Supplementary Material: Randomized
Subspace Newton Method

A Key Lemmas

Lemma 9. Let y € R ¢ > 0 and H € R¥? be a symmetric positive semi-definite matrix. Let
g € Range (H) . The set of solutions to

N . c 2
& €argmin (g, —y) + 5 |z~ ylu, (29)
is given by
1
& e H (Hy — g) + Null(H). (30)
c
Two particular solutions in the above set are given by
1
& =y-—Hlyg, (31)
c
and the least norm solution
1
zf =HT <Hy — g) . (32)
c
The minimum of is
A Cia 2 1 2
(9,2 =)+ 5 I8 = ylif = — 5 ol - (33)

Proof. Taking the derivative in = and setting to zero gives
1
Eg+H(x—y) =0.

The above linear system is guaranteed to have a solution because g € Range(H). The solution set
to this linear system is the set
H'(Hy — 1g) + Null(H).

The point (3T)) belong to the above set by noting that (I —H'H)y € Null(H), which in turn follows
by the H = HH'H property of pseudoinverse matrices. Clearly is the least norm solution.

Finally, using any solution (30) we have that
i—ye(HH-I)y— %HTQ + Null(H),
which when substituted into (29) gives
@) = (g, (HH-T)y— LHg) +§ |(HTH - T)y - LHTg|7, . (34)
a B

Since g € Range (H) we have that g7 (H'H — I) = 0 and thus o = — 1 |g|| 7. Furthermore
2
8 = |(H'H-Dy - {Hig|,
2 2 2
= [(H"H - Dyl - - (HHTH - Dy, Hig) + 5 [[HTg|,
1 2 1 1 2
= §|‘HT9|‘H = §<9,HTHHT9> = CE“Q“HT,
where we used that HTHH' = H. Using the above calculations in (34) gives

1 2 1 2 1 2
2% = = gl + % gl = 9 9l -
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Lemma 10. For any matrix W and symmetric positive semidefinite matrix G such that

Null(G) ¢ Null(W ), (35)
we have that
Null(W) = Nul(W 'GW) (36)
and
Range(W ') = Range(W' GW). 37

Proof. In order to establish (36), it suffices to show the inclusion Null(W) D Null(W " GW) since
the reverse inclusion trivially holds. Letting s € Null(W T GW), we see that |G'/?Ws||? = 0,
which implies G'/2W s = 0. Consequently

Ws e Null(GY/2) = Null(G) @ Null(WT).

Thus Ws € Null(W ) N Range(W) which are orthogonal complements which shows that Ws =
0.

Finally, follows from (B6) by taking orthogonal complements. Indeed, Range(W ) is the
orthogonal complement of Null(W) and Range(W T GW) is the orthogonal complement of
Null(WTGW). O

Our assumptions are inspired on the c—stability assumption in [18]:

Proposition 2 ([18]] c-stable). We say that f is c—stable if for every y,z € Q, z # y we have that
|z — y||%l(y) > 0, and there exists a constant ¢ > 1 such that

12 =yl
¢ = max |7§1() (38)
y2€Q ||z — yHH(y)
We say that f is L—smooth if
L
F@) < F) + 9w,z =) + S lle = w3, (39)
and p—strongly convex if
I
F@) = f@) + o) o — ) + Sz — w3 (40)

If f is p—strongly convex and L—smooth, then f is L/u—stable. Furthermore if f is c—stable then
Assumptionholds with L < cand i > %

Proof. Lemma 2 in [18]] proves that c—stability implies c relative smoothness and c relative convex-
ity. The inequalities L < c and i > 1 follow from (38) compared to (22) and 21). O

B Proof of Lemma

Proof. Lemma([I]implies that 141 € Q, and Lemma [9]in the appendix shows that (3) is a global
minimizer for v = /. O

C Proof of Lemma[3

Proof. Due to we have that

@ .
flags) < T(zp,xp41) = /I\IGI}RQ T(xk,xr + ASk) < T(xg,xr) = flxk).
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D Proof of Lemma 3

Proof.

