj with probability 1 − O

(
K
T j

)
(where

t̄0 = 0).

Using similar arguments as for Lemma 9, player j will observe a positive reward on k∗j with

probability 1−O
(

1
T j

)
after a stage at most t̃+

d′2K log(T j)
µ(kj)

for some constant d′2, if kj is still free at

this stage. With the choice c = max(d, d2, d
′ + d′2), this stage is smaller than t̄kj and k∗j is then still

free. Thus, player j will start exploiting k∗j after stage at most t̄kj with the considered probability.
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B.2.2 Regret in dynamic setting

Proof of Theorem 2. Lemma 10 states that a player only needs an exploration time bounded as
O
(
K log(T )

∆̄2
(k)

+ kK log(T )
µ(k)

)
before starting exploiting, with high probability. Furthermore, the better

arms are already exploited when she does so. Thus, the exploited arms are the top-M arms. The
regret is then upper bounded by twice the sum of exploration times (and the low probability events of
wrong estimations), as a collision between players can only happen with at most one player in her
exploitation phase.

The regret incurred by low probability events mentioned in Lemma 10 is in O(KM2) and is thus
dominated by the exploration regret.

C No Sensing: communication through synchronization

This section focuses on the static No Sensing model. First of all, we claim that a communication
protocol similar to the one of SIC-MMAB can be devised here, under a mild extra assumption: a lower
bound µmin of the average rewards µk is known5. Indeed, in the Collision Sensing model, a bit is
sent through a single collision. Without sensing, it can be done with probability 1− 1

T using log(T )
µmin

time steps. This adds a multiplicative factor of log(T )
µmin

to the communication regret6, which would
then dominate the new initialization regret. So, SIC-MMAB can be easily adapted for the No Sensing
model into the ADAPTED SIC-MMAB algorithm with a regret scaling as

O

∑
k>M

log(T )

µ(M) − µ(k)
+
KM3 log(T )

µmin
log2

(
log(T )

(µ(M) − µ(M+1))2

) . (13)

The exploration regret is still similar to the centralized algorithm, but the communication cost is no
longer sub-logarithmic. In this section, we introduce an alternative algorithm for the No sensing
setting. It also relies on a communication protocol, but with more limited information, which thus
incurs a much better dependency in M as well as a logarithmic regret.

In the No Sensing setting, the SELFISH strategy, where all players follow independently UCB seems
to perform well (on generated data) but appears to incur a linear regret with some constant probability
[8]. In Appendix D, the discussion about the SELFISH algorithm is extended and some reasons of its
failure are explained, using algebraic arguments (Lindemann-Weierstrass Theorem).

C.1 Adapted communication protocol

The algorithm SIC-MMAB2 is formally described in Appendix C.2. It relies on several subroutines
that are detailed in the next section. Similarly to SIC-MMAB, it starts with an initialization phase
to estimate M. It then alternates between exploration and communication phases, but the goal of
the communication phases is here to communicate to other players that an arm is optimal or sub-
optimal (instead of transmitting statistics). This allows to share common sets of active arms and
players. Protocols to declare such arms and to detect declarations from other players are detailed in
Appendix C.2.3. The algorithm then ends with an exploitation phase.

An additional assumption is required for SIC-MMAB2 and is quite similar to an assumption made by
Lugosi and Mehrabian [21] for the No Sensing model.

Assumption 3. A lower bound of µ(K) is known to all players: 0 < µmin ≤ min
i
µi.

The regret incurred by SIC-MMAB2 is given by Theorem 3. Its proof is given in Appendix C.3.

5Actually, a lower bound of P[Xk > 0] is enough. We instead use µmin, as P[Xk > 0] ≥ µk.
6The length of the Musical chairs and the estimation protocol in the initialization will also be respectively

multiplied by 1
µmin

and log(T )
µmin

.
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Theorem 3. With the choice Tc = d log(T )
µmin

e for the initialization, SIC-MMAB2 has a regret scaling as

E[RT ] = O

∑
k>M

min

{
M log(T )

µ(M) − µ(k)
,
√
MT log(T )

}
+
MK2

µmin
log(T )

 .

