
Supplementary Material: Randomized
Subspace Newton Method
A Key Lemmas

Lemma 9. Let y ∈ Rd, c > 0 and H ∈ Rd×d be a symmetric positive semi-definite matrix. Let
g ∈ Range (H) . The set of solutions to

x̂ ∈ arg min
x∈Rd

〈g, x− y〉+
c

2
‖x− y‖2H , (29)

is given by

x̂ ∈ H†
(
Hy − 1

c
g

)
+ Null(H). (30)

Two particular solutions in the above set are given by

x̂ = y − 1

c
H†g, (31)

and the least norm solution

x† = H†
(
Hy − 1

c
g

)
. (32)

The minimum of (29) is

〈g, x̂− y〉+
c

2
‖x̂− y‖2H = − 1

2c
‖g‖2H† . (33)

Proof. Taking the derivative in x and setting to zero gives

1

c
g + H(x− y) = 0.

The above linear system is guaranteed to have a solution because g ∈ Range(H). The solution set
to this linear system is the set

H†(Hy − 1
cg) + Null(H).

The point (31) belong to the above set by noting that (I−H†H)y ∈ Null(H), which in turn follows
by the H = HH†H property of pseudoinverse matrices. Clearly (32) is the least norm solution.

Finally, using any solution (30) we have that

x̂− y ∈ (H†H− I)y − 1

c
H†g + Null(H),

which when substituted into (29) gives

(29) =
〈
g, (H†H− I)y − 1

cH
†g
〉︸ ︷︷ ︸

α

+
c

2

∥∥(H†H− I)y − 1
cH
†g
∥∥2

H︸ ︷︷ ︸
β

. (34)

Since g ∈ Range (H) we have that g>(H†H− I) = 0 and thus α = − 1
c ‖g‖

2
H† . Furthermore

β =
∥∥(H†H− I)y − 1

cH
†g
∥∥2

H

=
∥∥(H†H− I)y

∥∥2

H
− 2

c

〈
H(H†H− I)y,H†g

〉
+ 1

c2

∥∥H†g∥∥2

H

=
1

c2
∥∥H†g∥∥2

H
=

1

c2
〈
g,H†HH†g

〉
=

1

c2
‖g‖2H† ,

where we used that H†HH† = H†. Using the above calculations in (34) gives

(29) = −1

c
‖g‖2H† +

1

2c
‖g‖2H† = − 1

2c
‖g‖2H† .
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Lemma 10. For any matrix W and symmetric positive semidefinite matrix G such that

Null(G) ⊂ Null(W>), (35)

we have that
Null(W) = Null(W>GW) (36)

and
Range(W>) = Range(W>GW). (37)

Proof. In order to establish (36), it suffices to show the inclusion Null(W) ⊇ Null(W>GW) since
the reverse inclusion trivially holds. Letting s ∈ Null(W>GW), we see that ‖G1/2Ws‖2 = 0,
which implies G1/2Ws = 0. Consequently

Ws ∈ Null(G1/2) = Null(G)
(35)
⊂ Null(W>).

Thus Ws ∈ Null(W>)∩Range(W) which are orthogonal complements which shows that Ws =
0.

Finally, (37) follows from (36) by taking orthogonal complements. Indeed, Range(W>) is the
orthogonal complement of Null(W) and Range(W>GW) is the orthogonal complement of
Null(W>GW).

Our assumptions are inspired on the c–stability assumption in [18]:

Proposition 2 ([18] c-stable). We say that f is c–stable if for every y, z ∈ Q, z 6= y we have that
‖z − y‖2H(y) > 0, and there exists a constant c ≥ 1 such that

c = max
y,z∈Q

‖z − y‖2H(z)

‖z − y‖2H(y)

. (38)

We say that f is L–smooth if

f(x) ≤ f(y) + 〈g(y), x− y〉+
L

2
‖x− y‖22, (39)

and µ–strongly convex if

f(x) ≥ f(y) + 〈g(y), x− y〉+
µ

2
‖x− y‖22. (40)

If f is µ–strongly convex and L–smooth, then f is L/µ–stable. Furthermore if f is c–stable then
Assumption 1 holds with L̂ ≤ c and µ̂ ≥ 1

c .

Proof. Lemma 2 in [18] proves that c–stability implies c relative smoothness and c relative convex-
ity. The inequalities L̂ ≤ c and µ̂ ≥ 1

c follow from (38) compared to (22) and (21).

