
Appendices
A Distribution-Constrained Backup Operator

In this section, we analyze properties of the constrained Bellman backup operator, defined as:

T ΠQ(s, a)
def
= E

[
R(s, a) + γmax

π∈Π
EP (s′|s,a) [V (s′)]

]
where

V (s)
def
= max

π∈Π
Eπ[Q(s, a)].

Such an operator can be reduced to a standard Bellman backup in a modified MDP. We can construct
an MDP M ′ from the original MDP M as follows:

• The state space, discount, and initial state distributions remain unchanged from M .
• We define a new action set A′ = Π to be the choice of policy π to execute.
• We define the new transition distribution p′ as taking one step under the chosen policy π to

execute and one step under the original dynamics p: p′(s′|s, π) = Eπ[p(s′|s, a)].
• Q-values in this new MDP, QΠ(s, π) would, in words, correspond to executing policy π for

one step and executing the policy which maximizes the future discounted value function in
the original MDP M thereafter.

Under this redefinition, the Bellman operator T Π is mathematically the same operation as the Bellman
operator under M ′. Thus, standard results from MDP theory carry over - i.e. the existence of a fixed
point and convergence of repeated application of T Π to said fixed point.

B Error Propagation

In this section, we provide proofs for Theorem 4.1 and Theorem 4.2.
Theorem B.1. Suppose we run approximate distribution-constrained value iteration with a set
constrained backup T Π. Assume that δ(s, a) ≥ maxk |Qk(s, a) − T ΠQk−1(s, a)| bounds the
Bellman error. Then,

lim
k→∞

Eρ0
[|Vk(s)− V ∗(s)|] ≤ γ

(1− γ)2

[
C(Π)Eµ[max

π∈Π
Eπ[δ(s, a)]] +

1− γ
γ

α(Π)

]
Proof. We first begin by introducing V Π, the fixed point of T Π. By the triangle inequality, we have:

Eρ0 [|Vk(s)− V ∗(s)|] = Eρ0 [|Vk(s, a)− V Π(s) + V Π(s)− V ∗(s)|]
≤ Eρ0 [|Vk(s)− V Π(s)|]︸ ︷︷ ︸

L1

+Eρ0 [|V Π(s)− V ∗(s)|]︸ ︷︷ ︸
L2

First, we note that maxπ Eπ[δ(s, a)] provides an upper bound on the value error:

|Vk(s)− T ΠVk−1(s)| = |max
π

Eπ[Qk(s, a)]−max
π

Eπ[T πQk−1(s, a)]|
≤ max

π
Eπ[|Qk(s, a)− T πQk−1(s, a)|]

≤ max
π

Eπ[δ(s, a)]

We can bound L1 with

L1 ≤
2γ

(1− γ)2
[C(Π)]Eµ[max

π∈Π
Eπ[δ(s, a)]]

by direct modification of the proof of Theorem 3 of Farahmand et al. [10] or Theorem 1 of Munos
[28] with k = 1 (p = 1), but replacing V ∗ with V Π and T with T Π, as T Π is a contraction and

12

V Π is its fixed point. An alternative proof involves viewing T Π as a backup under a modified MDP
(see Appendix A), and directly apply Theorem 1 of Munos [28] under this modified MDP. A similar
bound also holds true for value iteration with the T Π operator which can be analysed on similar lines
as the above proof and Munos [28].

To bound L2, we provide a simple `∞-norm bound, although we could in principle apply techniques
used to bound L1 to get a tighter distribution-based bound.∥∥V Π − V ∗

∥∥
∞ =

∥∥T ΠV Π − T V ∗
∥∥
∞

≤
∥∥T ΠV Π − T ΠV ∗

∥∥
∞ +

∥∥T ΠV Π − T V ∗
∥∥
∞

≤ γ
∥∥V Π − V ∗

∥∥
∞ + α(Π)

Thus, we have
∥∥V Π − V ∗

∥∥
∞ ≤

α
1−γ . Because the maximum is greater than the expectation,

L2 = Eρ0,π[|V Π(s)− V ∗(s)|] ≤
∥∥V Π − V ∗

∥∥
∞.