C.2 Algorithm description

SIC-MMAB2 algorithm is described in this section. We use the same definitions for Mp and Kp as in
Section 2.

C.2.1 Initialization phase

The objective of the initialization phase is to estimate M . First, each player follows the Musical
Chairs algorithm for a time KTc with Tc := d log(T )

µmin
e. The algorithm in the No Sensing setting is

given by Pseudocode 4, Appendix A.1. The second protocol of the initialization is then the same as
for SIC-MMAB, but instead of a single time step, a number of Tc time steps is needed to correctly
transmit a bit with probability 1− 1

T . The detailed protocol is given by Pseudocode 6.

Estimate_M_NoSensing Protocol
Input: k (external rank), Tc (time to send a bit)
Output: M (estimated number of players)

1: Initialize M ← 1 and π ← k
2: for n = 1, . . . , 2K do
3: Initialize r ← 0
4: if n ≥ 2k then π ← π + 1 (mod K) end if # sequential hopping
5: for Tc time steps do Pull π and update r ← r + rπ(t) end for
6: if r = 0 then M ←M + 1 end if # increases if Tc collisions
7: end for
8: return M

Pseudocode 6: estimate M for the No Sensing setting.

C.2.2 Exploration phases

Each exploration phase is split into two parts. During the first one, each player fixes to an arm
following Musical Chairs procedure. After this procedure, players are in an orthogonal setting and
can thus start the second part, where they hop sequentially and explore the active arms without any
collision. The decisions for accepting/rejecting arms are still based on the exploration pulls as in
SIC-MMAB. The differences with the exploration of SIC-MMAB are the following:

1. statistics are not shared among players; this induces an additional M factor in the regret.

2. A Musical Chairs procedure is added at the beginning of a new exploration phase, if there
was at least one declaration or fixation block in the previous communication phase. This
procedure is needed to reach an orthogonal setting before the sequential hopping. Figures 2
and 3 below illustrate when such a procedure is added. It corresponds to lines 8-11 in
Algorithm 3.

Declaration
block

(time Td)

Declaration
block

(time Td)

Fixation
block

(time Td)
Exploration phase
(timeKp2pT0)

Musical
Chairs
(time
KpTc)

Musical
Chairs
(time
KpTc)

Reception
block

(time Td)
Exploration phase

(timeKp+12p+1T0)

Reception
block

(time Td)

Reception
block, no
observed

declaration
(time Td)

All players
start com-
munication

Player j ended
declaring
Waits for other
players to end

All players ended
declaring a slot ago

Figure 2: Alternating between fixation, exploration and declaration blocks. Case where a player
declares sub-optimal arms and tries to occupy (without success) optimal arms.
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Musical
Chairs
(time
KpTc)

Exploration phase
(timeKp2pT0)

Reception
block, no
observed

declaration
(time Td)

Exploration phase
(timeKp+12p+1T0 − Td)

No player declared
anything

The communication phase is included in the
exploration one and no fixation phase is
required

Figure 3: Alternating between fixation, exploration and declaration blocks. Case with no declaration.
In that case, the single declaration block, which just consists of sequential hopping, is included in the
next exploration phase (lines 10-11 in Algorithm 3). No fixation phase is needed in that case.

C.2.3 Communication phase

Notice that all active players are in a communication phase at the same time. However, this phase
is decomposed into blocks of same length Td (to keep synchronization). A block can be of three
different types, and the type of a block does not need to be the same for all players, as illustrated in
Figure 2. Types are the following:

Declaration block for player j: she communicates to other players that an arm is sub-optimal.

Fixation block for player j: she tries to occupy any arm that she detected as optimal. If she succeeds,
she exploits that arm until the end.

Reception block for player j: she hops sequentially in order to detect other players’ declarations.

Player j starts the communication phase with declaration blocks, one per arm detected as sub-optimal7.
She then proceeds to a fixation block, had she detected any arm as optimal during the last exploitation
phase. She then proceeds to reception blocks until no new declaration is detected. As soon as no new
declaration is detected, she starts a new exploration phase.

Notice that players keep receiving declarations from other players in any type of block.

