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1 Appendix
1.1 Implementation and Training details

We use PPO as the underlying reinforcement learning method to optimize the joint DGN objective
shown in Equation (1) in Section 3.3 (main paper). Each limb policy is represented by a 4-layered
fully-connected neural network with ReLU non-linearities and trained with a learning rate of 3e− 4,
a discount factor of 0.995, entropy coefficient of 0.01, advantage parameter of 0.95 and a batch size
of 2048. The messages are 32 length float vectors. The optimizer used to optimize PPO is RMS-Prop.
Parameters are shared across network modules, and they all predict action at the same time. Each
episode is 5000 steps long at training. Across all the tasks, the number of limbs at training is kept
fixed to 6. Limbs start each episode disconnected and located just above the ground plane at random
locations, as shown in Figure 3 in the main paper. In the absence of an edge, input messages are set to
0, and the output ones are ignored. Action space is continuous raw torque values. We take the model
from each time step and evaluate it on 50 episodes to plot mean and standard-deviation (confidence
intervals) in training curves. At the test time, we report the mean reward across 50 episode runs of
1200 environment steps.

1.2 Monolithic Policy w/ Static Morphology Basline vs. Number of Limbs

To verify whether the training of Monolithic Policy w/ Static Graph is working, we ran it on standing
up and locomotion tasks across a varying numbers of limbs. We show in Figure 1 that the baseline
performs well with fewer limbs, which suggests that the reason for failure in the 6-limbs case is
indeed the morphology graph being fixed and not the implementation of this baseline.
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Figure 1: The performance of Monolithic Policy w/ Static Morphology baseline as the number of limbs varies
in the two tasks: standing up (left) and locomotion (right). This shows that the monolithic baseline works well
with less (1-3 limbs), but fails with 6 limbs during training.

In contrast, our method can easily train for 6-limbs (where fixed graph fails), and the same model
generalizes to other limbs as well. To show this ablation, we show how does the max-performance of
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the agent varies as the number of limbs changes for an agent that was trained on 6-limbs. Figure 2
shows the change in max-performance after k steps as a function of the number of limbs in case of
Standing Up task for our DGN (w/ msgs) model. A quantitative evaluation of this generalization is
discussed in Table 1 in the main paper.

1.3 Performance of Modular DGN Policy on Static Morphology

We trained a modular DGN policy for static morphology to see whether it is the modularity of policy
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Figure 2: Performance of DGN (w/ msgs)
agent trained with 6-limbs for Standing Up
task with respect to change in # of limbs.

(software), or modularity of the physical morphology of
agent (hardware), that allows the agent to work well. We
augment this baseline to the plots from Figure 4 of the
main paper. As shown in Figure 3, the performance is
significantly better than ‘monolithic policy, static graph’
but worse than our final self-assembling DGN. This sug-
gests that the modularity of software, as well as hardware,
are necessary for successful training and generalization.
Nevertheless, regardless of generalization properties, one
of the main contribution of our work is showing how could
dynamic agents be trained to self-assemble.

1.4 Pseudo Code of the DGN Algorithm

Notation is summarized in Algorithm 1, and the full
pseudo-code is summarized in the following algorithm boxes: Algorithm 2 , and Algorithm 3.
Full source code available at https://pathak22.github.io/modular-assemblies/.
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Figure 3: The performance of different methods for joint training of control and morphology for three tasks
with an additional baseline for training static morphology agent with a modular DGN policy: learning to stand
up (left) and locomotion in bumpy terrain (right). The training plots are extension Figure 4 of the main paper.

Algorithm 1: Notation Summary (defined in Section 3.3)
1 foreach node i do
2 ait,m

i
t = πiθ(s

i
t,m

Ci
t )

3 end
4 where
5 sit: observation state of agent limb i
6 ait: action output of agent limb i: 3 torques, attach, detach
7 mCi

t : aggregated message from children nodes input to agent i (bottom-up-1)
8 mi

t: output message that agent i passes to its parent (bottom-up-2)
9 θ: θ1, θ2

10 messages are 32 length floating point vectors.
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Algorithm 2: Pseudo-code: DGN w/ Message Passing
1 Initialize parameters θ1, θ2 randomly.
2 Initialize all message vectors mCi

t ,m
i
t to be zero

3 Represent graph connectivity G as a list of edges
4 Note: In the beginning, all edges are zeros, i.e., non-existent
5 foreach timestep t do
6 Each limb agent i observes its own state vector sit
7 foreach agent i do
8 # Compute incoming child messages
9 mCi

t = 0
10 foreach child node c of agent i do
11 mCi

t + = mc
t

12 end
13 # Compute action and message to parent p of agent i in G
14 ait,m

i
t := πiθ(s

i
t,m

Ci
t )

15 # Execute morphology change as per ait
16 if ait[3] == attach then
17 find closest agent j within distance d from agent i, otherwise j=NULL
18 add edge (i, j) in G
19 also make physical joint between (i, j)
20 end
21 if ait[4] == detach then
22 delete edge (i, parent of i) in G
23 also delete physical joint between (i, j)
24 end
25 # Execute torques from ait
26 Apply torques ait[0], a

i
t[1], a

i
t[2]

27 end
28 # Update graph and agent morphology
29 Find all connected components in G
30 foreach connected component c do
31 foreach agent i ∈ c do
32 reward rit = reward of c (e.g. max height)
33 end
34 end
35 end
36 Update θ to maximize discounted reward using PPO as follows:
37 let ~at = [a1t , a

2
t ..a

n
t ]

38 ~st = [s1t , s
2
t ..s

n
t ]

39 Ât = advantage of discounted rewards, rt =
∑
agenti r

i
t

40 PPO: maxθ E[Ât πθ(~at|~st)
πθold (~at|~st)

− βKL(πθold(.|~st)πθ(.|~st))]
41 Repeat until training converges

Algorithm 3: Pseudo-code: No-message DGN
1 Same as Algorithm-2 but hard-code incoming child and parent messages to be always 0, i.e.,

mCi
t = 0 and mpi

t = 0 in each iteration.
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