Adding L1 and L2 completes the proof.

Theorem B.2. Assume the data distribution µ is generated by a behavior policy β, such that
µ(s, a) = µβ(s, a). Let µ(s) be the marginal state distribution under the data distribution. Let us
define Πε = {π | π(a|s) = 0 whenever β(a|s) < ε}. Then, there exists a concentrability coefficient
C(Πε) is bounded as:

C(Πε) ≤ C(β) ·
(

1 +
γ

(1− γ)f(ε)
(1− ε)

)
where f(ε)

def
= mins∈S,µΠ(s)>0[µ(s)].

Proof. For notational clarity, we refer to Πε as Π in this proof. The term µΠ is the highest discounted
marginal state distribution starting from the initial state distribution ρ and following policies π ∈ Π.
Formally, it is defined as:

µΠ
def
= max
{πi}i: ∀ i, πi∈Π

(1− γ)

∞∑
m=1

mγm−1ρ0P
π1 · · ·Pπm

Now, we begin the proof of the theorem. We first note, from the definition of Π, ∀ s ∈ S ∀ π ∈
Π, π(a|s) > 0 =⇒ β(a|s) > ε. This suggests a bound on the total variation distance between
β and any π ∈ Π for all s ∈ S, DTV (β(·|s)||π(·|s)) ≤ 1 − ε. This means that the marginal state
distributions of β and Π, are bounded in total variation distance by: DTV (µβ ||µΠ) ≤ γ

1−γ (1− ε),
where µΠ is the marginal state distribution as defined above. This can be derived from Schulman
et al. [34], Appendix B, which bounds the difference in returns of two policies by showing the state
marginals between two policies are bounded if their total variation distance is bounded.

Further, the definition of the set of policies Π implies that ∀ s ∈ S, µΠ(s) > 0 =⇒ µβ(s) ≥ f(ε),
where f(ε) > 0 is a constant that depends on ε and captures the minimum visitation probability of
a state s ∈ S when rollouts are executed from the initial state distribution ρ while executing the
behaviour policy β(a|s), under the constraint that only actions with β(a|s) ≥ ε are selected for
execution in the environment. Combining it with the total variation divergence bound, maxs ||µβ(s)−
µΠ(s)|| ≤ γ

1−γ (1− ε), we get that

sup
s∈S

µΠ(s)

µβ(s)
≤ 1 +

γ

(1− γ)f(ε)
(1− ε)

We know that, C(Π)
def
= (1 − γ)2

∑∞
k=1 kγ

k−1c(k) is the ratio of the marginal state visitation
distribution under the policy iterates when performing backups using the distribution-constrained
operator and the data distribution µ = µβ . Therefore,

C(Πε)

C(β)

def
= sup

s∈S

µΠ(s)

µβ(s)
≤ 1 +

γ

(1− γ)f(ε)
(1− ε)

13

C Additional Details Regarding BEAR-QL

In this appendix, we address several remaining points regarding the support matching formulation of
BEAR-QL, and further discuss its connections to prior work.

C.1 Why can we choose actions from Πε, the support of the training distribution, and need
not restrict action selection to the policy distribution?

In Section 4.1, we designed a new distribution-constrained backup and analyzed its properties from
an error propagation perspective. Theorems 4.1 and 4.2 tell us that, if the maximum projection error
on all actions within the support of the train distribution is bounded, then the worst-case error incurred
is also bounded. That is, we have a bound on maxπ∈Πε Eπ[δk(s, a)]. In this section, we provide
an intuitive explanation for why action distributions that are very different from the training policy
distributions, but still lie in the support of the train distribution, can be chosen without incurring
large error. In practice, we use powerful function approximators for Q-learning, such as deep neural
networks. That is, δk(s, a) is the Bellman error for one iteration of Q-iteration/Q-learning, which
can essentially be viewed as a supervised regression problem with a very expressive function class.
In this scenario, we expect a bounded error on the entire support of the training distribution, and
we therefore expect approximation error to depend less on the specific density of a datapoint under
the data distribution, and more on whether or not that datapoint is within the support of the data
distribution. I.e., any point that is within the support would have a comparatively low error, due to
the expressivity of the function approximator.

