
Supplemental Material for Fine-grained Optimization
of Deep Neural Networks

Abstract

In this document, supplemental material of the paper titled “Fine-grained Opti-
mization of Deep Neural Networks” is provided. We first introduce proofs of the
theorems in the following section. Next, we first provide the manifolds and the
maps used in implementation of the algorithm. Then, we provide implementation
details of algorithms used in experimental analyses whose results are given in the
main text. Additional results are given in the last section.

1 Bounding Generalization Errors using Fine-grained Weights

Proposition 1 (Bounding norms of weight matrices and generalization errors of DNNs). Suppose
that DNNs given in Table 3 are trained using weights renormalized by the renormalization method
proposed in the main text according to the Frobenius, spectral and column/row wise norms with
reparameterization parameters Rt

i,l,∀i, l, t with λti,l ≥ 1. Then, norms of renormalized weight ma-
trices are upper bounded by a constant number, and generalization errors of the corresponding DNNs
are asymptotically bounded as given in the rightmost column of the Table 3, denoted by DNNs (our
proposed reparameterization).

Proof. Suppose that matrices of weights ωig,l ∈ RAl×Bl belonging to the gth group of size
∣g∣, g = 1,2, . . . ,Gl,∀l have the same size Al × Bl for simplicity, and σ(ωig,l) denotes the top sin-
gular value of ωig,l. Let ∥ωig,l∥F , ∥ωig,l∥2, and ∥ωig,l∥2→1, denote respectively the Frobenius, spectral
and `2→1 norms of the weight ωig,l.

We note that, matrices of weights ωig,l belonging to the gth group are concatenated by
ωg,l = (ω1

g,l, ω
2
g,l, . . . , ω

g
g,l),∀g = 1,2, . . . ,Gl, to perform group-wise operations in DNNs. Thereby,

we can employ bounds for norms of each concatenated matrix in generalization error bounds given
in the leftmost column of Table 3, denoted by DNNs (bounds on norms), and obtain the bounds
given in the rightmost column of the Table 3, denoted by DNNs(our proposed reparameterization).

We compute norms of matrices of normalized weights ωig,l belonging to each different manifold
in Table 1. These norms are computed using simple matrix calculus considering definitions of
matrices residing on each manifold according to the definition given in Table 2. From these cal-
culations given in Table 1, we observe that, the maximum of norm values that a weight ωig,l
belonging to the sphere can achieve is Msp(ωig,l) = σ(ωig,l), that of a weight belonging to the
Stiefel manifold is Mst(ωig,l) = (Bl)1/2, and that of a weight belonging to the oblique manifold is
Mob(ωig,l) = max{(Bl)1/2, σ(ωig,l)}.

In our proposed renormalization method, we first normalize each weight matrix such that the norm
of the matrix ωig,l can have one of these values Msp(ωig,l), Mst(ωig,l) and Mob(ωig,l). Therefore,
we need to reparameterize weight matrices such that norm of each reparameterized weight is less
than 1.0. For this purpose, we need show that the rescaling of these norm values by Rt

i,l is upper
bounded by 1.0.
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Weights are rescaled dynamically at each tth epoch of an optimization method proposed to train
DNNs using Rt

i,l =
γi,l
λt
i,l

, where 0 < γi,l < 1.0 is a geometric scaling parameter and λti,l is the

standard deviation of features input to the ith weight in the gth group ωig,l,∀i, g. By assumption,
λti,l ≤ 1.0,∀i, t, l. By definition,Blγ2

i,l ≤ 1.0,∀i, l. In order to show that σ(ωig,l) ≤ (γi,l)−1,∀i, l, we
apply the Bai-Yin law [1, 2]. Thereby, we conclude that norms of concatenated weights belonging
to groups given in Table 3 are upper bounded by 1, if the corresponding component weights given
in Table 1 are rescaled by Rt

i,l,∀i, l, t during training of DNNs.

Since norm of each weight matrix ωig,l is bounded by 1.0, their multiplication for all g = 1,2, . . . ,Gl
and ∀l is also bounded by 1.0.

Table 1: Comparison of norms of weights belonging to different weight manifolds.

Norms (i) Sphere (ii) Stiefel (iii) Oblique

∥ωig,l∥2 σ(ωig,l) 1.0 σ(ωig,l)

∥ωig,l∥F 1.0 (Bl)1/2 (Bl)1/2

∥ωig,l∥2→1 1.0 (Bl)1/4 (Bl)1/4

Table 2: Embedded weight manifoldsMι used for construction of collection of POMs MGl , ∀l, in
the experimental analyses. The Frobenius norm of a convolution weight ω is denoted by ∥ω∥F . The
bth column vector of a weight matrix ω ∈ RAl×Bl is denoted by ωb. An Bl ×Bl identity matrix is
denoted by IBl .

Manifolds Definitions

The Sphere S(Al,Bl) = {ω ∈ RAl×Bl ∶ ∥ω∥F = 1}

The Oblique OB(Al,Bl) = {ω ∈ RAl×Bl ∶ ∥ωb∥F = 1,∀b = 1,2, . . . ,Bl}

The Stiefel St(Al,Bl) = {ω ∈ RAl×Bl ∶ (ωTω) = IBl}

2 Proofs of Theorems given in the Main Text

Definition 2.1 (Sectional curvature of component manifolds). Let X(Mι) denote the set of smooth
vector fields on Mι. The sectional curvature of Mι associated with a two dimensional subspace
T ⊂ TωιMι is defined by

cι =
⟨Cι(Xωι , Yωι)Yωι ,Xωι⟩

⟨Xωι ,Xωι⟩ ⟨Yωι , Yωι⟩ − ⟨Xωι , Yωι⟩
2

(1)

where Cι(Xωι , Yωι)Yωι is the Riemannian curvature tensor, ⟨⋅, ⋅⟩ is an inner product, Xωι ∈ X(Mι)
and Yωι ∈ X(Mι) form a basis of T. ∎
Definition 2.2 (Riemannian connection on component embedded weight manifolds). Let X(Mι)
denote the set of smooth vector fields onMι and F(Mι) denote the set of smooth scalar fields on
Mι.The Riemannian connection ∇̄ onMι is a mapping [6]

∇̄ ∶ X(Mι) ×X(Mι) → X(Mι) ∶ (Xωι , Yωι) ↦ ∇̄XωιYωι (2)

which satisfies the following properties:
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Table 3: Comparison of generalization bounds. O denotes big-O and Õ is soft-O. δl,F , δl,2, and
δl,2→1 denotes upper bounds of the Frobenius norm ∥ωl∥F ≤ δl,F , spectral norm ∥ωl∥2 ≤ δl,2 and
the sum of the Euclidean norms for all rows ∥ωl∥2→1 ≤ δl,2→1 (`2→1) of weights ωl at the lth layer
of an L layer DNN using N samples. Suppose that all layers have the same width $, weights have
the same length K and the same stride s. Then, generalization bounds are obtained for DNNs using
these fixed parameters by ∥ωl∥2 = Ks , ∥ωl∥F = √

$ and ∥ωl∥2→1 = $. We compute a concatenated
weight matrix ωg,l = (ω1

g,l, ω
2
g,l, . . . , ω

∣g∣
g,l) for the gth weight group of size ∣g∣, g = 1,2, . . . ,Gl,∀l

using a weight grouping strategy. Then, we have upper bounds of norms by ∥ωg,l∥F ≤ δg,l,F ≤ 1,
∥ωg,l∥2 ≤ δg,l,2 ≤ 1 and ∥ωg,l∥2→1 ≤ δg,l,2→1 ≤ 1, g = 1,2, . . . ,Gl, which are defined in Table 1.