1. Plugginginy =z and z = x, + Sy into (3) we have that

~

L
T(zr +SpXx) = flag) + (9(xr), SpA) + EHSk)‘”%{(y)

L
= flae) +(Sig(w) N + S INSrueys, @D

By taking the orthogonal components in (6) we have that S;— g(zr) €
Range (S;H(:ck)Sk), and consequently from Lemma |§| we have that the minimizer
is given by

A€ (SUH(x1)Sk) " 8] glar) + Null (S] H(x)Sk) . (42)

Left multiplying by S/ gives

1
Sk Ak = _Esk (S;H(xk)sk)T Sk g(ax) + Sy Null (S H(zy)Sy,)
1
@ —7 5 (STH(x1)Sk) ] g(an)
emma 1
Lemmal EP;m(xk)- @

Consequently x, + Sp A\ = x) + %Pkn(xk).
Furthermore, since Ay, is the minimizer of @T]), we have from Lemma[9]and (33) that

2

1
T(xk+1,25) = T(xg+Sprg) = f(zr) — of Szg(xk)H(s,jH(wk)sk)f

1
= flzx) — oF ||g(xk)”ék(SkTH(wk)Sk)TSkT'

. Plugging in the constraint into the objective in (12) gives

2

Consequently minimizing the above is equivalent to minimizing (@1}, and thus S\ is given

by @3).

1

2 1
) N ros, + 2 (STHEOG).A) + 2 In()la,
(k)

=

2 2 T 1 2
|\>\HskTH(xk)sk + 7 (Sy glar), A) + I In(zi) ey -

. The Lagrangian of (13) is

1
L) = e = aulfyy + (ST~ 1) + 18T on)).

Differentiating in d and setting to zero gives
H(zp)(z — zx) + H(zp)SpA = 0. (44)

Left multiplying by SZ and using the constraint in (T3) gives
1
SpH(zk)SkA = ZSZg(xk). (45)

Again we have that S} g(2x) € Range (S H(z,)Si,) by (6). Consequently by Lemma|§|
we have that the solution set in A is given by

1
A== (S/H(2)Sk) " ] g(zx) + Null(S] H(wy)Sy).
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Plugging the above into (@4) gives

H(n)(o— o) = ——Hm)Se (STH@)S:) 8 g(n) + Hin)S: Null(S] Hizy)S1)

=

’%H(xk)sk (STH(@:)St)' ST g(an):

Thus (8) is a solution to the above. If Range(S;) C Range(Hg(xy)) then
H£ (2)Hy(x)Sk = Sk and the least norm solution is given by (8).

O

E Proof of Theorem

Proof. Consider the iterates xj, given by Algorithm |1/ and let Ej, [-] denote the expectation condi-
tioned on xy, that is By, [[| = E [ | z%] . Setting y = z, in (@) and minimizing both sidesﬂusing 33)
in Lemma[9] we obtain the inequality

1
fo= flo) = 5 9@kt o) (@7)
From (T1)) and (3) we have that
1 2
fleppr) < flaw) — 57 l9(@i)lls, (ST E@0)S0)TS) - (48)
Taking expectation conditioned on xj, gives
1
Belf(men)] < flaw) = o= l9(2) I o) - (49)
Assumption [2| together with Range (H(x))) = Range (HY/2(x}, ives that
p g g g g
H/2 () H' 2 (1) g (k) = g(a), (50

where H/2(z;,) = (H'(21))/2. Consequently

2 2 2
||9($k)HG(mk) = ”g(xk)HHT/2(mk)H1/2(ggk)G(zk)Hlﬂ(mk)H’rﬂ(mk) > p(zx) ||g($k)||HT(zk)a (S

where we used the definition (T4) of p(z}) together with H/2(x;,)g(x1,) € Range (H(zy)) in the
inequality. Using (31) and @7) in (@9) gives

P\ Tk
Belfn)) < 50— 22 g, (52)
Vi

< Jlon) = L2 ) - 1), 53)

Subtracting f, from both sides gives

i

B [f(onn) - £1< (1= e ) (1) - 1) (5
Finally, since =, € Q from Lemma we have that p < p(xj) and taking total expectation gives the
result (T3). O

F Proof of Theorem

Proof. From (52) it follows that

E o] 2 E | oo () — [f(xk+1>1>]
2L
= p(Axk)]E[f(ﬂfk)*f(ka)]
@ 2ZBLf(@n) — fa)]. (55)

"Note that z* € Q but the global minimizer of (33) is not necessarily in Q. This is not an issue, since the
global minima is a lower bound on the minima constrained to Q.
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From (@8) we have that
f(@es1) < ),
and thus
€ Q forallk=0,1,2,...
Using the convexity of f(x), for every x, € X, := argmin f we get
[ fxr) + (g(2k), 2 — )
faw) + (B2 (@) HY 2 (@)g() o — i)

