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1 ACIQ: Analytical Clipping for Integer Quantization1

In the following we derive a generic expression for the expected quantization noise as a function of2

clipping value for either Gaussian or Laplace distributions. Let X be a high precision tensor-valued3

random variable, with a probability density function f(x). Without loss of generality, we assume a4

prepossessing step has been made so that the average value in the tensor zero i.e., E (X) = µ = 05

(we do not lose generality since we can always subtract and add this mean). Assuming bit-width M ,6

we would like to quantize the values in the tensor uniformly to 2M discrete values.7

Commonly (e.g., in GEMMLOWP (Jacob et al., 2017)), integer tensors are uniformly quantized8

between the tensor maximal and minimal values. In the following we show that this is suboptimal,9

and suggest a model where the tensor values are clipped in the range [−α, α] to reduce quantization10

noise. For any x ∈ IR, we define the clipping function clip(x, α) as follows11

clip(x, α) =

{
x if |x| ≤ α
sign(x) · α if |x| > α

(A.1)

Denoting by α the clipping value, the range [α,−α] is partitioned to 2M equal quantization regions.12

Hence, the quantization step ∆ between two adjacent quantized values is established as follows:13

∆ =
2α

2M
(A.2)

Our model assumes values are rounded to the midpoint of the region (bin) i.e., for every index14

i ∈ [0, 2M − 1] all values that fall in [−α + i ·∆,−α + (i + 1) ·∆] are rounded to the midpoint15

qi = −α+ (2i+ 1)∆
2 , as illustrated in Figure 1 left. Then, the expected mean-square-error between16

X and its quantized version Q(X) can be written as follows:17

E[(X −Q(X))2] =∫ −α
−∞

f(x) · (x+ α)2dx+

2M−1∑
i=0

∫ −α+(i+1)∆

−α+i∆

f(x) · (x− qi)2dx+

∫ ∞
α

f(x) · (x− α)2dx

(A.3)

Eq. A.3 is composed of three parts. The first and last terms quantify the contribution of clip(x, α) to18

the expected mean-square-error. Note that for symmetrical distributions around zero (e.g., Gaussian19

N(0, σ2) or Laplace(0, b)) these two terms are equal and their sum can therefore be evaluated by20

multiplying any of the terms by 2. The second term corresponds to the expected mean-square-error21

when the range [−α, α] is quantized uniformly to 2M discrete levels. This terms corresponds to the22

quantization noise introduced when high precision values in the range [−α, α] are rounded to the23

nearest discrete value.24
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1.1 Quantization noise25

We approximate the density function f by a construction of a piece-wise linear function whose26

segment breakpoints are points in f , as illustrated on the right side of figure 1. Since we consider only27

smooth probability density functions (e.g., Gaussian or Laplace), the resulting approximation error is28

small for sufficient resolution i.e., small quantization step size ∆. In section 2 in this appendix we29

show that given a density function f , the quantization noise can be approximated as follows:30

2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
f(x) · (x− qi)2dx ≈ 2 · α3

3 · 23M
·

2M−1∑
i=0

f(qi) (A.4)

Eq. A.4 represents the rounding error (as opposed to clipping error) due to the rounding of all values31

in the bin i to its center qi. For sufficient resolution and a smooth density function, the density32

function f can be approximated by a uniform distribution in the range [−α, α] (Marco & Neuhoff,33

2005), which enables much simpler analysis with little effect on the accuracy. In Figure 1, we show34

that with this assumption the analytic results are in a good agreement with the simulation results. By35

substituting the uniform density function f(x) = 1
2α into eq. A.4, the following simpler rounding36

error can be computed:37

2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
f(x) · (x− qi)2dx ≈ 2 · α3

3 · 23M
·

2M−1∑
i=0

1

2α
=

α2

3 · 22M
(A.5)

By substituting eq. A.5 into eq. A.3, and using the symmetrical argument mentioned above, eq. A.338

can be simplified for symmetrical distributions as follows:39

E[(X −Q(X))2] =
α2

3 · 22M
+ 2 ·

∫ ∞
α

f(x) · (x− α)2dx (A.6)