B Proof of Lemma 2

Proof. Lemma 1 implies that xk+1 ∈ Q, and Lemma 9 in the appendix shows that (5) is a global
minimizer for γ = 1/L̂.

C Proof of Lemma 3

Proof. Due to (10) we have that

f(xk+1)
(3)
≤ T (xk, xk+1) = min

λ∈Rs
T (xk, xk + λSk) ≤ T (xk, xk) = f(xk).
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D Proof of Lemma 5

Proof. 1. Plugging in y = xk and x = xk + Skλ into (3) we have that

T (xk + Skλ, xk) = f(xk) + 〈g(xk),Skλ〉+
L̂

2
‖Skλ‖2H(y)

= f(xk) + 〈S>k g(xk), λ〉+
L̂

2
‖λ‖2S>k H(xk)Sk

. (41)

By taking the orthogonal components in (6) we have that S>k g(xk) ∈
Range

(
S>kH(xk)Sk

)
, and consequently from Lemma 9 we have that the minimizer

is given by

λk ∈ −
1

L̂

(
S>kH(xk)Sk

)†
S>k g(xk) + Null

(
S>kH(xk)Sk

)
. (42)

Left multiplying by S>k gives

Skλk = − 1

L̂
Sk
(
S>kH(xk)Sk

)†
S>k g(xk) + Sk Null

(
S>kH(xk)Sk

)
(6)
= − 1

L̂
Sk
(
S>kH(xk)Sk

)†
S>k g(xk)

Lemma 4
=

1

L̂
Pkn(xk). (43)

Consequently xk + Skλk = xk + 1
L̂
Pkn(xk).

Furthermore, since λk is the minimizer of (41), we have from Lemma 9 and (33) that

T (xk+1, xk) = T (xk + Skλk) = f(xk)− 1

2L̂

∥∥S>k g(xk)
∥∥2

(S>k H(xk)Sk)†

= f(xk)− 1

2L̂
‖g(xk)‖2Sk(S>k H(xk)Sk)†S>k

.

2. Plugging in the constraint into the objective in (12) gives∥∥∥∥Skλ+
1

L̂
n(xk)

∥∥∥∥2

H(xk)

= ‖λ‖2S>k H(xk)Sk
+

2

L̂

〈
S>kH(xk)n(xk), λ

〉
+

1

L̂2
‖n(xk)‖2H(xk)

(9)
= ‖λ‖2S>k H(xk)Sk

+
2

L̂

〈
S>k g(xk), λ

〉
+

1

L̂2
‖n(xk)‖2H(xk) .

Consequently minimizing the above is equivalent to minimizing (41), and thus Skλ is given
by (43).

3. The Lagrangian of (13) is

L(d, λ) = ‖x− xk‖2H(xk) +

〈
λ,S>kH(xk)(x− xk) +

1

L̂
S>k g(xk)

〉
.

Differentiating in d and setting to zero gives

H(xk)(x− xk) + H(xk)Skλ = 0. (44)

Left multiplying by S>k and using the constraint in (13) gives

S>kH(xk)Skλ =
1

L̂
S>k g(xk). (45)

Again we have that S>k g(xk) ∈ Range
(
S>kH(xk)Sk

)
by (6). Consequently by Lemma 9

we have that the solution set in λ is given by

λ =
1

L̂

(
S>kH(xk)Sk

)†
S>k g(xk) + Null(S>kH(xk)Sk).
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Plugging the above into (44) gives

H(xk)(x− xk) = − 1

L̂
H(xk)Sk

(
S>kH(xk)Sk

)†
S>k g(xk) + H(xk)Sk Null(S>kH(xk)Sk)

(6)
= − 1

L̂
H(xk)Sk

(
S>kH(xk)Sk

)†
S>k g(xk). (46)

Thus (8) is a solution to the above. If Range (Sk) ⊂ Range (Hk(xk)) then
H†k(xk)Hk(xk)Sk = Sk and the least norm solution is given by (8).