DNNs (dynamic group scaling)

Neyshabur et al. [3] O(
2L

L

∏

l=1

Gl
∏
g=1

δg,l,F

√

N
)

Bartlett et al. [4] Õ
⎛
⎝

L

∏

l=1

Gl
∏
g=1

δg,l,2

√

N
(
L

∑
l=1

Gl
∏
g=1

( δg,l,2→1

δg,l,2
) 2

3 )
3
2 ⎞
⎠

Neyshabur et al. [5] Õ
⎛
⎝

L

∏

l=1

Gl
∏
g=1

δg,l,2

√

N

¿
ÁÁÀL2$

L

∑
l=1

Gl
∏
g=1

δ2
g,l,F

δ2
g,l,2

⎞
⎠

1. ∇̄pXωι+qYωιZωι = p∇̄Zωι + q∇YωιZωι ,

2. ∇̄Xωι(αYωι + βZωι) = α∇̄XωιYωι + β∇̄XωιZωι ,

3. ∇̄Xωι (pYωι) = (Xωιp)Yωι + p∇̄XωιYωι ,

4. ∇̄XωιYωι − ∇̄YωιXωι = [Xωι , Yωι] and

5. Zωι ⟨Xωι , Yωι⟩ = ⟨∇̄ZωιXωι , Yωι⟩ + ⟨Xωι , ∇̄ZYωι⟩

where Xωι , Yωι , Zωι ∈ X(Mι), p, q ∈ F(Mι), α,β ∈ R, ⟨⋅, ⋅⟩ is an inner product, [Xωι , Yωι] is the
Lie bracket of Xωι and Yωι , and defined by [Xωι , Yωι]p =Xωι(Yωιp) − Yωι(Xωιp), ∀p ∈ F(Mι).
Lemma 1 (Metric and curvature properties of POMs). Suppose that uι ∈ TωιMι and vι ∈ TωιMι

are tangent vectors belonging to the tangent space TωιMι computed at ωι ∈ Mι, ∀ι ∈ IGl . Then,
tangent vectors uGl ∈ TωGlMGl and vGl ∈ TωGlMGl are computed at ωGl ∈ MGl by concatenation
as uGl = (u1, u2,⋯, u∣IGl ∣) and vGl = (v1, v2,⋯, v∣IGl ∣). If each weight manifoldMι is endowed
with a Riemannian metric dι, then a Gl-POM is endowed with the metric dGl computed by

dGl(uGl , vGl) = ∑
ι∈IGl

dι(uι, vι). (3)

In addition, suppose that C̄ι is the Riemannian curvature tensor field (endomorphism) [7] of Mι,
xι, yι ∈ TωιMι, ∀ι ∈ IGl defined by

C̄ι(uι, vι, xι, yι) = ⟨Cι(U,V )X,Y ⟩ωι , (4)
where U,V,X,Y are vector fields such that Uωι = uι, Vωι = vι, Xωι = xι, and Yωι = yι. Then, the
Riemannian curvature tensor field C̄Gl of MGl is computed by

C̄Gl(uGl , vGl , xGl , yGl) = ∑
ι∈IGl

C̄ι(uι, vι, xι, yι), (5)

where xGl = (x1, x2,⋯, x∣IGl ∣) and yGl = (y1, y2,⋯, y∣IGl ∣). Moreover, MGl has never strictly
positive sectional curvature cGl in the metric (3). In addition, if MGl is compact, then MGl does not
admit a metric with negative sectional curvature cGl . ∎

Proof. Since each weight manifoldMι is a Riemannian manifold, dι is a Riemannian metric such
that dι(uι, vι) = ⟨uι, vι⟩. Thereby,

dGl(uGl , vGl) = ⟨uGl , vGl⟩ = ∑
ι∈IGl

⟨uι, vι⟩ ∑
ι∈IGl

dι(uι, vι) (6)
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and we obtain (3). In order to derive (5), we first compute

⟨ ∑
ι∈IGl

uι, ∑
ι∈IGl

vι⟩ = ∑
ι∈IGl

⟨uι, vι⟩ . (7)

Then, we use the equations for the Lie bracket by
⎡⎢⎢⎢⎢⎣
∑
ι∈IGl

uι, ∑
ι∈IGl

vι

⎤⎥⎥⎥⎥⎦
= ∑
ι∈IGl

[uι, vι] . (8)

Next, we employ the Koszul’s formula [7] by
2 ⟨∇̄uιvι, xι⟩ = uι ⟨vι, xι⟩ + vι ⟨xι, uι⟩ − xι ⟨uι, vι⟩ + ⟨xι, [uι, vι]⟩ − ⟨vι, [uι, xι]⟩ − ⟨uι, [vι, xι]⟩

such that
∇̄ū(v̄) = ∑

ι∈IGl

∇̄uι(vι), (9)

where ū = ∑
ι∈IGl

uι and v̄ = ∑
ι∈IGl

vι. Using (4) and definition of the curvature with (6), (7), (8), and

(9), we obtain (5).

In order to show that MGl has never strictly positive sectional curvature cGl in the metric (3), it is
sufficient to show that some sectional curvatures always vanish. Suppose that U is a vector field
on MGl along a component weight manifoldMι such that no local coordinate o ofMῑ and ∂

∂o
are

present in local coordinates of U , ∀ι ≠ ῑ, ῑ ∈ IGl . In addition, suppose that Ū is a vector field along
Mῑ. Then, ∇̄U Ū = 0, ∀ι, ῑ ∈ IGl . By employing (9), we have C̄ι(uι, vι, xι, yι) = 0. Then, we use
(5) to obtain C̄Gl(uGl , vGl , xGl , yGl) = 0. Therefore, following the definition of the sectional cur-
vature, for arbitrary vector fields on component manifolds, MGl has never strictly positive sectional
curvature cGl in the metric (3). Since MGl is a Riemannian manifold, if MGl is compact, then MGl

does not admit a metric with negative sectional curvature cGl by the Preissmann’s theorem [8] 1.

Theorem 1 (Computation of gradients on tangent spaces). The `2 norm ∥gradL(ωtGm
l
)∥2 of the

gradient gradL(ωtGm
l
) residing on Tωt

Gm
l

MGm
l

at the tth epoch and the lth layer can be computed

by ∥gradL(ωtGm
l
)∥2 = ( ∑

ι∈IGm
l

gradL(ωtl,ι)2)
1
2

, (10)

where gradL(ωtl,ι) is the gradient computed for the weight ωtl,ι on the tangent space Tωt
ι,l
Mι,

∀ι ∈ IGm
l

. ∎

Proof. We use the inner product for the Riemannian metric dGl(gradL(ωtGm
l
),gradL(ωtGm

l
)) and

dι(gradL(ωtl,ι),gradL(ωtl,ι)) of manifolds MGm
l

and Mι,∀ι, respectively. By definition of the
product manifold, we have

gradL(ωtGm
l
) = (gradL(ωtl,1),gradL(ωtl,2),gradL(ωtl,∣IGl ∣)). (11)

Thereby, we can apply bilinearity of inner product in Lemma 1 and obtain

∥gradL(ωtGm
l
)∥2

2 = ( ∑
ι∈IGm

l

gradL(ωtl,ι)2), (12)

where ∥ ⋅ ∥2
2 is the squared `2 norm. The result follows by applying the square root to (12).