Declaration block: In a declaration block, player j follows Declare Protocol, described in Pseu-
docode 7. The idea is to frequently sample the sub-optimal arm in order to send a “signal” to the
other players. They will detect this signal by observing a significant loss in the empirical reward of
this arm. However, a player sending a signal should also be able to detect signals on other arms sent
by other players. That is the reason why in order to declare an arm as sub-optimal, a player randomly
chooses between pulling this arm and sequentially hopping.

Declare Protocol
Input: k (arm to declare), Td (time of block), π (first arm to pull in sequential hopping), S and T

(exploration statistics), [Kp] (active arms)
Output: D (signaled arms in this block)

1: Initialize s, t← Zeros(K)
2: for Td time steps do

3: Pull arm i =

{
k with probability 1

2

π with probability 1
2

4: s[i]← s[i] + ri(t); t[i]← t[i] + 1 and π ← π + 1 (mod [Kp])
5: end for
6: d← set of active arms i verifying

∣∣∣S[i]
T [i] −

s[i]
t[i]

∣∣∣ ≥ S[i]
4T [i]

7: return d ∪ {k} # arms signaled during the block

Pseudocode 7: Declare arm k as sub-optimal.

7Of course, she does not declare any arm previously declared by another player.
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Lemma 12 gives an appropriate choice for Td such that the declaration is detected by every player,
without detecting any false positive declaration, no matter the block they are currently proceeding,
with high probability.

Let µ̂i and r̂i be respectively the empirical reward during the exploration phases and during the last
communication block for arm i and player j. Arm i is detected as signaled, i.e., another player is
declaring or exploiting this arm if:

|µ̂i − r̂i| ≥
µ̂i
4
. (14)

Lemma 12 states that players will only detect arms declared as sub-optimal or exploited by a player
with high probability. However, using the last reception block where there is no new signal, it is easy
to distinguish exploited arms from declared ones. Indeed, for the exploited arms, only 0 are observed
during this last block; while for the declared ones, no player pulls it except for the sequential hopping.
At least a positive reward will thus be observed with probability 1 − 1

T on them during the block,
thanks to its length Td, which depends on µmin.

Fixation block: In a fixation block, player j proceeds to Occupy Protocol, described in Pseu-
docode 8. She sequentially hops on the active arms and starts exploiting an optimal arm as soon as it
returns a positive reward (i.e., without collision at this step). In that case, she pulls this arm until the
final horizon T . At the end of a block, if she did not manage to exploit any detected optimal arm,
then all of them are occupied by other players with high probability thanks to the length of the block.
Signals of other players are detected following the rule of Equation (14).

Occupy Protocol
Input: A (set to occupy), Td (time of block), π (first arm to pull), S and T (exploration statistics),

[Kp] (active arms)
Output: Fixed (exploited arm) , D (signaled arms in this block)

1: Initialize s, t← Zeros(K); Fixed← −1
2: for Td time steps do
3: if Fixed = −1 then
4: Pull π
5: if π ∈ A and rπ(t) > 0 then Fixed← π end if # no collision on optimal arm
6: s[π]← s[π] + rπ(t); t[π]← t[π] + 1 and π ← π + 1 (mod [Kp])
7: else Pull Fixed end if
8: end for
9: d← set of active arms k verifying

∣∣∣S[k]
T [k] −

s[k]
t[k]

∣∣∣ ≥ S[k]
4T [k]

10: return (Fixed, d)

Pseudocode 8: Try to start exploiting an arm among A.

Reception block: In a reception block, player j sequentially hops and detects the signals of other
players, following the rule of Equation (14). This corresponds to Receive Protocol, described in
Pseudocode 9.

Receive Protocol
Input: Td (time of block), π (first arm to pull), S and T (exploration statistics), [Kp] (active arms)
Output: D (signaled arms in this block), s and t (statistics of the block)

1: Initialize s, t← Zeros(K)
2: for Td time steps do
3: Pull π
4: Update s[π]← s[π] + rπ(t); t[π]← t[π] + 1 and π ← π + 1 (mod [Kp])
5: end for
6: d← set of active arms k verifying

∣∣∣S[k]
T [k] −

s[k]
t[k]

∣∣∣ ≥ S[k]
4T [k]

7: return (d, s, t)

Pseudocode 9: Detect other players’ declarations (and wait).