E Proof of Theorem 2

Proof. Consider the iterates xk given by Algorithm 1 and let Ek [·] denote the expectation condi-
tioned on xk, that is Ek [·] = E [· | xk] . Setting y = xk in (4) and minimizing both sides7 using (33)
in Lemma 9, we obtain the inequality

f∗ ≥ f(xk)− 1

2µ̂
‖g(xk)‖2H†(xk) . (47)

From (11) and (3) we have that

f(xk+1) ≤ f(xk)− 1

2L̂
‖g(xk)‖2Sk(S>k H(xk)Sk)†Sk

. (48)

Taking expectation conditioned on xk gives

Ek [f(xk+1)] ≤ f(xk)− 1

2L̂
‖g(xk)‖2G(xk) . (49)

Assumption 2 together with Range (H(xk)) = Range
(
H1/2(xk)

)
gives that

H†/2(xk)H1/2(xk)g(xk) = g(xk), (50)
where H†/2(xk) = (H†(xk))1/2. Consequently

‖g(xk)‖2G(xk) = ‖g(xk)‖2H†/2(xk)H1/2(xk)G(xk)H1/2(xk)H†/2(xk) ≥ ρ(xk) ‖g(xk)‖2H†(xk) , (51)

where we used the definition (14) of ρ(xk) together with H†/2(xk)g(xk) ∈ Range (H(xk)) in the
inequality. Using (51) and (47) in (49) gives

Ek [f(xk+1)] ≤ f(xk)− ρ(xk)

2L̂
‖g(xk)‖2H†(xk) (52)

≤ f(xk)− ρ(xk)µ̂

L̂
(f(xk)− f∗). (53)

Subtracting f∗ from both sides gives

Ek [f(xk+1)− f∗] ≤
(

1− ρ(xk)
µ̂

L̂

)
(f(xk)− f∗). (54)

Finally, since xk ∈ Q from Lemma 3, we have that ρ ≤ ρ(xk) and taking total expectation gives the
result (15).

F Proof of Theorem 3

Proof. From (52) it follows that

E
[
‖g(xk)‖2H†(xk)

] (52)
≤ E

[
2L̂

ρ(xk)
(f(xk)− Ek [f(xk+1)])

]

=
2L̂

ρ(xk)
E [f(xk)− f(xk+1)]

(14)
≤ 2L̂

ρ
E [f(xk)− f(xk+1)] . (55)

7Note that x∗ ∈ Q but the global minimizer of (33) is not necessarily in Q. This is not an issue, since the
global minima is a lower bound on the minima constrained to Q.
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From (48) we have that
f(xk+1) ≤ f(xk), (56)

and thus
xk ∈ Q for all k = 0, 1, 2, . . . (57)

Using the convexity of f(x), for every x∗ ∈ X∗ := arg min f we get

f∗ ≥ f(xk) + 〈g(xk), x∗ − xk〉
(50)
= f(xk) +

〈
H1/2(xk)H†/2(xk)g(xk), x∗ − xk

〉
≥ f(xk)− ‖g(xk)‖H†(xk) ‖xk − x∗‖H(xk)

(57)
≥ f(xk)− ‖g(xk)‖H†(xk) sup

x∈Q
‖x− x∗‖H(x) ,

hence
f(xk)− f∗ ≤ ‖g(xk)‖H†(xk) sup

x∈Q
‖x− x∗‖H(x) .

Taking infimum among all x∗ ∈ X∗ and using (17) we get

f(xk)− f∗ ≤ R‖g(xk)‖H†(xk) . (58)

Hence by Jensen’s inequality

(E [f(xk)]− f∗)2 ≤ E
[
(f(xk)− f∗)2

]
(58)
≤ E

[
R2 ‖g(xk)‖2H†(xk)

]
(55)
≤ 2L̂R2

ρ
E [f(xk)− f(xk+1)] . (59)

Now we put everything together:

1

E [f(xk+1)− f∗]
− 1

E [f(xk)− f∗]
=

E [f(xk)− f(xk+1)]

E [f(xk+1)− f∗]E [f(xk)− f∗]
(56)
≥ E [f(xk)− f(xk+1)]

(E [f(xk)− f∗])2

(59)
≥ ρ

2L̂R2
. (60)

Summing up (60) for k = 0, . . . , T − 1 and using telescopic cancellation we get

ρT

2L̂R2
≤ 1

E [f(xT )− f∗]
− 1

E [f(x0)− f∗]
≤ 1

E [f(xT )− f∗]
, (61)

which after re-arranging concludes the proof.