Theorem 2 (Convergence of the FG-SGD). Suppose that there exists a local minimum
ω̂Gl ∈MGl ,∀Gl ⊆ Gl,∀l, and ∃ε > 0 such that inf

ρt
Gl

>ε
1
2

⟨φωt
Gl

(ω̂Gl)−1,∇L(ωtGl)⟩ < 0, where φ is

an exponential map or a twice continuously differentiable retraction, and ⟨⋅, ⋅⟩ is the inner product.
Then, the loss function and the gradient converges almost surely (a.s.) by L(ωtGl)

a.s.ÐÐ→
t→∞

L(ω̂Gl),

and ∇L(ωtGl)
a.s.ÐÐ→
t→∞

0, for each MGl ,∀l. ∎
1see Theorem 24 in [8] .
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Proof. In this theorem, we generalize the proof idea of Theorem 4.1 and 4.2 given in [9], and
Theorem 3 given in [10] for collections of products of embedded weight manifolds (POMs) for
training of CNNs. The proof idea is to show that ρtGl ≜ ρ(ω

t
l,ι, ω̂l,ι) converges almost surely to 0

as t → ∞. For this purpose, we need to first model the change of gradient on the geodesic ρtGl by
defining a function Ψt ≜ ψ((ρtGl)

2) according to the following constraints [10];

• Ψt = 0, for 0 ≤ ρtGl ≤
√
ε.

• 0 < Ψ′′

t ≤ 2, for
√
ε ≤ ρtGl ≤

√
ε + 1.

• Ψ′

t = 1, for ρtGl ≥
√
ε + 1.

Then, we compute gradients and geodesics on collections of POMs using (3) given in Lemma 1 by

∥gradL(ωtGl)∥2 = ( ∑
ωt
l,ι
∈Mι,ι∈IGl

gradL(ωtl,ι)2)
1
2

(13)

and
ρ(ωtGl) = ( ∑

ωt
l,ι
∈Mι,ι∈IGl

ρ(ωtl,ι, ω̂l,ι)), (14)

where ωtGl = (ωt1, ωt2,⋯, ωt∣IGl ∣). We employ a Taylor expansion on Ψt [10, 9], and we obtain

Ψt+1 −Ψt ≤ ((ρt+1
Gl

)2 − (ρtGl)
2)Ψ′

t + ((ρt+1
Gl

)2 − (ρtGl)
2)2. (15)

In order to compute the difference between ρt+1
Gl

and ρtGl , we employ a Taylor expansion on the
geodesics [10, 9] by

ρt+1
Gl

− ρtGl ≤ (g(t,Θ)
g(ωtGl)

)
2

∥gradL(ωtGl)∥
2κ − 2 ⟨h(gradL(ωtGl), g(t,Θ)), φωt

Gl

(ω̂Gl)−1⟩ ,

where ω̂Gl = (ω̂1, ω̂2,⋯, ω̂∣IGl ∣), and κ ≤ Υ1 where Υ1 = 1 + cGl(ρtGl +R
t
Gl

) is an upper bound on
the operator norm of half of the Riemannian Hessian of ρ(⋅, ω̂Gl)2 along the geodesic joining ωtGl
and ωt+1

Gl
. In order to explore asymptotic convergence, we define Ωt = {si}t−1

i=1 to be an increasing
sequence of σ algebras generated by samples that are processed before the tth epoch. Since st is
independent of Ωt and ωtGl is Ωt measurable, we have

E(h(gradL(ωtGl), g(t,Θ))2κ∣Ωt]) ≤ (g(t,Θ)
g(ωtGl)

)
2

E((RtGl)
2Υ1), (16)

and

E((ρt+1
Gl

)2 − (ρtGl)
2∣Ωt) ≤ 2

g(t,Θ)
g(ωtGl)

⟨φωt
Gl

(ω̂Gl)−1,∇L(ωtGl)⟩ + g(t,Θ)2. (17)

If g(ωtGl) = max{1,Γt1}
1
2 , Γt1 = (RtGl)

2Γt2, Γt2 = max{(2ρtGl +R
t
Gl

)2, (1 + cGl(ρtGl +R
t
Gl

))},
then we have

E(Ψt+1 −Ψt∣Ωt) ≤ E((ρt+1
Gl

)2 − (ρtGl)
2∣Ωt)Ψ′

t + g(t,Θ)2 (18)

and

E(Ψt+1 −Ψt∣Ωt) ≤ 2
g(t,Θ)
g(ωtGl)

⟨φωt
Gl

(ω̂Gl)−1,∇L(ωtGl)⟩Ψ′

t + g(t,Θ)2. (19)

Thus, we have
E(Ψt+1 −Ψt∣Ωt) ≤ 2g(t,Θ)2, (20)

and Ψt +∑∞

t=0 g(t,Θ)2 is a positive supermartingale, and converges almost surely. Since
∞

∑
t=0

E([E(Ψt+1 −Ψt∣Ωt)+]) ≤
∞

∑
t=0

g(t,Θ)2 < ∞, (21)
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we observe that Ψt is a quasi-martingale [10, 9], and thereby we have almost surely

−
∞

∑
t=0

g(t,Θ)
g(ωtGl)

⟨φωt
Gl

(ω̂Gl)−1,∇L(ωtGl)⟩Ψ′

t < ∞. (22)

Using properties of quasi-martingale [11], Ψt converges almost surely. In order to show almost
sure convergence of ∇L(ωtGl) to 0, we use Theorem 4.1 and 4.2 of [9]. For this purpose, we
need to show that gradients of loss functions are bounded in compact sets of weights. Since

inf
ρt
Gl

>ε
1
2

⟨φωt
Gl

(ω̂Gl)−1,∇L(ωtGl)⟩ < 0, a weight ωtGl is moved towards ω̂Gl by the gradient when

ρtGl > ε
1
2 where the set S = {ωtGl ∶ ρ

t
Gl

≤ ε 1
2 } is a compact set. Since all continuous functions

of ωtGl ∈ S are bounded, and adaptive step size g(ωtGl) satisfies g(t,Θ)
g(ωt

Gl
)
≤ g(t,Θ) and g(ωtGl)

2

dominates RtGl , we obtain that E(RtGl)
2 ≤ K for some K > 0 on a compact set K. Thereby, we can

show that conditions of Theorem 4.1 and 4.2 of [9] are satisfied. Therefore, we obtain almost sure
convergence of ∇L(ωtGl) to 0 by applying Theorem 4.1 and 4.2 in the rest of the proof.

Corollary 1. Suppose a DNN has loss functions whose local minima are also global minima. If the
DNN is trained using the proposed FG-SGD and weight renormalization methods, then the loss of
the DNN converges to global minima.

Proof. By Theorem 2, we assure that a loss function of a DNN which employs the proposed FG-
SGD and weight renormalization methods for training converges to local minima. If the local min-
ima is the global minima for the DNN, then the loss function converges to the global minima.

Corollary 2. Suppose that Mι are identified by nι ≥ 2 dimensional unit sphere Snι , and ρtGl ≤ ĉ−1,
where ĉ is an upper bound on the sectional curvatures of MGl ,∀l at ωtGl ∈ MGl ,∀t. If step size is
computed using

h(gradL(ωtGl), g(t,Θ)) = −g(t,Θ)
g(ωtGl)

gradL(ωtGl), (23)

with g(ωtGl) = (max{1, (RtGl)
2(2 +RtGl)

2}) 1
2 , then L(ωtGl)

a.s.ÐÐ→
t→∞

L(ω̂Gl), and

∇L(ωtGl)
a.s.ÐÐ→
t→∞

0, for each MGl ,∀l. ∎

Proof. If MGl is a product of nι ≥ 2 dimensional unit spheres Snι , then cGl = 0 and ĉ = 1 by
Lemma 1. Thereby, Theorem 2 is applied to assure convergence by Γ1

t = (RtGl)
2(2 +RtGl)

2.

3 Experimental Details

We use three benchmark image classification datasets, namely Cifar-10, Cifar-100 and Imagenet
[12], for analysis of convergence properties and performance of CNNs trained using FG-SGD. The
Cifar-10 dataset consists of 60000 32 × 32 RGB images (50000 training images and 10000 test
images) in 10 classes, with 6000 images per class. The Cifar-100 dataset consists of 100 classes
containing 600 images each (500 training images and 100 testing images per class). The Imagenet
(ILSVRC 2012) dataset consists of 1000 classes of 224 × 224 RGB images (1.2 million training
images, 100000 test images and 50000 images used for validation).