In the following we provide a closed form solution for the case where the density probability40

distribution function f(x) is either Gaussian N(0, σ2) or Laplace(0, b).41

1.2 Clipping noise42

In the following we develop an expression based on eq. A.6 for the Laplace case. In Section 3 in43

this appendix we provide a similar analysis for the case where the probability density function is44

Gaussian N(0, σ2)45

Assuming µ = 0, we have the following Laplace density function f(x) = 1
2be
− |x|b . In order to derive46

a closed form solution for eq. A.6, we need to evaluate47

2 ·
∫ ∞
α

f(x) · (x− α)2dx. (A.7)

Let Ψ(x) represent the expression below:48

Ψ(x) =
e−

x
b

2

[
2αb− 2b2 − α2 − x2 − 2 (b− α)x

]
(A.8)

By taking the derivative of Ψ(x) with respect to x, it is easy to see that Ψ(x) is the correct antideriva-49

tive of the integrand in eq. A.7. Hence,50 ∫ ∞
α

f(x) · (x− α)2dx = Ψ(inf)−Ψ(α) = b2 · e−αb

We can finally state eq. A.6 for the laplace case as follows.51

E[(X −Q(X))2] ≈ 2 · b2 · e−αb +
2 · α3

3
·

2M−1∑
i=0

f(qi) = 2 · b2 · e−αb +
α2

3 · 22M
(A.9)
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Figure 1: left: Expected mean-square-error as a function of clipping value for different quantization
levels (Laplace (µ = 0 and b = 1)). Analytical results, stated by eq. A.9, are in a good agreement
with simulations, which where obtained by clipping and quantizing 10,000 values, generated from a
Laplace distribution. right: An activation distribution quantized uniformly in the range [−α, α] with
2M equal quantization intervals (bins)

On the left side of figure 1, we introduce the mean-square-error as a function of clipping value for52

various bit widths. Finally, to find the optimal clipping value α for which mean-square-error is53

minimized, the corresponding derivative with respect to α is set equal to zero as follows:54

∂E[(X −Q(X))2]

∂α
=

2α

3 · 22M
− 2be−

α
b = 0 (A.10)

Solving Eq. A.10 numerically for bit-widths M = 2, 3, 4 results with optimal clipping values of55

α∗ = 2.83b, 3.89b, 5.03b, respectively.56

2 ACIQ: Piece-Wise Linear Approximation57

Here we provide a more accurate analysis related to the qunatization noise (i.e., the second term in58

Equation A.3), measured as the expected mean-square-error when the range [−α, α] is quantized59

uniformly to 2M discrete levels. To that end, we approximate the density function f by a construction60

of a piece-wise linear function g such that f(qi) = g(qi) for each i ∈ [0, 2M − 1]. Since we consider61

only smooth probability density functions (e.g., Gaussian or Laplace), the resulting approximation62

error is small for sufficient resolution i.e., small quantization step size ∆. In figure 1 we provide an63

illustration for this construction.64

We turn to calculate the linear equation for each line segment of the piece-wise linear function g,65

falling in the range [−α+ i ·∆,−α+ (i+ 1) ·∆]. To that end, we consider the slope (derivative)66

and the value of the density function at the midpoint qi. With these two values we can define for each67

segment i ∈ [0, 2M − 1] the corresponding form of linear approximation:68

g(x) = f(qi) +
df

dx
(qi) · (x− qi),where x ∈ [−α+ i ·∆,−α+ (i+ 1) ·∆] (A.11)

We now turn to calculate the second term in Equation A.3. By equation A.11, and since qi is defined69

to be the midpoint between the integration limits, the following holds true70

2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
f(x) · (x− qi)2dx ≈

2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
g(x) · (x− qi)2dx =

=

2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆
f(qi) · (x− qi)2 +

2M−1∑
i=0

∫ −α+(i+1)·∆

−α+i·∆

df

dx
(qi) · (x− qi)3dx =

=
1

3

2M−1∑
i=0

f(qi) · (x− qi)3

∣∣∣∣∣
−α+(i+1)·∆

−α+i·∆

+
1

4

2M−1∑
i=0

df

dx
(qi) · (x− qi)4

∣∣∣∣∣
−α+(i+1)·∆

−α+i·∆

=

=
∆3

12

2M−1∑
i=0

f(qi) =
2 · α3

3 · 23M
·

2M−1∑
i=0

f(qi)
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3 Clipping noise (Gaussian case)71