Notice that every active player will at least proceed to one reception block per communication phase
(if she does not end up occupying an optimal arm). The last reception block is considered as the
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block where no new signal is detected. This block is thus the same for all active players with high
probability. Moreover, the arms giving 0 reward during this last reception block are the optimal
arms exploited by other players. This allows to distinguish exploited arms (which are optimal)
from declared ones (which are sub-optimal). This distinction is described in Pseudocode 10. As a
consequence, active players share a common set of active arms [Kp] and number of active players
Mp at the end of each communication phase.

Update
Input: Decl (declared arms), s (statistics of last reception block), [Kp] (set of active arms), Mp

(number of active players)
Output: [Kp+1] (updated set of active arms), Mp+1 (updated number of active play-

ers)
1: Opt← {i ∈ Decl | s[i] = 0}
2: [Kp+1]← [Kp] \ Decl and Mp+1 ←Mp − length(Opt)
3: return ([Kp+1], Mp+1)

Pseudocode 10: Update the active sets at the end of a communication phase.

The complete description of SIC-MMAB2 is given in Algorithm 3 below.
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Algorithm 3 SIC-MMAB2 algorithm
Input: T (horizon), µmin (lower bound of means)

1: Initialization Phase:
2: Set Tc ← d log(T )

µmin
e; π ← MusicalChairs ([K],KTc)

3: Mp ← Estimate_M_NoSensing (π, Tc)

4: Initialize T0 ← d 2400 log(T )
µmin

e; Decl← ∅; Td ← 0; [Kp]← [K] and S,T, s, t← Zeros(K)

5: for p = 1, . . . ,∞ do

6: Exploration Phase:
7: Texpl ← Kp2

pT0

8: if length(Decl)> 0 then # there was a declaration in the previous phase so players need
to reach an orthogonal setting among the new set of active arms

9: π ← MusicalChairs ([Kp],KpTc)
10: else S← S + s; T← T + t and Texpl ← Texpl − Td # statistics of the last reception block
11: end if
12: for Texpl steps do # start exploration
13: Pull π; S[π]← S[π] + rπ(t); T [π]← T [π] + 1 and π ← π + 1 (mod [Kp])
14: end for

15: Communication Phase: # Bs =
√

2 log(T )
s here

16: Initialize Td ← KpT0 and Decl as empty set
17: Rej← set of active arms k verifying #{i ∈ [Kp]

∣∣ S[i]
T [i] −BT [i] ≥ S[k]

T [k] +BT [k]} ≥Mp

18: Acc← set of active arms k verifying #{i ∈ [Kp]
∣∣ S[k]
T [k] −BT [k] ≥ S[i]

T [i] +BT [i]} ≥ Kp−Mp

19: while Rej \ Decl 6= ∅ do # declaration blocks
20: Let k ∈ Rej \ Decl
21: d← Declare(k, Td, π,S,T, [Kp]) and add d to Decl
22: end while
23: if Acc \ Decl 6= ∅ then # fixation block
24: (Fixed, d)← Occupy(Acc \ Decl, Td, π,S,T, [Kp]) and add d to Decl
25: if Fixed 6= −1 then go to line 35 (break) end if
26: end if
27: d← {0}
28: while d 6= ∅ do # reception blocks
29: (d, s, t)← Receive(Td, π,S,T, [Kp]) # s and t are the statistics
30: d← d \ Decl and add d to Decl # so d contains only the new signals.
31: end while

32: Update Statistics:
33: ([Kp],Mp)← Update(Decl, s, [Kp],Mp)

34: end for

35: Exploitation Phase: Pull Fixed until T

C.3 Regret analysis

This section is devoted to the proof of Theorem 3. It first proves several required lemmas.

A decomposition of the regret similar to SIC-MMAB is used for SIC-MMAB2:

RT = Rinit +Rexplo +Rcomm.