Another justification is that, a different version of the Bellman error objective renormalizes the action-
distributions to the uniform distribution by applying an inverse behavior policy density weighting.
For example, [2, 1] use this variant of Bellman error:

Qk+1 = argminQ

N∑
i=1,ai∼β(·|si)

1

β (ai|si)

(
Q (si, ai)−

[
R(s, a) + γ max

a′∈A
Qk (si+1, a

′)

])2

This implies that this form of Bellman error mainly depends upon the support of the behaviour policy
β (i.e. the set of action samples sampled from β with a high-enough probability which we formally
refer to as β(a|s) ≥ ε in the main text). In a scenario when this form of Bellman error is being
minimized, δk(s, a) is defined as

δk(s, a) =
1

β(a|s) |Qk(s, a)− T Qk−1(s, a)|

The overall error, hence, incurred due to error propagation is expected to be insensitive to distribution
change, provided the support of the distribution doesn’t change. Therefore, all policies π ∈ Πε incur
the same amount of propagated error (|Vk − VΠ|) whereas different amount of suoptimality biases
– suggesting the existence of a different policy in Πε which propagates the same amount of error
while having a lower suboptimality bias. However, in practice, it has been observed that using the
inverse density weighting under the behaviour policy doesn’t lead to substantially better performance
for vanilla RL (not in the setting with purely off-policy, static datasets), so we use the unmodified
Bellman error objective.

Both of these justifications indicate that bounded δk(s, a) is reasonable to expect under in-support
action distributions.

C.2 Details on connection between BEAR-QL and distribution-constrained backups

Distribution-constrained backups perform maximization over a set of policies Πε which is defined as
the set of policies that share the support with the behaviour policy. In the BEAR-QL algorithm, πφ
is maximized towards maximizing the expected Q-value for each state under the action distribution
defined by it, while staying in-support (through the MMD constraint). The maximization step biases
πφ towards the in-support actions which maximize the current Q-value. By sampling multiple
Dirac-delta action distributions - δai - and then performing an explicit maximum over them for
computing the target is a stochastic approximation to the distribution-constrained operator. What
is the importance of training the actor to maximize the expected Q-value? We found empirically
that this step is important as without this maximization step and high-dimensional action spaces, it

14

is likely to require many more samples (exponentially more, due to curse of dimensionality) to get
the correct action that maximizes the target value while being in-support. This is hard and unlikely,
and in some experiments we tried with this variant, we found it to lead to suboptimal solutions. At
evaluation time, we use the Q-function as the actor. The same process is followed. Dirac-delta action
distribution candidates δai are sampled, and then the action ai that is gives the empirical maximum
over the Q-function values is the action that is executed in the environment.

C.3 How effective is the MMD constraint in constraining supports of distributions?

In Section 5, we argued in favour of the usage of the sampled MMD distance between distributions
to search for a policy that is supported on the same support as the train distribution. Revisiting the
argument, in this section, we argue, via numerical simulations, the effectiveness of the MMD distance
between two probability distributions in constraining the support of the distribution being learned,
without constraining the distribution density function too much. While, MMD distance computed
exactly between two distribution functions will match distributions exactly and that explains its
applicability in 2-sample tests, however, with a limited number of samples, we empirically find
that the values of the MMD distance computed using samples from two d-dimensional Gaussian
distributions with diagonal covariance matrices: P def

= N (µP ,ΣP) and Q def
= N (µQ,ΣQ) is roughly

equal to the MMD distance computed using samples from Uα(P)
def
= [Uniform(µ1

P ± αΣ1,1
P)] ×

· · · × [Uniform(µdP ± αΣd,dP)] and Q. This means that when minimizing the MMD distance to train
distribution Q, the gradient signal would push Q towards a uniform distribution supported on P ’s
support as this solution exhibits a lower MMD value – which is the objective we are optimizing.