We now turn to evaluate Equation A.6 for the Gaussian case. Given a Gaussian random variable72

X ∼ N(0, σ2), we define Ψ(x) to represent the expression below:73

Ψ(x) =

(
α2 + σ2

)
erf
(

x√
2σ

)
2

− (xσ − 2ασ) e−
x2

2σ2

√
2π

(A.12)

As in subsection 1.2, one can observe that by taking the derivative of Ψ(x) with respect to x, it is74

easy to show that Ψ(x) is the correct antiderivative of Equation A.7 for the case where f represents75

the Gaussian density function i.e., f(x) = 1√
2πσ

e−
x2

2σ2 . Next, we use Ψ(x) on the range [α,∞] to76

evaluate Equation A.7 for the Gaussian case as follows:77 ∫ ∞
α

f(x) · (x− α)2dx = Ψ(∞)−Ψ(α) =
α2 + σ2

2
·
[
1− erf

(
α√
2σ

)]
− α · σ · e−

α2

2·σ2

√
2π

Equation A.6 can thus be written for the case of Gaussian distribution as follows:78

E[(X −Q(X))2] ≈≈ (α2 + σ2) ·
[
1− erf

(
α√
2σ

)]
+

α2

3 · 22M
−
√

2α · σ · e−
α2

2·σ2

√
π

(A.13)

In figure 2 we introduce the mean-square-error as a function of clipping value for various bit widths.79

Figure 2: Expected mean-square-error as a function of clipping value for different quantization levels
(Gaussian (µ = 0 and σ = 1)). Analytical results , stated by Equation A.19, are in a good agreement
with simulations, which where obtained by clipping and quantizing 10,000 values, generated from
a Laplace distribution. As expected, the difference occurs only for very low-bit width and large
clipping values where the uniform assumption tends to break.

In order to find the optimal clipping values for which mean-square-error is minimized, we need to80

differentiate E[(X −Q(X))2] with respect to α and set the derivative equal to zero as follows.81

∂E[(X −Q(X))2]

∂α
= α

[
1− erf

(
α√
2σ

)]
− σ2e−

α2

2σ2

√
2πσ

− σe−
α2

2σ2

√
2π

+
2α

3 · 22M
= 0 (A.14)

4 ACIQ: Optimal Quantizer for Fused ReLU Activations82

In this section we adjust Equations A.9 and A.13 for the case where convolutions and rectified linear83

units (ReLU) are fused to avoid accumulation of noise.84

The ReLU is defined by zeroing the negative half space i.e., g(x) = max(0, x). Given a high85

precision random variable X with a probability density function f(x) we would like to minimize the86

following expected mean square-error87

E
[(
g(X)−Q(g(X))

)2]
(A.15)
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Assuming the probability density function f(x) has a symmetrical distribution around zero, there are88

two adjustments that need to be made in the analysis of Section 1:89

(1) The quantization step ∆ is now set according to the range [0, α]. Hence, Equation A.2 should be90

modified as follows:91

∆ =
α

2M
(A.16)

(2) Since we consider only the positive values, Equation A.3 should ignore the negative contribution92

i.e.,93

E[(X −Q(X))2] =

2M−1∑
i=0

∫ (i+1)·∆

i·∆
f(x) · (x− qi)2dx+

∫ ∞
α

f(x) · (x− α)2dx (A.17)

This translates to the following adjustments in Equation A.9 for the Laplace case:94

E
[(
g(X)−Q(g(X))

)2]
≈ b2 · e

−α
b +

α2

24 · 22M
(A.18)

Similarly, for the Gaussian case Equation A.13 is modified as follows:95

E
[(
g(X)−Q(g(X))