F@r) = lg(@e)llar @) ok = 2l

@ Y

Y=Y

f(@r) = llg(@e)ll gt @) sup 2 = zullae)

hence
flaw) = fo < Mlg(@i)lla 2y sup |z = sllgg ()

Taking infimum among all 2* € X, and using (I7) we get
flaw) = fo S Rg(@r) et () -

Hence by Jensen’s inequality

E[f@)] - £)° < E[(f@0) - 1)]
(&t
< B[R9 i)
T2
2 B - s
Now we put everything together:
1 _ 1 _ E[f(zk) = f(zrs1)]
Elf(zhsr) = fi] - Elf(z) — £ Ef(@rs1) = LIE[f(zn) = fi]
@ E[f(zk) — f(@k11)]
~ (Elf) - L]
& p
> .
- 2LR2
Summing up fork =0,...,T — 1 and using telescopic cancellation we get

T 1 ~ 1 _ 1
2LR? ~ Elf(zr) — f]  Elf(zo) = fi] = E[f(2r) — fi]’

which after re-arranging concludes the proof.

G Proof of Lemma 6
Proof. 1f (19) holds then by taking orthogonal complements we have that

Range (H(z)) = Null (H(z,))* = Null (E[ﬁ(a;k)])L ,

and consequently
HL/2 G H1/2 )
o) POy HCEIGEIR )
veENUll(E[P(zy)])+ ||v||2
<E[f’(xk)]v7v> .
= min T )‘Ln(E[P(xk)]) 0.
vENull(E[P (z4)]) + vl
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H Proof of Lemma /7

Proof. Let Xg be a random subset of R9, where S ~ D. We define stochastic intersection of Xg:

] &s = {z € R*: 2 € X with probability 1} . (63)
S~D

Using this definition for Null(Gy,) we have
Null (G;) = Null (ESND [s (STH(z,)S)" STD

(M Null (s (STH(zy)S)" ST) , (64)
S~D

where the last equality follows from the fact that S (STH(gck)S)T ST is a symmetric positive
semidefinite matrix. From the properties of pseudoinverse it follows that

Null ((STH(xk)S)T) = Null (STH(z4)S) = Null (),

thus, we can apply Lemma|[I0]and obtain

Null (S (STH(z)8)' ST) = Null (S7) . (65)
Furthermore,
Null(Gy) @ ) N (s (STH(z)8)" ST)
S~D
@ M Nu(s)
S~D
= () Null(SST)
S~D
= Null(Es.p [SST]). (66)
From and (66) it follows that
Null (Gy) € Null (H(z,)) = Null (Hl/Q(xk)) , 67)
hence, Lemma[I0]implies that
Range (H(z4)) = Range (H'/?(2) GyH' (1)) (68)
which concludes the proof.
O
I Proof of Lemma
Proof. Using Taylor’s theorem, for every z,y € Q we have that
1
f(@)=f(y) +{9(y),z —y) + /t:O(l = )l = yllfry ey dt- (69)
Comparing the above with (3) we have that
L > ' 2
5”17 “Yla = t:O(l = Ol = yllagst@-ynd, Yo,y €Q, xFy. (70)
Let x # y. Since we assume that ||z — i‘/”%{(y) # 0 we have that the relative smoothness constant
satisfies ' N 2
L 1—t)|[|x—y .
Z — max / My tte=v) gy (71)
2 2yeQ /i o — yHH(y)
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Let z; = y + t(z — y)). Substituting x — y = (2, — y)/t in the above gives the equality in (ZI).
Following an analogous argument for the relative convexity constant /i gives the equality in 2T).