3.1 Computational Complexity of Algorithm 1

Compared to SGD algorithms that use weights belonging to linear weight spaces [13, 14], the com-
putational complexity of Algorithm 1 is dominated by computation of the maps Π and φ at line
6 and 9, depending on the structure of the weight manifold used at the lth layer. Concisely, the
computational complexity of Π is determined by computation of different norms that identify the
manifolds. For instance, for the sphere, we use Πωt

l
µt ≜ (1 − ∥ωtl ∥2

F )µt. Thereby, for an A × A
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weight, the complexity is bounded by O(A3), where O(⋅) denotes an asymptotic upper bound [15].
Similarly, the computational complexity of φ depends on the manifold structure. For example, the
exponential maps on the sphere and the oblique manifold can be computed using functions of sin
and cos functions, while that on the Stiefel manifold is a function of matrix exponential. For com-
putation of matrix exponential, various numerical approximations with O(εA3) complexity were
proposed for different approximation order ε [11, 16, 17, 18]. However, unit norm matrix normal-
ization is used for computation of retractions on the sphere and the oblique manifold. Moreover,
QR decomposition of matrices is computed with O(A3) [19] for retractions on the Stiefel manifold.
In addition, computation time of maps can be reduced using parallel computation methods. For
instance, a rotation method was suggested to compute QR using O(A2) processors in O(A) unit
time in [20]. Therefore, computation of retractions is computationally less complex compared to
that of the exponential maps. Since the complexity analysis of these maps is beyond the scope of
this work, and they provide the same convergence properties for our proposed algorithm, we used
the retractions in the experiments. Implementation details are given in the next section.

3.1.1 A Discussion on Implementation of Algorithm 1 in Parallel and Distributed
Computing Systems

In the experiments, algorithms are implemented using GPU and CPU servers consisting of GTX
2070, GTX 1080, GTX-Titan-X, GTX-Titan-Black, Intel i7-5930K, Intel Xeon E5-1650 v3 and E5-
2697 v2. Since we used hybrid GPU and CPU servers in the experiments, and a detailed analysis of
parallel and distributed computation methods of CNNs is beyond the scope of this work, we report
bounds on average running times of SGD algorithms in this section.

In the implementation of linear Euclidean SGD methods, we use vectorized computation of weight
updates. Therefore, we use large scale matrix computation methods (in some cases, for sparse
matrices) to improve running time of the linear Euclidean SGD methods. However, we deal with
optimization using batched (small size) dense matrices in the implementation of Algorithm 1 [21].
Therefore, in order to improve running time of the algorithm, we implemented Algorithm 1 using
hybrid CPU-GPU programming paradigms.

More precisely, we consider two computation schemes according to matrix/tensor structure of the
weights, i.e. geometric structure of weight manifolds. First, we recall that we construct different
manifolds of weightsW = {Wd,l ∈ RAl×Bl×Cl}Dld=1,∀l = 1,2, . . . , L, at different layers of anL-layer
CNN. Then, we implement projections of gradients and retractions at

1. Fully Connected (FC) layers at which we use Wfc
l ∈ RCl×Dl with Al = Bl = 1, and

2. Convolution (Conv) layers at which we use Wd,l ∈ W with Al > 1 and Bl > 1.

At the FC layers, we implemented Algorithm 1 on GPUs using Cuda with Cublas and Magma
[22, 23, 24] Blas [25, 26]. In the experimental analyses, we obtained similar running times using
Cublas and Magma Blas implementation of Algorithm 1 (denoted by RfcM ) compared to running
time of linear Euclidean SGD (denoted byRfcE ), for each epoch.

For instance, if we train CNNs using the Cifar-100 dataset and one GTX 1080, then we observe
RfcM < aRfcE , where the running times are bounded by a > 0 due to implementation of gradient
projections and retractions. The overhead factor a also depends on the manifold structure of the
weights such that a < 1.5 for the sphere, a < 2.5 for the oblique manifold and a < 5 for the Stiefel
manifold.

When we implemented a QR decomposition algorithm using the Givens transformation (Rotation)
[27, 19], we obtained further improvement by a < 4. In addition, batch size does not affect the
overhead of running time crucially as long as the GPU memory is sufficient. The effect of this
overhead on the overall training time depends on structure of CNNs. For example, we use multiple
(6) FC layers in NiNs where we have 2 FC layers in SKs. Therefore, the overhead affects the training
time of NiNs more than that of SKs.

At the Conv layers, we implemented Algorithm 1 on both GPUs and CPUs. However, the structure
of parallelization of projections and maps at the Conv layers is different than that of projections and
maps computed at the FC layers. More precisely, we perform parallel computation either 1) using

7



tensors Wd,l ∈ RAl×Bl×Cl for each output d = 1,2, . . . ,Dl, or 2) using matrices Wc,d,l ∈ RAl×Bl for
each output d = 1,2, . . . ,Dl and channel c = 1,2, . . . ,Cl.

Since there is an I/O bottleneck between transfer of matrices and tensors to/from GPUs from/to
CPUs, we used either (1) or (2) according to output size Dl, and channel size Cl. For instance, if
Cl > Dl, then we performed computations on GPUs. Otherwise, we implemented the algorithm on
multi-core CPUs.

In average, for an epoch2, the running time of a GPU implementation of Algorithm 1 for the case (1)
denoted by R1

M,gpu, and that of linear Euclidean SGD for the case R1
E,gpu are related by R1

E,gpu <
aR1

M,gpu for a < 3 for the sphere and a < 3 for the oblique manifold and a < 6 for the Stiefel
manifold3. The additional computational overhead can be attributed to additional transmission time
and computation of multi-dimensional transpose operations.

Moreover, we observed that the running time of the multi-core CPU implementation of the algorithm
R1
M,cpu is bounded by R1

M,gpu < aR1
M,cpu for a < f(Dl) < 10, where f(⋅) is a function of number

of output Dl for all manifolds4. In other words, the difference between running times on CPUs
and GPUs is affected by Dl more than the other parameters 2 ≤ Al ≤ 7 and 2 ≤ Bl ≤ 7, and Cl.
This observation can be attributed to the less overhead between Blas and Cublas implementations of
matrix operations for small number (e.g. Cl < 103) of weight matrices.

For the second case where Cl > Dl, we observed that R1
E,gpu < a1R1

M,cpu < a2R1
M,gpu. We

observed that a1 < f̂(Cl,Dl) < 2 and a2 < f̂(Cl,Dl) < 5, where f̂(⋅, ⋅) is a function of both Cl and
Dl, for the sphere, and scales for the other manifolds accordingly, for implementation using one
GTX 1080 and E5-2697 v2.

3.2 Implementation Details of Algorithm 1

In this section, we give implementation details of Algorithm 1.

3.2.1 Identification of Component Kernel Submanifolds of POMs

We identify component weight manifolds Mι of POMs MGl at each lth of an L-layer CNN, and
initialize weights residing in the manifolds considering both statistical properties of data, and geo-
metric properties of weight manifolds.

In the experiments, we used the sphere, the oblique manifold and the Stiefel manifold to construct
component weight manifolds according to definition of manifolds given in Table 2.

Table 4: Tangent spaces and maps used for orthogonal projection of Euclidean gradients obtained
using backpropagation onto the tangent spaces for the manifolds of the normalized weights defined
in Table 2. We denote a vector realized by a Euclidean gradient obtained at a weight ωtGl from the

l + 1st layer using backpropagation by µ ≜ (gradE L(ωtg,l),Θ,Rtl) (see Line 5 of Algorithm 1).