Figure 7 shows an empirical comparison of MMD(P,Q) when Q = P , computed by sampling
n-samples from P , and MMD(Uα(P), Q) (also when Q = P) computed by sampling n-samples
from Uα(P). We observe that MMD distance computed using limited samples can, in fact, be higher
between a distribution and itself as compared to a uniform distribution over a distribution’s support
and itself. In Figure 7, note that for smaller values of n and appropriately chosen α (mentioned
against each figure, the support of the uniform distribution), the estimator for MMD(Uα(P), P) can
provide lower estimates than the value of the estimator for MMD(P, P). This observation suggests
that when the number of samples is not enough to sample infer the distribution shape, density-agnostic
distances like MMD can be used as optimization objectives to push distributions to match supports.
Subfigures (c) and (d) shows the increase in MMD distance as the support of the uniform distribution
is expanded.

In order to provide a theoretical example, we refer to Example 1 in Gretton et al. [17], and extend
it. First, note that the example argues that a fixed sample size of samples drawn from a distribution
P , there exists another discrete distribution Q supported on m2 samples from the support set of P ,

such that there atleast is a probability
(
m2

m

)
m!
m2m > 1 − e−1 > 0.63 that a sample from Q is

indeed a sample from P as well. So, with a smaller value of m, no 2-sample test will be able to
distinguish between P and Q. We would also note that this example is exactly the argument that our
algorithm build upon. We further extend this example by noting that if Q were rather not completely
supported on the support of P , then there exists atleast a probability of ε that a sample from Q lies
outside the support of P . This gives us a lower bound on the value of the MMD estimator, indicating
that the MMD 2-sample test will be able to detect this distribution due to an irreducible difference
of ε
√

miny∈Extremal(P) Ex∼P [k(x, y)] (where y is an "extremal point" in P ’s support) in the MMD
estimate.

D Additional Experimental Details

Data collection We trained behaviour policies using the Soft Actor-Critic algorithm [18]. In all
cases, random data was generated by running a uniform at random policy in the environment. Optimal
data was generated by training SAC agents in all 4 domains until convergence to the returns mentioned
in Figure 5. Mediocre data was generated by training a policy until the return value marked in each
of the plots in Figure 3. Each of our datasets contained 1e6 samples. We used the same datasets for
evaluating different algorithms to maintain uniformity across results.

15

(a)N (0, 0.1), U(−0.1, 0.1) (b)N (0, 1.0), U(−1.5, 1.5)

(c)N (0, 1.0), U(−2.0, 2.0) (d)N (0, 1.0), U(−4.0, 4.0)

Figure 7: Comparing MMD distance between a 1-d Gaussian distribution (P) and itself (P), and
a uniform distribution over support set of the P and the distribution P . The parameters of the
Gaussian distribution (P) and the uniform distribution being considered are mentioned against each
plot. (’Self’ refers to MMD(P, P) and ’Uniform’ refers to MMD(P,U(P)).) Note that for small
values of n ≈ 1− 10, the MMD with the Uniform distribution is slightly lower in magnitude than
the MMD between the distribution P and itself (sub-figures (a), (b) and (c)). For (d), as the support
of this uniform distribution is enlarged, this leads to an increase in the value of MMD in the uniform
approximation case – which suggests that a near-local minimizer for the MMD distance can be
obtained by making sure that the distribution which is being trained in this process shares the same
support as the other given distribution.