)2]
≈ α2 + σ2

2
·
[
1− erf

(
α√
2σ

)]
+

α2

24 · 22M
− α · σ · e−

α2

2·σ2

√
2π

(A.19)

5 Per-channel bit-allocation96

With classical per-channel quantization we have a dedicated scale and an offset for each channel.97

Here we take a further step and consider the case where different channels have different numbers98

of bits for precision. For example, instead of restricting all channel values to have the same 4-bit99

representation, we allow some of the channels to have higher bit-width while limiting other channels100

to have a lower bit-width. So the total volume of data written to or read memory is still comparable101

to 4-bit precision.102

Given a layer with n channels, we formulate the problem as an optimization problem aiming to find a103

solution that allocates a quota of B quantization intervals (bins) to all different channels. Limiting104

the number of bins B translates into a constraint on the number of bits that one needs to write to105

memory. Our goal is to minimize the overall layer quantization noise in terms of mean-square-error.106

Assuming channel i has values in the range [−αi, αi] quantized to Mi bits of precision, eq. A.9107

provides the quantization noise in terms of expected mean-square-error. We employ eq. A.9 to108

introduce a Lagrangian with a multiplier λ to enforce the requirement on the number of bins as109

follows:110

L(M0,M1, ...,Mnλ) =
∑
i

(
2 · b2 · e−

αi
b +

α2
i

3 · 22Mi

)
+ λ

(∑
i

2Mi −B

)
(A.20)

The first term in the Lagrangian is the total layer quantization noise (i.e., the sum of mean-square-111

errors over all channels as defined by eq. A.9). The second term captures the quota constraint on the112

total number of allowed bins B. By setting to zero the partial derivative of the Lagrangian function113

L(·) with respect to Mi, we obtain for each channel index i ∈ [0, n− 1] the following equation:114

∂L(M0,M1, ...,Mnλ)

∂Mi
= −2 ln 2 · α2

i

3 · 22Mi
+ λ · 2Mi = 0 (A.21)

Hence,115

2Mi =
3

√
2 ln 2 · α2

i

3 · λ
(A.22)
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Next, by setting to zero the partial derivative of the Lagrangian function L(·) with respect to λ we116

take into account the constraint on the number of allowed bins.117

∂L(M0,M1, ...,Mnλ)

∂λ
=
∑
i

2Mi −B = 0 (A.23)

Hence, using eq. A.22 we get the following expression:118 ∑
i

2Mi =
∑
i

3

√
2 ln 2 · α2

i

3 · λ
=

3

√
2 ln 2

3λ
·
∑
i

α
2
3
i = B (A.24)

Hence,119

λ =
2 ln 2

3B3
·

(∑
i

α
2
3
i

)3

(A.25)

Define B? to be an optimal bin allocation that minimizes the mean-square-error. By substituting eq.120

A.25 into eq. A.22, we get the following simple rule for optimal bin allocation for each channel i:121

B?i = 2Mi =
α

2
3
i∑
i α

2
3
i

·B (A.26)

Finally, by taking the logarithm of both sides, we translate eq. A.26 into bit width assignment Mi for122

each channel i. Since Mi is an integer it includes a round operation.123

Mi =

⌊
log2

(
α

2
3
i∑
i α

2
3
i

·B

)⌉
(A.27)

6 Kullback Leibler divergence (KLD) method124

The following table summaries the classification test accuracies of different popular pre-trained125

convolution networks after activations are quantized to 4-bit precision in a post-training manner126

(8W4A). Due to scaling issues of KLD, we could not test its performance in conjecture with the other127

search-based quantizaton schemes (e.g., KLD with per-channel quantization). Therefore,to make a128

fair comparison we compare against a baseline that does not include per-channel quantization.129

Model Naive KLD ACIQ Reference
(8W4A) (8W4A) (8W4A) (float32)

VGG16 53.90% 67.04% 67.40% 71.59%
VGG16-BN 29.50% 65.85% 67.60% 73.36%
ResNet-18 53.20% 65.06% 65.80% 69.75%
ResNet-50 52.70% 70.80% 71.45% 76.10%