Manifolds Tangent Spaces Projection of Gradients

S(Al,Bl) TωS(Al,Bl) = {ω̂ ∈ RAl×Bl ∶ ωTω̂ = 0} Πωµ = (I − ωωT)µ

OB(Al,Bl) TωOB(Al,Bl) = {ω̂ ∈ RAl×Bl ∶ ωTω̂ = 0} Πωµ = µ − ωddiag(ωTµ)

St(Al,Bl) TωSt(Al,Bl) = {ω̂ ∈ RAl×Bl ∶ ddiag(ωTω̂) = 0} Πωµ = (I − ωωT)µ + ως(ωTµ)

2For the example of training using the Cifar-100 dataset given above.
3For different implementations of QR decomposition on GPUs, we observed 3 < a < 6.
4We observed that for Intel Xeon E5-1650 v3, and obtained improvement of running time by approximately

f(Dl) < 5 for E5-2697 v2 since using larger number of CPU cores.
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Table 5: Exponential maps and retractions for the manifolds of the normalized weights defined
in Table 2. We denote a vector moved on a tangent space at the tth epoch by vt (see Line 8 of
Algorithm 1). In addition, ℵ(Z) is the unit-norm normalization of each column of a matrix Z.
QF(Z) ∶= Q is the Q factor of the QR decomposition Z = QR of Z.

Manifolds Exponential Maps Retraction

S(Al,Bl) expω(v) = ω cos(∥v∥F ) + v
∥v∥F

sin(∥v∥F ) Rω(v) = ω+v
∥ω+v∥F

OB(Al,Bl) expω(v) = ωddiag(cos(∥v∥F )) + vddiag( sin(∥v∥F )
∥v∥F

) Rω(v) = ℵ(ω + v)

St(Al,Bl) expω(v) = [ω v] ˆexp( [ω
Tv −vTv
I ωTv

] ) [I
0
] ˆexp(−ωTv) Rω(v) = QF(ω + v)

3.2.2 Computation of Gradient Maps, Projections and Retractions used in Algorithm 1

In this section, we provide the details of the methods used for computation of gradient maps, projec-
tions and retractions for different collections of POMs in Algorithm 1. We denote a vector moved
on a tangent space at the tth epoch by vt (see Line 7 of Algorithm 1). In addition, ℵ(Z) is the
unit-norm normalization of each column of a matrix Z. QF(Z) ∶= Q is the Q factor of the QR
decomposition Z = QR of Z.

Definitions of component manifolds of POMs used in this work are given in Table 2. In Table 4,
we provide tangent spaces and maps used for orthogonal projection of Euclidean gradients onto the
tangent spaces for the manifolds of the normalized weights which are defined in Table 2. Exponential
maps and retractions are given in Table 5.

We also note that various types of projections, exponential maps and retractions can be computed
and used in Algorithm 1 in addition to the projections, maps and retractions given in the tables.
More detailed discussion on their computation are given in [28, 29, 6].

3.3 Implementation Details of CNN Architectures used in the Experiments

Data pre-processing and post-processing: For the experiments on Cifar-10 and Cifar-100 datasets,
we used two standard data augmentation techniques which are horizontal flipping and translation by
4 pixels [13, 30].

For the experiments on Imagenet dataset, we followed the data augmentation methods suggested in
[13]. In addition, we used both the scale and aspect ratio augmentation used in [31]. For color aug-
mentation, we used the photometric distortions [32] and standard color augmentation [13]. More-
over, we used random sampling of 224× 224 crops or their horizontal flips with the normalized data
obtained by subtracting per-pixel mean. In the bottleneck blocks, stride 2 is used for the Al = Bl = 3
weights. Moreover, Euclidean gradient decays are employed for all the weights.

Acceleration methods: In this section, we employed state-of-the-art acceleration methods [33]
modularly in Algorithm 1 for implementation of the CNNs as suggested in the reference works
[13, 30, 9]. In this work, we consider employment of acceleration methods on the ambient Eu-
clidean space and collections of POMs as suggested in [9]. For this purpose, momentum and
Euclidean gradient decay methods are employed on the Euclidean gradient gradE L(ωtg,l) using

µt ∶= q(gradE L(ωtg,l), µt,Θ). We can employ state-of-the-art acceleration methods [33] modu-
larly in this step. Thus, momentum was employed with the Euclidean gradient decay using

q(gradE L(ωtg,l), µt,Θ) = θµµt − θEgradE L(ωtg,l), (24)

where θµ ∈ Θ is the parameter employed on the momentum variable µt. We consider θE ∈ Θ as the
decay parameter for the Euclidean gradient. In the experiments, we used θµ = θE = 0.9.
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Architectural Details of CNNs: In the experiments, we used the same hyper-parameters of CNN
architectures (e.g. number of channels, layers, weight sizes, stride and padding parameters) and
their implementation provided by the authors of the compared works for training of CNNs using
our proposed SGD method, for a fair comparison with base-line methods. Differences between the
implementations and hyper-parameters are explained below. In other words, we just implemented
the SGD algorithm of the provided CNN implementations using our proposed SGD method. More
precisely, we used the following implementations for comparison:

• RCD and RSD: We used the Residual networks with constant and stochastic depth using the same
configuration hyper-parameters (see below for number of weights used in the architectures) and
code given in [30].

• Residual Networks (Resnets): We re-implemented residual networks with the same configuration
and training hyper-parameters (see below for number of weights used in the architectures) given
in [13, 9].

• Squeeze-and-Excitation networks implemented for Resnets with 50 layers (SENet-Resnet-50):
We re-implemented residual networks with the same configuration and training hyper-parameters
(see below for number of weights used in the architectures) given in [34].

In order to construct collections of weights belonging to four spaces (Euc., Sp, St and Ob) using
WSS, we increase the number of weights used in CNNs to 24 and its multiples as follows;

● Resnet with 18 Layers (Table 6 in this text): 72 filters at the first and second, 144 filters at the
third, 288 filters at the fourth, and 576 filters at the fifth convolution blocks [13].

● Resnet with 44 Layers (Table 7 in this text): 24 filters for 15 layers, 48 filters for 14 layers, 96
filters for 14 [13].

● Resnets with constant depth (RCD) and stochastic depth (RSD) with 110 layers (Table 2 in the
main text and Table 8 in this text): 24, 48 and 72 filters at the first, second, and the third convolution
blocks [30].

● Resnet-50 and SENet-Resnet-50 (Table 1 in the main text): Configurations of Resnet-50 and
SENet-Resnet-50 are given in Table 6 and Table 7, respectively.

Scaling of weights: We use Rt
l for scaling of weights and identification of component weight

manifolds of POMs. As we mentioned in the main text, for instance, Rt
l is computed and used as

the radius of the sphere. More precisely, we initialize weights ω ∈ Mι that belong to the sphere
Mι ≡ S(Al,Bl) subject to the constraint ∥ω∥2

F =Rt
l by constructing a scaled sphere

SAlBl−1 ≜ SRt
l
(Al,Bl) = {ω ∈ RAl×Bl ∶ ∥ω∥2

F =Rt
l}. (25)

The other manifolds (the oblique and the Stiefel manifolds) are identified, and the weights that be-
long to the manifolds are initialized, appropriately, following the aforementioned methods. Then,
projection of gradients, exponential maps and retractions which are determined according to mani-
fold structure of weight spaces (see Table 4 and Table 5), are updated accordingly by Rt

l . For exam-
ple, for the scaled sphere SΓt

l
(Al,Bl), we compute the projection of gradients by (IRt

l − ωωT )µ,
and the exponential map by

expω(v) = ω cos(∥v∥FRt
l) +Rt

l

v

∥v∥F
sin(∥v∥FRt

l). (26)
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Table 6: Configuration details of the Resnet-50 used for the experiments given in Table 1 in the main
text.