But in this section, a communication step is defined as a time step in a communication phase where
there is at least a player using Declare or Occupy protocol, and Tinit := 3KTc. Notice that the last
reception block of a communication phase then counts as communication steps only if there were
declarations in previous blocks of the communication phase. Otherwise, its statistics are indeed
used for the arms estimation, as described in Algorithm 3, lines 10-11, and it is then counted as
exploration.
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C.3.1 Initialization regret

The initialization phase lasts 3KTc steps, soRinit ≤ 3MKTc. Lemma 11 claims that the initialization
is successful, meaning all players perfectly know M after this phase, with a probability depending on
Tc and justifies the choice Tc = d log(T )

µmin
e.

Lemma 11. With probability 1 − O (MK exp (−µminTc)), at the end of the initialization phase,
every player has a correct estimation of M and players are in an orthogonal setting.

Proof. Similarly to the proof of Lemma 2, the probability to encounter a positive reward for a player
during the Musical Chairs procedure at time step t is lower bounded by µmin

K . Hence using the same
arguments, with probability 1 − O (M exp (−µminTc)), all the players are pulling different arms
after a time KTc.

We now consider the Estimate_M_NoSensing protocol. Every time a player sends a bit to another
player, it will be detected. Let us now bound the probability that a player detects a “collision”
with another player while there is not. This is the case when she encounters Tc successive zero
rewards on an arm while she is the only player pulling it. This happens with probability smaller than
exp (−µminTc) for a single player in a single block. The union bound over the M players and the
2K blocks yields the results.

C.3.2 Communication regret

Lemma 12 provides the properties and regret of the algorithm during the communication phases.

Lemma 12. Let the length of a block be such that Td = d 2400Kp log(T )
µmin

e, then conditionally on the
successful outcome of all the previous Musical Chairs procedures:

1. with probability 1−O
(
M
T

)
, a player j declaring an arm i as sub-optimal will be successfully

detected by all active players;

2. with probability 1−O
(
MK
T

)
, no player will detect a false signal during the declaration

block (i.e., no arm is detected as declared if there was no declaration or if it is not occupied
by an active player);

3. with probability 1−O
(
M
T

)
, if player j starts occupying arm k, it is detected as a declaration

by all active players (following the rule of Equation (14)).

Thus, with probability 1−O
(
MK exp(−µminTc) + (K + log(T )) KMT

)
, all communication phases

are successful, i.e., all signals are correctly detected and no false signal is detected. Then

Rcomm = O
(
MK2

µmin
log(T )

)
.

Proof. We first prove the three points conditionally on the success of the previous Musical Chairs
procedures.

1) We prove this point in the more general case where the declaration of an arm i follows the

sampling:
{

Pull i with probability λd,
Sample according to the sequential hopping on [Kp] otherwise.

First, denote by T j
′

i′ the number of pulls by player j′ on arm i′ during a block of length Td.
Using the Chernoff bound,

P
[
T j
′

i′ ≤
(1− λd)Td

2Kp

]
≤ exp

(
− (1− λd)Td

8Kp

)
,

≤ 1

T
as long as

(1− λd)Td
8Kp

≥ log(T ).

(15)

This last condition holds with Td chosen as in Equation (16) and this inequality holds, no
matter the type of block player j′ is proceeding.
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With probability 1−O
(
KM
T

)
, all the T ji are thus greater than (1−λd)Td

2Kp
. This is also the

case with probability 1 for the exploration pulls as the first exploration phase is of length Td.
Let ri and r̂i respectively denote the expected and the empirical observed rewards of the arm
i during this declaration phase for player j. Assume that the arm i is declared as sub-optimal
by another player during the considered phase. It then holds that ri ≤ µi(1− λd).

With the specific choice of Td ≥
300Kp log(T )

(1− λd)λ2
dµmin

, (16)

Chernoff bound provides the following inequalities, conditionally on T ji ≥
(1−λd)Td

2Kp
,

P
[
|r̂i − ri| ≥

λdµi
5

]
≤ 2

T

and P
[
|µ̂i − µi| ≥

λdµi
5

]
≤ 2

T
for the exploration phases.

We then consider the high probability event |r̂i − ri| ≤ λd
5 µi and |µ̂i − µi| ≤ λd

5 µi.