Choice of kernels In our experiments, we found that the choice of the kernel is an important design
decision that needs to be made. In general, we found that a Laplacian kernel k(x, y) = exp(−||x−y||σ)

worked well in all cases. Gaussian kernel k(x, y) = exp(−||x−y||
2

2σ2) worked quite well in the case
of optimal dataset. For the Laplacian kernel, we chose σ = 10.0 for Cheetah, Ant and Hopper, and
σ = 20.0 for Walker. However, we found that σ = 20.0 worked well for all environments in all
settings. For the Gaussian kernel, we chose σ = 20.0 for all settings. Kernels often tend to not
provide relevant measurements of distance especially in high-dimensional spaces, so one direction for
future work is to design right kernels. We further experimented with a mixture of Laplacian kernel
with different bandwidth parameters σ (1.0, 10.0, 50.0) on Hopper-v2 and Walker2d-v2 where we
found that it performs comparably and sometimes is better than a simple Laplacian kernel, probably
because it is able to track supports upto different levels of thresholds due to multiple kernels.

More details about the algorithm At evaluation time, we find that using the greedy maximum of
the Q-function over the support set of the behaviour policy (which can be approximated by sampling
multiple Dirac-delta policies δai from the policy πφ and performing a greedy maximization of the
Q-values over these Dirac-delta policies) works best, better than unrolling the learned actor πφ in
the environment. This was also found useful in [12]. Another detail about the algorithm is deciding
which samples to use for computing the MMD objective. We train a parameteric model πdata which
fits a tanh-Gaussian distribution to a given the states s, πdata(·|s) = tanhN (µ(·|s), σ(·|s)) and then
use this to sample a candidate n actions for computing the MMD-distance, meaning that MMD is
computed between a1, · · · , aN ∼ πdata and πφ. We find the latter to work better in practice. Also,
computing the MMD distance between actions before applying the tanh transformation work better,
and leads to a constraint, that perhaps provides stronger gradient signal – because tanh saturates very
quickly, after which gradients almost vanish.

Other hyperparameters Other hyperparameters include the following – (1) The variance of the
Gaussian σ2 /(standard deviation of) Laplacian kernel σ: We tried a variance of 10, 20, and 40. We
found that 10 and 20 worked well across Cheetah, Hopper and Ant, and 20 worked well for Walker2d;
(2) The learning rate for the Lagrange multiplier was chosen to be 1e-3, and the log of the Lagrange

16

multiplier was clipped between [−5, 10] to prevent instabilities; (3) For the policy improvement step,
we found using average Q works better than min Q for Walker2d. For the baselines, we used BCQ
code from the official implementation accompanying [12], TD3 code from the official implementation
accompanying [13] and the BC baseline was the VAE-based behaviour cloning baseline also used in
[12]. We evaluated on 10 evaluation episodes (which were separate from the train distribution) after
every 1000 iterations and used the average score and the variance for the plots.

E Additional Experimental Results

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

−200

−100

0

100

200

300

400

500
Ant-v2: Q - MC

BCQ

BEAR-QL

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

−400

−300

−200

−100

0

100
Walker2d-v2: Q - MC

BCQ

BEAR-QL

Figure 8: The trend of the difference between the Q-values and Monte-Carlo returns: Q −MC
returns for 2 environments. Note that a high value of Q−MC corresponds to more overestimation.
In these plots, BEAR-QL is more well behaved than BCQ. In Walker2d-v2, BCQ tends to diverge
in the negative direction. In the case of Ant-v2, although roughly the same, the difference between
Q values and Monte-carlo returns is slightly lower in the case of BEAR-QL suggestion no risk of
overestimation. (This corresponds to medium-quality data.)