Output Size Resnet-50
112 × 112 Kernel size: 7 × 7, Number of convolution weights: 64, Stride 2
56 × 56 3 × 3 Max Pooling, Stride 2

3 Residual Blocks with the Following Convolution Kernels:
72 convolution weights of size 1 × 1
72 convolution weights of size 3 × 3
264 convolution weights of size 1 × 1

28 × 28
4 Residual Blocks with the Following Convolution Kernels:

144 convolution weights of size 1 × 1
144 convolution weights of size 3 × 3
528 convolution weights of size 1 × 1

14 × 14
6 Residual Blocks with the Following Convolution Kernels:

264 convolution weights of size 1 × 1
264 convolution weights of size 3 × 3

1032 convolution weights of size 1 × 1
7 × 7

3 Residual Blocks with the Following Convolution Kernels:
528 convolution weights of size 1 × 1
528 convolution weights of size 3 × 3

2064 convolution weights of size 1 × 1
1 × 1 Global Average Pooling

Fully connected layer
Softmax

3.4 Employment of Weight Set Splitting Scheme (WSS) in the Experiments:

Recall that, at each lth layer, we compute a weight ωι ≜Wc,d,l, c ∈ Λl, Λl = {1,2, . . . ,Cl}, d ∈ Ol,
Ol = {1,2, . . . ,Dl}. We first choose A subsets of indices of input channels Λa ⊆ Λl, a = 1,2, . . . ,A,

and B subsets of indices of output channels Ob ⊆ Ol, b = 1,2, . . . ,B, such that Λl =
A

⋃
a=1

Λa and

Ol =
B

⋃
b=1

Ob. We determine indices of weights belonging to different groups using the following

three schemes:

1. POMs for input channels (PI): For each cth input channel, we construct IGl =
Cl
⋃
c=1
IcGl , where

IcGl = Ob × {c} and the Cartesian product Ob × {c} preserves the input channel index, ∀b, c (see
Figure 1).

2. POMs for output channels (PO): For each dth output channel, we construct IGl =
Dl
⋃
d=1
IdGl , where

IdGl = Λa × {d} and the Cartesian product Λa × {d} preserves the output channel index, ∀a, d
(see Figure 1).

3. POMs for input and output channels (PIO): In PIO, we construct Ia,bl = Ial ∪ Ibl , where Ial =

{Λa × a}, and Ibl = {Ob × b} such that IGl =
A,B

⋃
a=1,b=1

Ia,bl (see Figure 1).

Illustrative Examples of Employment of PI, PO and PIO

A comparative and illustrative example for comparison of PI, PO and PIO is given in Figure 1.
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Table 7: Configuration details of the SENet-Resnet-50 used for the experiments given in Table 1 in
the main text.

Output Size Resnet-50
112 × 112 Kernel size: 7 × 7, Number of convolution weights: 64, Stride 2
56 × 56 3 × 3 Max Pooling, Stride 2

3 Residual Blocks with the Following Convolution Kernels:
72 convolution weights of size 1 × 1
72 convolution weights of size 3 × 3
264 convolution weights of size 1 × 1

Fully connected layer with weights of size 24 × 264
28 × 28

4 Residual Blocks with the Following Convolution Kernels:
144 convolution weights of size 1 × 1
144 convolution weights of size 3 × 3
528 convolution weights of size 1 × 1

Fully connected layer with weights of size 48 × 528
14 × 14

6 Residual Blocks with the Following Convolution Kernels:
264 convolution weights of size 1 × 1
264 convolution weights of size 3 × 3

1032 convolution weights of size 1 × 1
Fully connected layer with weights of size 72 × 1032

7 × 7
3 Residual Blocks with the Following Convolution Kernels:

528 convolution weights of size 1 × 1
528 convolution weights of size 3 × 3

2064 convolution weights of size 1 × 1
Fully connected layer with weights of size 144 × 2064

1 × 1 Global Average Pooling
Fully connected layer

Softmax

Figure 1: An illustration for employment of the proposed PI, PO and PIO strategies at the lth layer
of a CNN.

Example 3.1. Suppose that we have a weight tensor of size 3× 3× 4× 6 where the number of input
and output channels is 4 and 6. In total, we have 4 ∗ 6 = 24 weight matrices of size 3×3. An example
of construction of an collection of POMs is as follows.

1. PIO: We split the set of 24 weights into 10 subsets. For 6 output channels, we split the set of
weights corresponding to 4 input channels into 3 subsets. We choose the sphere (Sp) for 2 subsets
each containing 3 weights (depicted by light blue rectangles), and 3 subsets each containing
2 weights (depicted by red rectangles). We choose the Stiefel manifold (St) similarly for the
remaining subsets. Then, our ensemble contains 5 POMs of St and 5 POMs of Sp.

2. PI: For each of 4 input channels, we split a set of 6 weights associated with 6 output channels
into two subsets of 3 weights. Choosing the sphere (Sp) for the first subset, we construct a POM
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as a product of 3 Sp. That is, each of 3 component manifolds Mι, ι = 1,2,3, of the POM is a
sphere. Similarly, choosing the Stiefel (St) for the second subset, we construct another POM as
a product of 3 St (each of 3 component manifoldsMι, ι = 1,2,3, of the second POM is a Stiefel
manifold.). Thus, at this layer, we construct an collection of 4 POMs of 3 St and 4 POMs of 3
Sp.

3. PO: For each of 6 output channels, we split a set of 4 weights corresponding to the input channels
into two subsets of 2 weights. We choose the Sp for the first subset, and we construct a POM as
a product of 2 Sp using. We choose the St for the second subset, and we construct a POM as a
product of 2 St. Thereby, we have an collection consisting of 6 POMs of St and 6 POMs of Sp.

In the experiments, indices of weights for PI, PO and PIO are randomly selected. An illustration of
the selection method is given in Figure 2.
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Figure 2: An illustration of employment of the proposed PI, PO and PIO collection strategies at the
lth layer of a CNN. In Section 4.2, we randomly selected indices of weights, i.e. subsets of input and
output channels, according to the uniform distribution. In this example, we suppose that there are
four input and six output channels. Then, 24 convolution weights are computed on in two different
POMs.
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Table 8: Results for Resnet-18 which are trained using the Imagenet for single crop validation error
rate (%).

Model Top-1 Error (%)

Euc. [9] 30.59
Euc. † 30.31

Sp/Ob/St[9] 29.13/28.97/28.14
Sp/Ob/St † 28.71/28.83/28.02

POMs of Sp/Ob/St 28.70/28.77/28.00
PI for POMs of Sp/Ob/St 28.69/28.75/27.91

PI (Euc.+Sp/Euc.+St/Euc.+Ob) 30.05/29.81/29.88
PI (Sp+Ob/Sp+St/Ob+St) 28.61/28.64/28.49

PI (Sp+Ob+St/Sp+Ob+St+Euc.) 27.63/27.45
PO for POMs of Sp/Ob/St 28.67/28.81/27.86

PO (Euc.+Sp/Euc.+St/Euc.+Ob) 29.58/29.51/29.90
PO (Sp+Ob/Sp+St/Ob+St) 28.23/28.01/28.17

PO (Sp+Ob+St/Sp+Ob+St+Euc.) 27.81/27.51
PIO for POMs of Sp/Ob/St 28.64/28.72/27.83

PIO (Euc.+Sp/Euc.+St/Euc.+Ob) 29.19/28.25/28.53
PIO (Sp+Ob/Sp+St/Ob+St) 28.14/27.66/27.90

PIO (Sp+Ob+St/Sp+Ob+St+Euc.) 27.11/27.07

Notation used in the Tables

1. Sp/Ob/St: Kernels employed on each input and output channel are defined to reside on the
sphere, oblique and Stiefel manifold, respectively.