As λd ≤ 1, the second inequality yields 5
6 µ̂i ≤ µi ≤

5
4 µ̂i.

If i is declared by a player, µi − ri ≥ λdµi and

|µ̂i − r̂i| ≥
3λd
5
µi ≥

λd
2
µ̂i. (17)

This means that with the detection rule described in Appendix C.2.3 for λd = 1
2 , for a

single arm i and player j, with probability 1−O
(

1
T

)
, the player will correctly detect the

declaration of arm i as sub-optimal by (at least) another player.

2) As in the first point, with probability 1 − O
(

1
T

)
, it holds |r̂i − ri| ≤ λd

5 µi. The case of
neither declaration nor exploitation by any other player actually corresponds to ri = µi.
Thus we can rewrite Equation (17) of the first case into |µ̂i − r̂i| ≤ 2λd

5 µi ≤ λd
2 µ̂i, which

holds with probability 1−O
(

1
T

)
. Considering all arms and players yields the second point.

3) The same argument as in Lemma 11 gives that with probability 1−O
(

1
T

)
, player j will

actually starts occupying k after a time tfix ≤ Kp log(T )
µmin

≤ Td
2400 .

Chernoff bound then provides a bound on the total reward Xj′

k observed by j′ on k for a
time tfix, i.e., for T j

′

k ≤
log(T )
µmin

pulls on k.

P
[
Xj′

k ≥ 4µk
log(T )

µmin

]
≤ exp

(
−3µk log(T )

3µmin

)
≤ 1

T
. (18)

Thus, Equation (18) claims that with probability 1−O
(

1
T

)
, Xj′

k ≤
4µk log(T )

µmin
.

However, k will be occupied after that point and no other positive reward will be observed
by player j′. As a consequence, her empirical reward on k will be for this block r̂j

′

k ≤
2Xj

′
k Kp

(1−λd)Td
≤ 2µk

75 . Using the same argument as in points 1) and 2), this guarantees |µ̂j
′

k −

r̂j
′

k | ≥
µ̂j
′
k

4 and the result follows.

Conditionally on the success of the previous Musical Chairs procedures (i.e., players end these
procedures in orthogonal settings), these three points imply that, with probability 1−O

(
MK
T

)
, the

communication block will be successful: all declarations are correctly detected, all detected optimal
arms are exploited by a player and there is no false detection.

Let N be the total number of exploration phases. By construction of the algorithm, N ≤ dlog2(T )e.
Also there can not be two different blocks used to declare or occupy the same arm, conditionally on the
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success of the previous communication blocks and Musical Chairs. Hence, conditionally on this event,
there will be at most N +K communication blocks, each succeeding with probability 1−O

(
KM
T

)
and there will be at most K Musical Chairs procedures, each also succeeding with probability
1−O(M exp(−µminTc)). Using a chain rule argument, all the communication protocols and Musical
Chairs procedures are successful with probability 1−O

(
KM exp(−µminTc) + (K +N)KMT

)
and

the length of Comm is at most O
(
K2 log(T )

µmin

)
, since only the communication phases with at least a

Declaration or Fixation block are counted. This leads to the bound onRcomm given by Lemma 12.

C.3.3 Exploration regret

Conditionally on the success of the initialization phase, all the communication phases and all the
Musical Chairs procedures at the beginning of exploration phases, the exploration (except the Musical
Chairs) will be collision-free. Using similar arguments as in Lemma 3, we provide an upper bound
for the exploration regret of SIC-MMAB2.
Lemma 13. With probability 1−O

(
KM exp (−µminTc) + (K + log(T ))KMT

)
,

Rexplo ≤ O

(∑
k>M

min

{
M log(T )

µ(M) − µ(k)
,
√
MT log(T )

}
+
MK2

µmin
log(T )

)
.

Proof. First, as already claimed in the proof of the communication regret, the initialization, all the
communication blocks and Musical chairs procedures succeed and there are at mostK Musical Chairs
procedures during the exploration with probability 1−O

(
MK exp(−µminTc)+(K+log(T ))KMT

)
.

The remaining of the proof is conditioned on this event. A single Musical Chairs procedure lasts a
time Kp log(T )

µmin
, hence the total regret incurred by the Musical Chairs is smaller than MK2 log(T )

µmin
.