G Proof of Lemma 6

Proof. If (19) holds then by taking orthogonal complements we have that

Range (H(xk)) = Null (H(xk))
⊥

= Null
(

E[P̂(xk)]
)⊥

, (62)

and consequently

ρ(xk)
(14)+(62)

= min
v∈Null(E[P̂(xk)])⊥

〈
H1/2(xk)G(xk)H1/2(xk)v, v

〉
‖v‖22

= min
v∈Null(E[P̂(xk)])⊥

〈
E[P̂(xk)]v, v

〉
‖v‖22

= λ+
min(E[P̂(xk)]) > 0.
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H Proof of Lemma 7

Proof. Let XS be a random subset of Rd, where S ∼ D. We define stochastic intersection of XS:⋂
S∼D

XS =
{
x ∈ Rd : x ∈ XS with probability 1

}
. (63)

Using this definition for Null(Gk) we have

Null (Gk) = Null
(
ES∼D

[
S
(
S>H(xk)S

)†
S>
])

=
⋂
S∼D

Null
(
S
(
S>H(xk)S

)†
S>
)
, (64)

where the last equality follows from the fact that S
(
S>H(xk)S

)†
S> is a symmetric positive

semidefinite matrix. From the properties of pseudoinverse it follows that

Null
((

S>H(xk)S
)†)

= Null
(
S>H(xk)S

)
= Null (S) ,

thus, we can apply Lemma 10 and obtain

Null
(
S
(
S>H(xk)S

)†
S>
)

= Null
(
S>
)
. (65)

Furthermore,

Null (Gk)
(64)
=

⋂
S∼D

Null
(
S
(
S>H(xk)S

)†
S>
)

(65)
=

⋂
S∼D

Null
(
S>
)

=
⋂
S∼D

Null
(
SS>

)
= Null

(
ES∼D

[
SS>

])
. (66)

From (20) and (66) it follows that

Null (Gk) ⊂ Null (H(xk)) = Null
(
H1/2(xk)

)
, (67)

hence, Lemma 10 implies that

Range (H(xk)) = Range
(
H1/2(xk)GkH

1/2(xk)
)
, (68)

which concludes the proof.

I Proof of Lemma 8

Proof. Using Taylor’s theorem, for every x, y ∈ Q we have that

f(x) = f(y) + 〈g(y), x− y〉+

∫ 1

t=0

(1− t)‖x− y‖2H(y+t(x−y))dt. (69)

Comparing the above with (3) we have that

L̂

2
‖x− y‖2H(y) ≥

∫ 1

t=0

(1− t)‖x− y‖2H(y+t(x−y))dt, ∀x, y ∈ Q, x 6= y. (70)

Let x 6= y. Since we assume that ‖x − y‖2H(y) 6= 0 we have that the relative smoothness constant
satisfies

L̂

2
= max
x,y∈Q

∫ 1

t=0

(1− t)‖x− y‖2H(y+t(x−y))

‖x− y‖2H(y)

dt. (71)
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Let zt = y + t(x − y)). Substituting x − y = (zt − y)/ t in the above gives the equality in (21).
Following an analogous argument for the relative convexity constant µ̂ gives the equality in (21).

Since f(x) is convex, the setQ is convex and thus zt ∈ Q for all t ∈ [0, 1]. By alternating the order
of the maximization and integral in (21) that

L̂

2

(21)
≤

∫ 1

t=0

(1− t) max
x,y∈Q

‖zt − y‖2H(zt)

‖zt − y‖2H(y)

dt

zt∈Q
≤

∫ 1

t=0

(1− t)dt max
x,y∈Q

‖x− y‖2H(x)

‖x− y‖2H(y)

=
1

2
max
x,y∈Q

‖x− y‖2H(x)

‖x− y‖2H(y)

.

Following an analogous argument for the relative convexity constant µ̂ we have that

µ̂

2

(22)
≥

∫ 1

t=0

(1− t) min
x,y∈Q

‖zt − y‖2H(zt)

‖zt − y‖2H(y)

dt

zt∈Q
≥

∫ 1

t=0

(1− t)dt min
x,y∈Q

‖x− y‖2H(x)

‖x− y‖2H(y)

=
1

2

1

maxx,y∈Q
‖x−y‖2

H(x)

‖x−y‖2
H(y)

.