ResNet-101 50.80% 71.70% 69.53% 77.30%
Inception v3 41.40% 59.25% 60.80% 77.20%

AlexNet 41.60% 49.55% 52.20% 56.52%
Table 1: Validation accuracy of various architectures quantized post-training to 8-bit weights and
4-bit activations (8W4A): Naive (8W4A) refers to the conventional quantization method based on the
maximum and minimum representable value which shows severe accuracy loss. KLD (8W4A) refers
to the iterative method suggested by NVIDIA to search for a good clipping threshold based on the
Kullback-Leibler Divergence measure Migacz (2017). ACIQ (8W4A) refers to our analytic clipping
approach described in Section 1; unlike KLD, which is a brute force technique, our approach is order
of times faster, and, excluding ResNet 101, maintains higher validation accuracy. Reference (float32)
uses full precision models with 32 bit weights and activations.

7 Results for 3-bit Quantization130

We compared ACIQ, per-channel bit allocation and bias correction also for the case of 3-bit precision.131

Our results are summarized in Table 2.132
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Table 2: ImageNet Top-1 validation accuracy with post-training quantization using the three methods
suggested by this work.

Method VGG VGG-BN IncepV3 Res18 Res50 Res101

Quantizing activations: 8 bits weights, 3 bits activations (8W3A)
(Per channel quantization of activations + fused ReLU)

Baseline 57.1% 56.0% 34.1% 23.4% 5.6% 1.6%

ACIQ 67.0% 69.1% 56.8% 57.8% 60.8% 59.0%

Per-channel bit allocation 64.0% 69.7% 55.2% 48.7% 16.2% 61.5%

Reference (FP32) 71.6% 73.4% 77.2% 69.7% 76.1% 77.3%

Quantizing weights: 3 bits weights, 8 bits activations (3W8A)
(Per channel quantization of weights)

Baseline 59.6% 40.4% 0% 3.8% 28.6% 50.5%

Bias-Correction 67.3% 66.1% 3.0% 43.5% 67.4% 70.7%

Per-channel bit-allocation 69.5% 63.6% 1.3% 44.0% 66.6% 72.6%

Reference (FP32) 71.6% 73.4% 77.2% 69.7% 76.1% 77.3%

8 Combining our Quantization Methods133

We conduct a study to investigate how each quantization method affects performance. We consider134

four quantization methods: (1) ACIQ; (2) Bias-correction (3) Per-channel bit-allocation for weights;135

(4) Per-channel bit allocation for activations. Table 3 summaries all possible combinations on136

ResNet101.137

Method 2 bit 3 bit 4 bit 5 bit

Naive 0.1 0.5 61.8 74.9
Bias-Corr. 0.2 0.9 63.7 75.3
Bit-Alloc.(W) 0.1 1.3 63 74.9
Bit-Alloc.(W) + Bias Corr 0.1 1.3 65.5 75.3
Bit-Alloc.(A) 0.1 31.7 70.9 74.9
Bit-Alloc.(A) + Bias Corr 0.4 53.7 73.2 75.3
Bit-Alloc.(A) + Bit-Alloc.(W) 0.2 56.2 70.9 74.9
Bit-Alloc.(A) + Bit-Alloc.(W) + Bias-Corr. 0.6 58 72.4 75.4
ACIQ 0 23.3 68.2 75
Bias-Corr. + ACIQ 0.3 47.7 71 75.6
Bit-Alloc.(W) + ACIQ 0.2 53.7 71.1 75
Bit-Alloc.(W) + Bias Corr + ACIQ 0.5 55.4 72.2 75.5
Bit-Alloc.(A) + ACIQ 0 41.7 72.1 75.2
Bit-Alloc.(A) + Bias Corr + ACIQ 0.5 64.7 74.4 75.6
Bit-Alloc.(A) + Bit-Alloc.(W) + ACIQ 0.4 66.6 74.8 75.2
Bit-Alloc.(A) + Bit-Alloc.(W) + Bias-Corr. + ACIQ 4.6 69 75.4 75.5

Table 3: ImageNet Top-1 validation accuracy with post-training quantization using the three methods
suggested by this work.
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