We now consider the regret of exploration without the Musical Chairs. We denote byN the number of
exploration phases that will be run and the same notation as in Appendix A.2.2 concerning ∆k. As the
exploration phases are collision-free (conditionally on the success of initialization, communication and

Musical Chairs), the Hoeffding inequality still holds: P
[
∃p ≤ n : |µ̂k(p)− µk| ≥

√
2 log(T )
Tk(p)

]
≤ 2n

T .

Since the players do not share their statistics, it can be shown with the same arguments as in
Appendix A.2.2 that a sub-optimal arm k will be found sub-optimal with probability at least 1 −
O
(
NM
T

)
after tk = O

(
log(T )

∆2
k

)
exploration pulls for a single player without being found optimal by

any player before. Since the exploration phases are collision-free, the cost for pulling the sub-optimal
arm k is O

(
min

{
M log(T )

∆k
,∆kT

})
.

The same reasoning as in Appendix A.2.2 shows that the exploration regret due to non pulls of

optimal arms is in O
( ∑
k>M

min
{

M log(T )
µ(M)−µ(k)

,
√
MT log(T )

})
conditionally on correct estimations

of the arms.

As N ≤ dlog2(T )e, all those arguments yield the bound on Rexplo, with probability 1 −
O
(
KM log(T )

T +KM exp(−µminTc) + (K + log(T ))KMT

)
.

Theorem 3 can now be deduced from Lemmas 11, 12, 13 and Equation (1). The total regret is
upper bounded by the sum of the regrets mentioned in Lemmas 11, 12, 13 and the regret when
a “bad” event occurs. According to these lemmas, the probability that a bad event may happen is
indeed in O

(
(K + log(T ))KMT

)
. The average regret due to bad event is thus upper bounded by this

probability multiplied by MT . This term is then dominated by the communication regret.

D On the inefficiency of SELFISH algorithm

A linear regret for the SELFISH algorithm in the No Sensing model has been recently conjectured [8].
This algorithm seems to have good results in practice, although rare runs with linear regret appear.
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This is due to the fact that with probability p > 0 at some point t, both independent from T , some
players might have the same number of pulls and the same observed average rewards for each arm. In
that case, the players would pull the exact same arms and thus collide until they reach a tie breaking
point where they could choose different arms thanks to a random tie breaking rule. However, it was
observed that such tie breaking points would not appear in the experiments, explaining the linear
regret for some runs. Here we claim that such tie breaking points might never happen in theory for
the SELFISH algorithm when the rewards follow Bernoulli distributions, if we add the constraint that
the numbers of positive rewards observed for the arms are all different at some stage. This event
remains possible with a probability independent from T .
Proposition 2. For s, s′ ∈ N with s 6= s′:

∀n ≥ 2, t, t′ ∈ N,
s

t
+

√
2 log(n)

t
6= s′

t′
+

√
2 log(n)

t′
.

Proof. First, if t = t′, these two quantities are obviously different as s 6= s′.

We now assume s
t +

√
2 log(n)

t = s′

t′ +
√

2 log(n)
t′ with t 6= t′.

This means that
√

2 log(n)
t −

√
2 log(n)
t′ is a rational, i.e., for some rational p, log(n)(t+ t′−2

√
tt′) =

2p.

It then holds log(n)
√
tt′ = log(n)

t+ t′

2
− p,

tt′ log2(n) = log2(n)(
t+ t′

2
)2 − p(t+ t′) log(n) + p2,

log2(n)(
t− t′

2
)2 − p(t+ t′) log(n) + p2 = 0.

Since ( t−t
′

2 )2 6= 0 and all the coefficients are in Q here, this would mean that log(n) is an algebraic
number. However, Lindemann–Weierstrass theorem implies that log(n) is transcendental for any
integer n ≥ 2. We thus have a contradiction.

The proof is only theoretical as computer are not precise enough to distinguish rationals from
irrationals. The advanced arguments are not applicable in practice. Still, this seems to confirm the
conjecture proposed by [8]: a tie breaking point is never reached, or at least not before a very long
period of time.
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