2. POMs of Sp/Ob/St: Kernels employed on all input and output channels are defined to reside
on a POM of Sp/Ob/St.

3. PI/PO/PIO for POMs of Sp/Ob/St: Ensembles of POMs of Sp/Ob/St are computed using
the schemes PI/PO/PIO.

4. Results for Manifold1 + Manifold2: Results are computed for collections of POMs of
Manifold1 and Manifold2.

5. Results for Manifold1 + Manifold2 + Manifold3: Results are computed for collections of
POMs of Manifold1, Manifold2 and Manifold3.

6. Results for Manifold1 + Manifold2 + Manifold3 + Manifold4: Results are computed for
collections of POMs of Manifold1, Manifold2, Manifold3 and Manifold4.

4 Additional Results

4.1 Analyses using Resnets with Different Number of Layers

In this subsection, we give additional results for image classification using Cifar-10 and Imagenet
datasets for different networks such as Resnets with 18 and 44 layers (Resnet-18 and Resnet-44),
110-layer Resnets with constant depth (RCD) and stochastic depth (RSD) with data augmentation
(DA) and without using data augmentation (w/o DA).

We give classification performance of Resnets with 18 layers (Resnet-18) employed on the Ima-
genet in Table 8. The results show that performance of CNNs are boosted by employing collections
of POMs (denoted by PIO for POMs) using FG-SGD compared to the employment of baseline
Euc. We observe that POMs of component manifolds of identical geometry (denoted by POMs
of Sp/St/Ob), and their collections (denoted by PIO for POMs of Sp/St/Ob) provide better perfor-
mance compared to employment of individual component manifolds (denoted by Sp/Ob/St) [9]. For
instance, we obtain 28.64%, 28.72% and 27.83% error using PIO for POMs of Sp, Ob and St in
Table 8, respectively. However, the error obtained using Sp, Ob and St is 28.71%, 28.83% and
28.02%, respectively. We observe 3.24% boost by construction of an collection of four manifolds
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Table 9: Results for Resnet-44 on the Cifar-10 with DA.

Model Class. Error(%)

Euc. [13] 7.17
Euc. [9] 7.16
Euc. † 7.05

Sp/Ob/St [9] 6.99/6.89/6.81
Sp/Ob/St † 6.84/6.87/ 6.73

POMs of Sp/Ob/St 6.81/6.85/ 6.70
PI for POMs of Sp/Ob/St 6.82/6.81/ 6.70

PI (Euc.+Sp/Euc.+St/Euc.+Ob) 6.89/6.84/6.88
PI (Sp+Ob/Sp+St/Ob+St) 6.75/6.67/6.59

PI (Sp+Ob+St/Sp+Ob+St+Euc.) 6.31/6.34
PO for POMs of Sp/Ob/St 6.77/6.83/ 6.65

PO (Euc.+Sp/Euc.+St/Euc.+Ob) 6.85/6.78/6.90
PO (Sp+Ob/Sp+St/Ob+St) 6.62/6.59/6.51

PO (Sp+Ob+St/Sp+Ob+St+Euc.) 6.35/6.22
PIO for POMs of Sp/Ob/St 6.71/6.73/ 6.61

PIO (Euc.+Sp/Euc.+St/Euc.+Ob) 6.95/6.77/6.82
PIO (Sp+Ob/Sp+St/Ob+St) 6.21/6.19/6.25

PIO (Sp+Ob+St/Sp+Ob+St+Euc.) 5.95/5.92

(Sp+Ob+St+Euc.) using the PIO scheme in Table 8 (27.07%). In other words, collection methods
boost the performance of large-scale CNNs more for large-scale datasets (e.g. Imagenet) consisting
of larger number of samples and classes compared to the performance of smaller CNNs employed
on smaller datasets (e.g. Cifar-10). This result can be attributed to enhancement of sets of features
learned using multiple constraints.

In addition, we obtain 0.28% and 2.06% boost of the performance by collection of the St with Euc.
(6.77% and 28.25% using PIO for Euc.+St, respectively) for the experiments on the Cifar-10 and
Imagenet datasets using the PIO scheme in Table 9 and Table 8, respectively. Moreover, we observe
that construction of collections using Ob performs better for PI compared to PO. For instance, we
observe that PI for POMs of Ob provides 6.81% and 28.75% while PO for POMs of Ob provides
6.83% and 28.81% in Table 9 and Table 8, respectively. We may associate this result with the
observation that weights belonging to Ob are used for feature selection and modeling of texture
patterns with high performance [28, 35]. However, collections of St and Sp perform better for PO
(6.59% and 28.01% in Table 9 and Table 8) compared to PI (6.67% and 28.64% in Table 9 and
Table 8) on weights employed on output channels.

It is also observed that PIO performs better than PI and PO in all the experiments. We observe 3.24%
boost by construction of an collection of four manifolds (Sp+Ob+St+Euc.) using the PIO scheme in
Table 8 (27.07%). In other words, collection methods boost the performance of large-scale CNNs
more for large-scale datasets (e.g. Imagenet) consisting of larger number of samples and classes
compared to the performance of smaller CNNs employed on smaller datasets (e.g. Cifar-10). This
result can be attributed to enhancement of sets of features learned using multiple constraints.

In Table 10, we analyze the performance of larger CNNs consisting of 110 layers on Cifar-100
with and without using DA. We implemented the experiments 10 times and provided the average
performance. We observe that sets boost the performance of CNNs that use DA methods more com-
pared to the performance of CNNs without using DA. For instance, PIO of all manifolds (39.35%)
outperform baseline (44.65%) by 5.3% without using DA, while those (23.79%) obtained using
DA outperform baseline (27.01%) by 3.22% for RCD. Additional results for different CNNs using
Imagenet and Cifar-10, and a comparison with vanilla network sets are given in this supplemental
material.
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Table 10: Classification error (%) for training 110-layer Resnets with constant depth (RCD) and
Resnets with stochastic depth (RSD) using the PIO scheme on Cifar-100, with data augmentation
(w. DA) and without using DA (w/o DA).

Model Cifar-100 w. DA Cifar-100 w/o DA
RCD [36] 27.22 44.74
(Euc.) † 27.01 44.65

Sp/Ob/St ([9]) 26.44/25.99/25.41 42.51/42.30/40.11
Sp/Ob/St † 26.19/25.87/25.39 42.13/42.00/39.94

POMs of Sp/Ob/St 25.93/25.74/25.18 42.02/42.88/39.90
PIO (Euc.+Sp/Euc.+St/Euc.+Ob) 25.57/25.49/25.64 41.90/41.37/41.85

PIO (Sp+Ob/Sp+St/Ob+St) 24.71/24.96/24.76 41.49/40.53/40.34
PIO (Sp+Ob+St/Sp+Ob+St+Euc.) 23.96/23.79 39.53/ 39.35

RSD [36] 24.58 37.80
Euc. † 24.39 37.55

Sp/Ob/St [9] 23.77/23.81/23.16 36.90/36.47/35.92
Sp/Ob/St † 23.69/23.75/23.09 36.71/36.38/35.85

POMs of Sp/Ob/St 23.51/23.60/23.85 36.40/36.11/35.53
PIO (Euc.+Sp/Euc.+St/Euc.+Ob) 23.69/23.25/23.32 35.76/35.55/35.81

PIO (Sp+Ob/Sp+St/Ob+St) 22.84/22.91/22.80 35.66/35.01/35.35
PIO (Sp+Ob+St/Sp+Ob+St+Euc.) 22.19/22.03 34.49/34.25

Table 11: Classification error (%) for training 110-layer Resnets with constant depth (RCD) and
Resnets with stochastic depth (RSD) using the PIO scheme on the Cifar-10, with and without using
DA.