J Proof of Corollary 1

Proof. Using that
0 < d>i H(x)di ≤ diUdi, (72)

which follows from H � U and our assumption that d>i H(x)di 6= 0, we have that

G(x) = Ek
[
S(S>H(x)S)†S>

]
=

d∑
i=1

diUdi
Trace (D>UD)

did
>
i

d>i H(x)di

(72)
� 1

Trace (D>UD)

d∑
i=1

did
>
i =

1

Trace (D>UD)
DD>. (73)

Furthermore since D is invertible we have by Lemma 10 that

Range
(
H1/2(x)DD>H1/2

)
= Range

(
H1/2(x)

)
= Range (H(x)) . (74)

And thus from Lemma 6 we have that

ρ = min
x∈Q

λ+
min(P̂(x))

(18)
≥ min

x∈Q

λ+
min(H1/2(x)DD>H1/2(x))

Trace (D>UD)
. (75)

K Proof of Proposition 1

Proof. The gradient and Hessian of (26) are given by

g(x) =
1

n

n∑
i=1

aiφ
′
i(a
>
i x) + λx =

1

n
AΦ′(A>x) + λx, (76)

H(x) =
1

n

n∑
i=1

aia
>
i φ
′′
i (a>i x) + λI =

1

n
AΦ′′(A>x)A> + λI, (77)

where

Φ′(A>x) := [φ′i(a
>
1 x), . . . , φ′i(a

>
n x)] ∈ Rn, (78)

Φ′′(A>x) := diag
(
φ′′i (a>1 x), . . . , φ′′i (a>n x)

)
. (79)
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Consequently the g(x) ∈ Range (H(x)) for all x ∈ Rd.
Using Lemma 8 and (77) we have that

L̂ ≤ max
y,z∈Rd

‖y − z‖21
nAΦ′′(A>y)A>+λI

‖y − z‖21
nAΦ′′(A>z)A>+λI

(25)
≤ max

y,z∈Rd

‖y − z‖2`
nAA>+λI

‖y − z‖2u
nAA>+λI

= max
y,z∈Rd

‖y − z‖2`−u
n AA> + ‖y − z‖2u

nAA>+λI

‖y − z‖2u
nAA>+λI

= 1 + max
y,z∈Rd

‖y − z‖2`−u
n AA>

‖y − z‖2u
nAA>+λI

(80)

Now note that

max
y,z∈Rd

‖y − z‖2`−u
n AA>

‖y − z‖2u
nAA>+λI

=
1

min
y,z∈Rd

‖y − z‖2u
nAA>+λI

‖y − z‖2`−u
n AA>

=
1

u

`− u
+ λ min

y,z∈Rd

‖y − z‖22
‖y − z‖2`−u

n AA>

=
1

u

`− u
+

nλ

`− u
1

σ2
max(A)

, (81)

where we used that

min
y,z∈Rd

‖y − z‖22
‖y − z‖2AA>

=
1

maxy,z∈Rd

‖y−z‖2
AA>

‖y−z‖22

=
1

σ2
max(A)

. (82)

Inserting (81) into (80) gives

L̂ ≤ 1 +
`− u

u+ nλ
σ2
max(A)

=
`σ2

max(A) + nλ

uσ2
max(A) + nλ

.

The bounds for µ̂ follows from (22).

Finally turing to Lemma 7 we have that (6) holds since H(xk) is positive definite and by Lemma 10,
and (20) holds by our assumption that E

[
SS>

]
is invertible. Thus by Lemma 7 we have that ρ > 0

and the total complexity result in Theorem 2 holds.

L Uniform single coordinate sketch

Further to our results on using single column sketches with non-uniform sampling in Corollary 1,
here we present the case for uniform sampling that does not rely on the Hessian having a uniform
upper bound as is assumed in Corollary 1. Let Hii(x) := e>i H(x)ei and gi(x) := e>i g(x). In this
case (8) is given by

xk+1 = xk −
gi(xk)

L̂Hii(xk)
ei. (83)
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Algorithm 2 RSNxls: Randomized Subspace Newton with exact Line-Search
1: input: x0 ∈ Rd
2: parameters: D = distribution over random matrices
3: for k = 0, 1, 2, . . . do
4: Sk ∼ D
5: λk = −

(
S>kH(xk)Sk)

)†
S>k g(xk)

6: dk = Skλk
7: tk = argmint∈R f(xk + tdk)
8: xk+1 = xk + tkdk
9: output: last iterate xk

Corollary 2. Let P[Sk = ei] = 1
d and let

α = min
x∈Rd

min
w∈Range(H(x))

‖w‖2Diag(H(x))−1

‖w‖2H†(x)

.

Under the assumptions of Theorem 2 we have that Algorithm 1 converges according to

E [f(xk)− f∗] ≤
(

1− α

d

µ̂

L̂

)k
(f(x0)− f∗).

Proof. It follows by direct computation that

G(x) = Ek
[
S(S>H(x)S)†S>

]
=

1

d

d∑
i=1

eie
>
i

Hii(x)
=

1

d
Diag (H(x))

−1
.