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

200

400

600

800

1000
Hopper-v2

BCQ

BEAR-QL

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

−400

−200

0

200

400

Walker2d-v2

BCQ

BEAR-QL

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

200

400

600

800

1000
HalfCheetah-v2

BCQ

BEAR-QL

Figure 9: The trends of Q-values as a function of number of gradient steps taken in case of 3
environments. BCQs Q-values tend to be more unstable (especially in the case of Walker2d, where
they diverge in the negative direction) as compared to BEAR-QL. This corresponds to medium-quality
data.

In this section, we provide some extra plots for some extra experiments. In Figure 8 we provide the
difference between learned Q-values and Monte carlo returns of the policy in the environment. In
Figure 9 we provide the trends of comparisons of Q-values learned by BEAR-QL and BCQ in three
environments. In Figure 10 we compare the performance when using the MMD constraint vs using
the KL constraint in the case of three environments. In order to be fair at comparing to MMD, we
train a model for the behaviour policy and constrain the KL-divergence to this behaviour policy. (For
MMD, we compute MMD using samples from the model of the behaviour policy.) Note that in the
case of Half Cheetah with medium-quality data, KL divergence constraint works pretty well, but
it fails drastically in the case of Hopper and Walker2d and the Q-values tend to diverge. Figure 10
summarizes the trends for 3 environments.

We further study the performance of the KL-divergence in the setting when the KL-divergence is
stable. In this setting we needed to perform extensive hyperparameter tuning to find the optimal

17

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

1000

2000

3000

4000

5000

6000
MMD vs KL: HalfCheetah-v2

KL

MMD

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

500

1000

1500

2000

2500

3000
MMD vs KL: Walker2d-v2

KL

MMD

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500
MMD vs KL: Hopper-v2

KL

MMD

Figure 10: Performance Trends (measured in AverageReturn) for Hopper-v2, HalfCheetah-v2 and
Walker2d-v2 environments with BEAR-QL algorthm but varying kind of constraint. In general we
find that using the KL constraint leads to worse performance. However, in some rare cases (for
example, HalfCheetah-v2), the KL constraint learns faster. In general, we find that the KL-constraint
often leads to diverging Q-values. This experiment corresponds to medium-quality data.

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500
MMD vs KL: Hopper-v2

KL

MMD

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

500

1000

1500

2000

2500

3000
MMD vs KL: Walker2d-v2

KL

MMD

Figure 11: Performance Trends (measured in Average Returns) for Hopper-v2 and Walker2d-v2
environments with BEAR-QL algorithm with an extensively tuned KL-constraint and the MMD-
constraint from. Note that the MMD-constraint still outperforms the KL-constraint.

Lagrange multiplier for the KL-constraint and plain and simple dual descent always gave us an
unstable solution with the KL-constraint. Even in this case tuned hyperparameter case, we find that
using a KL-constraint is worse than using a MMD-constraint. Trends are summarized in Figure 11.

As described in Section C, we can achieve a reduced overall error ||Vk(s) − V ∗(s)||, if we use
the MMD support-matching constraint alongside importance sampling, i.e. when we multiply the
Bellman error with the inverse of the behaviour policy density. Empirically, we tried reweighting the
Bellman error by inverse of the fitted behavior policy density, alongside the BEAR-QL algorithm.
The trends for two environments and medium-quality data are summarized in Figure 12. We found
that reweighting the Bellman error wasn’t that useful, although in theory, it provides an absolute error
reduction as described by Theorem 4.1. We hypothesize that this could be due to the possible reason
that when optimizing neural nets using stochastic gradient procedures, importance sampling isn’t that
beneficial [5].

18

Figure 12: BEAR with importance sampled Bellman error minimization. We find that importance
sampling isn’t that beneficial in practice.

19

	Distribution-Constrained Backup Operator
	Error Propagation
	Additional Details Regarding BEAR-QL
	Why can we choose actions from , the support of the training distribution, and need not restrict action selection to the policy distribution?
	Details on connection between BEAR-QL and distribution-constrained backups
	How effective is the MMD constraint in constraining supports of distributions?

	Additional Experimental Details
	Additional Experimental Results

