Supplementary Data

1 Architectures

We model the conditional template network architecture as a decoder with a dense layer followed by
several upsampling and convolutional levels. Class attributes are encoded as one-hot representations,
and continuous attributes are encoded as scalars. For toy datasets, we use a dense layer from the input
attributes to a 4 x 4 image with k features followed by three upsampling levels with two convolution
layers each with 16 features each. The value for k is set to 8 in most situations, and in the latent
variable experiment, we avoid over-fitting by using a bottleneck of 1 and k of 2, for both our method
and the baseline. Unconditional templates involve a single layer with a learnable parameter at each
pixel.

For our conditional 3D neuroimaging template, we use a dense layer to a 80 x 96 x 112 3D image
with 8 features, followed by a level of upsampling with three convolution layers and 8 features. All
kernels are of size 3.

We base our design for the registration network on the architecture described in recent learning-based
registration frameworks [9]]. Specifically, we use a U-Net style architecture with four downsampling
and upsampling layers, each involving a convolutional layer with 32 features and 3x3 kernel size.
This is followed by two more convolution layers. For baseline templates — instances, and those
produced by decoder-based models — we learn a registration network using the same architecture.

2 Quantitative Measures
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Figure 9: Quantitative measures. Top: Centrality and average deformation norm for templates
generated by our model and the baselines on the D-class variant of MNIST. We find that our models
yield more central templates. Bottom: Both MSE and Jacobians determinants measures indicate good
deformations for all models.
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3 Figures for additional benchmark experiments

Below we show the figures for the missing data, the latent attributes, and variability experiments.

Figure 10: Variability. Left: Images are synthesized by warping a learned template from the
D-class dataset along the main two axes found by applying PCA to test deformation fields. Right:
Images are synthesized by warping learned template using the D-class-scale along the main two
axes found by applying PCA. The first model uses scale as an attribute, learning mostly other mean-
ingful geometric deformations. The second model does not use scale as an attribute; consequently
both principal components are dominated by scale.
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Figure 11: Missing attributes. Left: during training, digits 3-5 are not synthesized using scaling 0.9—
1.1. Right: during training, only 5 examples of digit 5 are given. Red boxes highlight templates build
with attributes where data was held out.

Figure 12: Latent attribute results. The top row shows sample input digits. The middle row shows
our reconstruction for those input images, highlighting that the model learns a template for each digit
type even when the digit attribute is not explicitly given. The bottom row shows templates built using
an auto encoder with a single neuron bottleneck, showing that the main variation captured in this
manner encourages small pixel intensity error, rather than the geometric difference minimized by our
method.
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4 Quickdraw result examples
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Figure 13: Quickdraw example templates. Left: example and learned atlases for the D-class
QuickDraw dataset, and below variability examples similar to Figure [[0}left. Right: templates for
different scales and classes learned using D-class-scale simulations.

5 Additional neuroimaging results

Below we show additional figures of neuroimaging results, including segmentations for (conditional)
atlases, and example deformations.

Figure 14: Segmentations. Example segmentations overlayed with different brain views for our
unconditional template (left) and conditional templates (right) varying by age.
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Figure 15: Example 3D neuroimaging deformations. Frames include: coronal slices for age-
conditional template, subject scan, warped template onto subject, warped subject onto template (using
inverse field), and the first two directions of the 3D forward and inverse warps, and velocity field.

6 Supplementary Video

We include a supplementary video athttp://voxelmorph.mit.edu/atlas_creation/| illustrat-
ing our method’s ability of synthesizing templates on-demand based on given attributes. Specifically,
the video illustrates the brain template conditioned on age, between 15 and 90 years old, also used as
the video frame index.
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