Thus from the definition (14) we have

ρ =
1

d
min
x∈Rd

min
v∈Range(H(x))

〈
H1/2(x)Diag (H(x))

−1
H1/2(x)v, v

〉
‖v‖22

.

Since Range
(
H†/2(x)

)
= Range (H(x)) and v ∈ Range (H(x)) we can re-write v = H†/2(x)w

where w ∈ Range (H(x)) and consequently

ρ =
1

d
min
x∈Rd

min
w∈Range(H(x))

〈
Diag (H(x))

−1
H1/2(x)H†/2(x)w,H1/2(x)H†/2(x)w

〉
‖w‖2H†(x)

H1/2(x)H†/2(x)w=w
=

1

d
min
x∈Rd

min
w∈Range(H(x))

〈
Diag (H(x))

−1
w,w

〉
〈H(x)w,w〉22

:=
α

d
.

M Experimental details

All tests were performed in MATLAB 2018b on a PC with an Intel quad-core i7-4770 CPU and 32
Gigabyte of DDR3 RAM running Ubuntu 18.04.

M.1 Sketched Line-Search

In order to speed up convergence we can modify Algorithm 1 by introducing an exact Line-Search
and obtain Algorithm 2.

In this section we focus on heuristics for performing an exact Line-Search under the assumption
that our direction is of the form d = Sλ. This allows us to only work with sketched gradients
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Algorithm 3 Generic Line Search - Pseudocode
1: input: increasing continuous function l : R→ R with l(0) < 0 and at least one root t∗ ∈ R+

2: tolerance: ε > 0
3: set [a, b]← [0, 1]
4: while l(b) < −ε
5: choose t > b . either fixed enlargement (t = 2b) or via spline extrapolation
6: set [a, b]← [b, t]
7: endwhile . end of first phase: either |l(b)| ≤ ε or l(a) < 0 < ε ≤ l(b), i.e. t∗ ∈ [a, b]
8: set t← b
9: while |l(t)| > ε

10: if l(t) < 0
11: [a, b]← [t, b]
12: else l(t) > 0
13: [a, b]← [a, t]
14: endif
15: choose t with a < t < b . either middle of interval (t = a+b

2 ) or via spline interpolation
16: endwhile . end of second phase
17: output: t > 0 with |l(t)| ≤ ε

and sketched Hessians. This potentially allows for significant computational savings. Specifically
consider the problem of finding

t∗ := argmint∈R f(x+ td), (84)

which is, for differentiable and convex f , equivalent to finding a root of the objectives first derivative.
Defining

l(t) :=
∂f(x+ td)

∂t
= d>g(x+ td) = λ>(S>g(x+ td)) (85)

gives us the task of solving
l(t∗) = 0 (86)

and differentiating once more

l′(t) =
∂2f(x+ td)

∂2t
= d>H(x+ td)d = λ>(S>H(x+ td)S)λ, (87)

reveals that we do not need full, but only sketched gradient and Hessian access, in order to evaluate
l respectively l′. Note that the evaluation of

l(0) = λ>S>g(x)

l′(0) = λ>(S>H(x)S)λ
(88)

are essentially a by-product from the computation of λ in Algorithm 2 and therefore add almost no
computational cost. Furthermore, if f is convex and λ = −(S>H(x)S)†S>g(x) is given , then

l(0) = −g(x)>S(S>H(x)S)†S>g(x) ≤ 0 (89)

implies that d is a weak descent direction of f . Since in this case, l(0) = 0 implies t∗ = 0, let us
focus on the situation that we actually have a strong descent direction, i.e. that

l(0) < 0 (90)

is satisfied. The line-search 3 ensures an output t > 0 satisfying |l(t)| ≤ ε and is best explained by
strengthening Step 4 of (3) to “while l(b) < 0”, as this would ensure that the final values of a and b
box the minimum t∗ ∈ [a, b]: The first phase is to identify an interval [a, b] with 0 ≤ a < b such that

l(a) < 0 ≤ l(b) (91)

which guarantees the existence of at least one minimum t∗ ∈ [a, b]. In the second phase, we can then
decrease the intervals length with a ≤ ā < b̄ ≤ b such that 0 ≤ l(t) ≤ ε is satisfied for all t ∈ [ā, b̄]
and some given tolerance ε > 0. Both steps should be safeguarded and can be assisted by using
cubic splines inter- or extrapolating l(t). This approach has the potential of reducing computational
costs and the benefit of avoiding function evaluations of f entirely.
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