Model Cifar-10 w. DA Cifar-10 w/o DA
RCD [36] 6.41 13.63
(Euc.) † 6.30 13.57

Sp/Ob/St ([9]) 6.22/6.07/5.93 13.11/12.94/12.88
Sp/Ob/St † 6.05/6.03/5.91 12.96/12.85/12.79

POMs of Sp/Ob/St 6.00/6.01/5.86 12.74/12.77/12.74
PIO for POMs of Sp/Ob/St 5.95/5.91/5.83 12.71/12.72/12.69

PIO (Euc.+Sp/Euc.+St/Euc.+Ob) 6.03/5.99/6.01 12.77/12.21/12.92
PIO (Sp+Ob/Sp+St/Ob+St) 5.97/5.86/5.46 11.47/11.65/ 11.51

PIO (Sp+Ob+St/Sp+Ob+St+Euc.) 5.25/5.17 11.29/11.15
RSD [36] 5.23 11.66

Euc. † 5.17 11.40
Sp/Ob/St [9] 5.20/5.14/4.79 10.91/10.93/10.46
Sp/Ob/St † 5.08/5.11/4.73 10.52/10.66/10.33

POMs of Sp/Ob/St 5.05/5.08/4.69 10.41/10.54/10.25
PIO for POMs of Sp/Ob/St 4.95/5.03/4.62 10.37/10.51/10.19

PIO (Euc.+Sp/Euc.+St/Euc.+Ob) 5.00/5.08/5.14 10.74/10.25/10.93
PIO (Sp+Ob/Sp+St/Ob+St) 4.70/4.58/4.90 10.13/10.24/10.06

PIO (Sp+Ob+St/Sp+Ob+St+Euc.) 4.29/4.31 9.52/9.56

4.2 Comparison with Vanilla Network Ensembles

Our method fundamentally differs from network ensembles. In order to analyze the results for
network ensembles of CNNs, we employed an ensemble method [13] by voting of decisions of
Resnet 44 on Cifar 10. When CNNs trained on individual Euc, Sp, Ob, and St are ensembled
using voting, we obtained 7.02% (Euc+Sp+Ob+St) and 6.85% (Sp+Ob+St) errors (see Table 1 for
comparison). In our analyses of ensembles (PI, PO and PIO), each POM contains Nl

M
weights, where

Nl is the number of weights used at the lth layer, andM is the number of POMs. When each CNN in
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Table 12: Mean ± standard deviation of classification error (%) are given for results obtained using
SENet-Resnet-101, and 110-layer Resnets with constant depth (RCD) on Cifar-100.

Model Cifar-100 with DA (110 layer RCD) Error
Euc. † 27.01 ± 0.47

St 25.39 ± 0.40
POMs of St 25.18 ± 0.34

PIO (Sp+Ob+St) 23.96 ± 0.28
PIO (Sp+Ob+St+Euc.) 23.79 ± 0.15

(Additional results) Cifar-100 with DA (SENet-Resnet-101) Error
Euc. † 19.93 ± 0.51

PIO (Sp+Ob+St) 18.96 ± 0.27
PIO (Sp+Ob+St+Euc.) 18.54 ± 0.16

Table 13: Analysis of classification error (%) of state-of-the-art DNNs which employ separable
convolutions on Imagenet dataset.

Model Classification Error
Resnext-50 (Euc. [37]) 22.2

Resnext-50 (Euc. †) 22.7
Resnext-50 (Euc.WSS) 22.3

Resnext-50 (PIO-SOSE) 21.5
Resnext-50 (PIO-SOSE-WSS) 21.3

Mobilenetv2 (Euc. [38]) 28.0
Mobilenetv2 (Euc. †) 27.9

Mobilenetv2 (Euc.-WSS) 27.5
Mobilenetv2 (PIO-SOSE) 26.8

Mobilenetv2 (PIO-SOSE-WSS) 26.4

DeepRoots (Euc. [39]) 26.6
DeepRoots (Euc. †) 27.0

DeepRoots (Euc.-WSS) 26.6
DeepRoots (PIO-SOSE) 25.9

DeepRoots (PIO-SOSE-WSS) 25.5

the ensemble was trained using an individual manifold which contains 1
4

of weights (usingM = 4 as
utilized in our experiments), then we obtained 11.02% (Euc), 7.76% (Sp), 7.30% (Ob), 7.18% (St),
9.44% (Euc+Sp+Ob+St) and 7.05% (Sp+Ob+St) errors. Thus, our proposed methods outperform
ensembles constructed by voting.

4.3 Analyses for Larger DNNs with Large Scale Image Datasets

We give the results for Cifar-100 obtained using data augmentation denoted by with DA in Ta-
ble 12.Cifar-100 dataset consist of 5 × 104 training and 104 test images belonging to 100 classes.

In Table 12, we provide results using the state-of-the-art Squeeze-and-Excitation (SE) blocks [34]
implemented for Resnets with 110 layers (Resnet-110) on Cifar-100. We run the experiments 3
times and provide the average performance.

In the second set of experiments, we perform separable convolution operations using the pro-
posed weight splitting scheme. We compare the results using various popular separable convolu-
tion schemes, such as depth-wise and channel-wise convolution implemented using state-of-the-
art DNNs such as ResNext with 50 layers (ResNext-50) [37], MobileNet v2 with 21 layers (Mo-
bilenet) [38] and 50 layer Resnets with hierarchical filtering using 4 roots (DeepRoots) [39]. The
results obtained using PIO with (Sp+Ob+St+Euc.) with the separable convolution scheme proposed
in the corresponding related work are denoted by PIO-SOSE. The results obtaied using PIO with
(Sp+Ob+St+Euc.) with our proposed WSS are denoted by PIO-SOSE-WSS.
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Table 14: Mean ± standard deviation of classification error (%) are given for results obtained using
Resnet-50/101, SENet-Resnet-50/101, and 110-layer Resnets with constant depth (RCD) on Ima-
genet.

Model Imagenet(Resnet-50) Imagenet(SENet-Resnet-50)
Euc. 24.73 ± 0.32 23.31± 0.55
St 23.77 ± 0.27 23.09 ± 0.41

POMs of St 23.61 ± 0.22 22.97 ± 0.29
PIO (Sp+Ob+St) 23.04 ± 0.10 22.67 ± 0.15

PIO (Sp+Ob+St+Euc.) 22.89 ± 0.08 22.53 ± 0.11
(Additional results) Imagenet(Resnet-101) Imagenet(SENet-Resnet-101)

Euc. 23.15 ± 0.09 22.38 ± 0.30
PIO (Sp+Ob+St) 22.83 ± 0.06 21.93 ± 0.12

PIO (Sp+Ob+St+Euc.) 22.75 ± 0.02 21.76 ± 0.09

Table 14 shows results using the state-of-the-art Squeeze-and-Excitation (SE) blocks [34] imple-
mented for Resnets with 50 layers (Resnet-50) on Imagenet. We run the experiments 3 times and
provide the average performance. We first observe that PIO boosts the performance of baseline Euc.
(24.73%) by 1.84% if sets of weights are employed using Euc, Sp, Ob and St (22.89%). We note
that the sets computed for Resnet-50 outperform Resnets with 101 layers (23.15) by 0.26%. SE
blocks aim to aggregate channel-wise descriptive statistics (i.e. mean of convolution outputs) of
local descriptors of images to feature maps for each channel. In FG-SGD, we use standard deviation
(std) of features extracted from each batch and size of receptive fields of units while defining and
updating weight manifolds (see Section 3.3 in supp. mat.). Unlike SE blocks, FG-SGD computes
statistical and geometric properties for different sets of input and output channels, and used to update
weights by FG-SGD. This property helps FG-SGD to further boost the performance. For instance,
we observe that collections of manifolds (23.04% and 22.89% error) outperform SENet-Resnet-50
(23.31% error). Although FG-SGD estimates standard deviation using moving averages as utilized
in batch normalization [40], SE blocks estimates the statistics using small networks. Therefore,
we conjecture that they provide complementary descriptive statistics (mean and std). The experi-
mental results justify this claim such that sets implemented in SENet-Resnet-50 further boost the
performance by providing 22.53% error.
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