Since f(x) is convex, the set Q is convex and thus z; € Q forall t € [0, 1]. By alternating the order
of the maximization and integral in (2T)) that

L @ ! 2 = Yl
- < / (1 —1t) max %dt
2 t=0 zy€Q |2 — yHH(y)

max ———5— =

2t€Q L r—=y : T 1 r—y ; T
s / (1— t)dt | ||;{( ) 1 | ||;{( ).
t=0 zyeQ [l =yl 2 2yeQ [l — Yl

Following an analogous argument for the relative convexity constant /i we have that

@ ! ze = Yl
i e / (1= 1) min e
2 t=0 zy€Q 2 — y”H(y)

neo [l = ylliye 1 1
= / (1= t)dt mienQ||||x—|||;{() ) =
=0 Y () maXg,yeQ Hzfy\lgi;)
O
J Proof of Corollary]
Proof. Using that
0 < d]H(z)d; < d;Ud,, (72)
which follows from H < U and our assumption that d; H(z)d; # 0, we have that
d
d; Ud; d;d]
G = E;[S(STH(2)S)'ST] = e L
() k [ ( (2)8) ] P Trace (DT UD) d;rH(x)di
1 d 1
= - N'dd =————_DD'. 73
~  Trace (DTUD) ; ©* Trace (DTUD) (73)
Furthermore since D is invertible we have by Lemma[I0]| that
Range (Hl/2 (:c)DDTHl/Z) = Range <H1/2 (:c)) = Range (H(z)) . (74)
And thus from Lemmal6] we have that
. (18] AE (HY?(z)DDTHY?(x))
— : /\+‘ P S : min ] 75
P e0 min(P(2)) 2 €0 Trace (DTUD) (75)
O
K Proof of Proposition 1]
Proof. The gradient and Hessian of (26) are given by
1 1
g(x) = - Z; a;dl(a] ) + Az = ﬁAq)’(ATx) + Az, (76)
1< 1
H = = al ¢ (a] M=—Ad"(AT2)AT + \I 77
(2) n;aaz@(azxw ~AQ"(ATz)AT +)L, (77)
where
®'(ATz) = [¢j(a]2),...,di(a, )] €R, (78)
" (ATz) = diag(¢}(a{x),...,8/(a,z)). (79)
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Consequently the g(z) € Range (H(z)) for all z € R?.
Using Lemma|[gand (77) we have that

2
i < ly — ZH%LACD”(ATy)AT+)\I

ma,Xd )
v 2€RY |y — 2l agr (AT AT 4AT

2
(28] ly — 2l aariar
< max 5
v2€RY |y — 2l aaT 401
2 2
ly — ZH%AAT +lly—= LAATHAL
= max 3
Y,2€R |y — Z”%AATJr)\I
2
ly — 2llzupar
= 14+ max 5
v,2€R? ||y — Z”%AAT-F)\I
Now note that
2
ly — Z”@;JAAT 1
max 5 = 5
v2€RY |y — 2]l aaT a1 _ly =zl aaTiar
min s
yz€R? ||y — Z”uAAT
1
= 2
u . lly — ZH2
p)
t—u y2€R? [y — Z”"”T“AAT
_ 1
- ) n 1 ’
b—u {—uoc2, (A)
where we used that
2
ly ==zl 1 _ 1
2 - y—=z|2 ) .
vz€R? ||y — || A AT max, . ep Hy”yzjle”gT Ohax(A)
Inserting (8T) into (80) gives
-~ 2
<14 L :f,\ _ Ear;ax(A) + n)\.
Ut i UWhax(A) + 1A

The bounds for /i follows from (22).

(80)

81)

(82)

Finally turing to Lemma we have that (6)) holds since H(zy,) is positive definite and by Lemma
and (20) holds by our assumption that E [SST] is invertible. Thus by Lemma we have that p > 0
O

and the total complexity result in Theorem [2] holds.

L. Uniform single coordinate sketch

Further to our results on using single column sketches with non-uniform sampling in Corollary [T}
here we present the case for uniform sampling that does not rely on the Hessian having a uniform
upper bound as is assumed in Corollary |1} Let H;;(z) := ¢, H(z)e; and g;(z) = e g(z). In this

case (B) is given by
9i(@k)
Thy1 = T — =€,
k4l = Tk TH, (1)
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Algorithm 2 RSNxIs: Randomized Subspace Newton with exact Line-Search

1: input: o € R?

2: parameters: D = distribution over random matrices
3: fork=0,1,2,... do

4: S, ~D

5. A =— (STH(z)Sk)) 8] g(xr)
6: di = Sp Ak

7: tr = argmin, cp f(2r + tdi)

8 Tpy1 = Tk + tgdy

9: output: last iterate

Corollary 2. Let P[S; = ¢;] = 3 and let

lwl| D -1
o = min min —Dlagz(H(m))
z€R? weRange(H(z)) Hw”HT(l)

Under the assumptions of Theorem [2|we have that Algorithm|I| converges according to

afi b
E[f(xx) — fu] < (1— dﬁ) (f(zo) = fo)-

Proof. 1t follows by direct computation that

d T
1 eie; 1 _
G(z) =E; [S(STH(2)S)'ST] = = i _ — —Diag (H(z)) .
(#) = B [S(STHWS)'ST) = 5 3 s = Dies (H(2)
Thus from the definition (14) we have
1 . <H1/2(x)Diag (H(z))™" Hl/Q(m)v,v>
p = — min min 5 .
d zeRrd vERange(H(z)) ||'UH2

Since Range (H'/2(z)) = Range (H(z)) and v € Range (H(z)) we can re-write v = H/?(z)w
where w € Range (H(x)) and consequently

1 Diag (H(z)) " HY2(z)H!/2(z)w, H1/2($)HT/2(CL‘)IU>

= — min min
p d zeR4 weRange(H(z)) ||w||?_ﬁ(£)

H1/2(x)Hi/2(:r)w:w

1 i <Diag (H(m))f1 w,w>
d zeR

min 5 g.
d weRange(H(x)) <H(x)w, w>2 d

M Experimental details

All tests were performed in MATLAB 2018b on a PC with an Intel quad-core i7-4770 CPU and 32
Gigabyte of DDR3 RAM running Ubuntu 18.04.

M.1 Sketched Line-Search

In order to speed up convergence we can modify Algorithm [I]by introducing an exact Line-Search
and obtain Algorithm

In this section we focus on heuristics for performing an exact Line-Search under the assumption
that our direction is of the form d = SA. This allows us to only work with sketched gradients
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Algorithm 3 Generic Line Search - Pseudocode

1: input: increasing continuous function [ : R — R with [(0) < 0 and at least one root t* € R

2: tolerance: € > 0

3: set [a,b] « [0,1]

4: while [(b) < —¢

5: choose t > b > either fixed enlargement (¢ = 2b) or via spline extrapolation
6: set [a, b] < [b, ]

7: endwhile > end of first phase: either |[(b)| < eorl(a) < 0 < e <[(b),ie. t* € [a,]
8 sett<b

9: while |I(t)| > €
10 ifl(t) <0

11: [a,b] < [t, D]

12: else [(t) > 0

13: [a,b] + [a,t]

14: endif

15: choose t witha <t < b > either middle of interval (f = “TH’) or via spline interpolation
16: endwhile > end of second phase

17: output: ¢ > 0 with |I(¢)| <€

and sketched Hessians. This potentially allows for significant computational savings. Specifically
consider the problem of finding

t* := argmin,cp f(x + td), (84)

which is, for differentiable and convex f, equivalent to finding a root of the objectives first derivative.
Defining

I(t) := W =d"g(x+td) =\ (ST g(x + td)) (85)
gives us the task of solving
1(t*) = 0 (86)
and differentiating once more
2
I'(t) = W = d"H(z + td)d = A (STH(z + td)S), (87)

reveals that we do not need full, but only sketched gradient and Hessian access, in order to evaluate
[ respectively I’. Note that the evaluation of

1(0) = ATSTg(z)
I'(0) = AT(STH(x)S)A

are essentially a by-product from the computation of A in Algorithm [2|and therefore add almost no
computational cost. Furthermore, if f is convex and A\ = —(STH(z)S)TST g(z) is given , then

1(0) = —g(z) "S(STH(x)S)'8 Tg(z) <0 (89)

implies that d is a weak descent direction of f. Since in this case, [(0) = 0 implies t* = 0, let us
focus on the situation that we actually have a strong descent direction, i.e. that

1(0) < 0 (90)

is satisfied. The line—searchensures an output ¢ > 0 satisfying |I(¢)| < € and is best explained by
strengthening Step 4 of (3) to “while {(b) < 07, as this would ensure that the final values of a and b
box the minimum ¢* € [a, b]: The first phase is to identify an interval [a, b] with 0 < a < b such that

(88)

I(a) <0< (b) 1)

which guarantees the existence of at least one minimum ¢* € [a, b]. In the second phase, we can then
decrease the intervals length with @ < @ < b < b such that 0 < [(t) < e is satisfied for all ¢ € [a, b]
and some given tolerance ¢ > (0. Both steps should be safeguarded and can be assisted by using
cubic splines inter- or extrapolating [(¢). This approach has the potential of reducing computational
costs and the benefit of avoiding function evaluations of f entirely.
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